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Sequents in many valued logic 1
by

G. Rousseau (Leicester)

The calenlus of sequents for two-valued predicate logic is well known,
either in the original formulation of Gentzen [1] or in any of the many
variants in the literature. In this paper we show that there exists an
analogous calculus for each finitely many valued predicate logic based
on arbitrary connectives Fi, ..., ¥, and quantifiers Q1 vy Qu-

1. Propositional calculus. Let M= {0,1,.., M —1} be the
set of truth-values and for each k (k= 1, ..., u) let fx be a truth-function
of 7= 1, > 1 arguments, ie., a mapping of MX XM= M" into M.
Let U and {F, ..., Fy} be disjoint sets of symbols, the elements of which
are called atomic statements and commectives respectively. The set & of
statements is the smallest set of expressions which contains all atomie
statements and which, for each connective F, contains Iy a;... ar whenever
it contains g, ..., or. The degree of a statement is the number of occur-
rences of connectives in it. We will denote statements by the letters
a,fB,y, .. and finite (possibly null) sequences of statements by I', 4, ...;
in particular, the null sequence will be denoted by 4.

A sequent is an expression of the form

(1) Ty | Ty | Torms | Tt

We denote sequents by the letters IT, X, ... If IT is the sequent (1) and X'
is the sequent

Ao l Al l I A;M—z ‘ Apr—1 ’
then J7X will denote the sequent
Iydg | Iydy | oo | Tag—adar—e | a1 Aar—1 -

If R is a subset of M then the sequent (1) may be written |z (or 1l
if B = {m}) provided
r r it ieR,
Tla i i¢R.


Artur


24 G. Roussean

A sequent is said to be atomic iff each statement occurring in it i
atomic.

The elements of MY are called valuations. Bach valuation v» deter-
mines a unique mapping h, of S into M such that for each connective ,

(2) h(Fyoy ... ap) = fk(hv(al)y reey hv(ar))

whenever g, ..., a, ¢ S.
The valuation v is said to satisfy the sequent (1) iff

(3) m e hy(I'y)  for some meM,
The set of valuations which satisfy IT is denoted by sil; clearly we have
(4) slh..Ily=slly v .. vsll,.

We say that the sequent IT is valid (Val IT) iff sI7 = MY and a set M
of sequents is simultancously satisfiable iff (M sIT # @.
e

Leyva 1. Let fr be a truth-function of r=ry arguments and let m
be a truth-value. Then there emist subsets Riof M (f=1,.,n575=1,..,7
where n < M"™, such that for all @y, ...,z ¢ M S

(5) Filyy ey o) =m = i/’{ (@ € Ri V..V wp e RY)
=]

; Proof. E?E? subse‘? X of M" can be represented as the union of not
more than M cartesian products of subsets of M. In fact, if r>1

then X is the union of all the products
{ma} X o X {mya} x {m: (ml’ ey Mpeyy M) € X}

such that (my, ...,m,—;) e M"™%. The lemma no i
th . w follows by an application
{))f :hls remark to the set M"\f;'(m). We note that the bound ™ is
1es. possible; for {(my, ..y miy): my+- ... my = 0 (mod M)} has M™
e em;?ﬁs but containg no .product with more than one element.
%y vy @ are any statements, then for each i (=1 b
Iy, ..., a,) e the sequent oy |g? ’ o entain it the
- r! ... |ar|ps. From (5) we in wi
Wl o oy e e e formula,ll ! o] m (5) we obtain with tho

n
(6) [Pty iyl = ) sllay, ..., ay) .
=1
If I7° and II* are arbitrary sequents we have by (6) and (4)
) STty ol T = (\ sI00T ey, ..., ar) 12,
1]
whence also
®) ValII'| Fra, . oy Tt = ‘/"\ Valll'ITay, ..., o) IT" .
=1
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m‘ ‘ormula (8) suggests characterizing the valid sequents by means of

“introduction rules” (F, m) for each connective F; and each truth-
value m, of the form
' IPIT (ayy ooy @) T o0 5 ITOIL (0 y veey o) ITY
I Fray... ol 1T '

We say that IT is an immediate consequence by rule (Fy, m) of IT,, ..., IT,
itf IT has the form II°|Fya,...o|m Tt while each II; (=1, ...,n) has the
form IT°ITi(ey, ..., a)[I*. An atomic sequent of the form (1) is called an
initial sequent iff the I, (m =0, .., M —1) have at least one statement
in, common.

The set of provable sequents is the least set which contains all initial
sequents and which contains a sequent JT whenever it contains sequents
II,, ..., I, of which IT is an immediate consequence by some rule (Fy, m)
=1, ., u; m=0, .., M~1). -

TueorEM 1. A sequent is valid iff it is provable.

Proof. Bach initial sequent is valid; by (8) an immediate consequence
of valid sequents is valid; consequently every provable sequent is valid.
We now prove the converse. For each sequent I7, let mII be the maximum
degree of statements occurring in IT and let n/7 be the number of occur-
rences in IT of statements of degree mIl. Let I7 be a valid sequent. If
ml7 = 0, then J7 is atomic; but all valid atomic sequents are initial
sequents; hence I7is provable. If mI7 > 0, we suppose that all valid sequents
Z are provable for which

] mr<mll, or

(ii) mX=ml7 and nX < nll.

Since mlI7 > 0, IT may be expressed in the form IT°| Fyay ... ar|m I+ where
Fyay..ar is of degree mIl. By (8) the sequents II°li(ay, ..., ar) IT*
(t=1,..,n) are valid; but for each of these sequents either (i) or (ii)
holds, so by inductive hypothesis each is provable; hence II i provable,
being an immediate consequence by rule (Fy,m) of provable sequents.
The proof is thus complete by induction. :

Ag a corollary we have the elimination theorem: If IT |a|r - and
|ejsZ are provable sequents (B ~ S = @), then IIX is provable.

THEOREM 2. A set of sequents is simultaneously satisfiable iff every
finite subset is simultancously satisfiable.

Proof. Let us assign to M the discrete topology and to M" the
product topology. Since M is a compact Hausdorf space, the same is
true of M® by Tychonoff’s theorem. The proof will therefore be complete
on showing that, for each I7, sI7 is a closed subset of M™. Let Uz be the
set of atomic statements occurring in I7. Since Uy is finite, the restrictions
to Ay of the elements of sI7 form a finite set {w', ..., w}, say. Then sIT
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may be expressed as the union of the sets ﬂH pv;l(wf(a)) (F=1,..,8),

ael

g0 that sI7 is in fact both open and closed.

2. Predicate caleulus. A quantifier is a mapping ¢ of P(M)
into M. In this section we consider quantifiers ¢, ..., ¢ in addition to
the truth-functions fi, ..., fu. We introduce a system 8 whose primitive
symbols fall into the following (disjoint) categories: free variables a,, a,, ...;
bound variables &, &,, ...; constants ¢; functions ¢ (of r = r, arguments);
predicates = (of »=r, arguments); connectives Iy, ..., I'y; quantifiers
Ql’ A Qw‘

The terms are the elements of the smallest set T such that: (i) T con-
tains all constants and free variables; (ii) for each function ¢, I contains
the expression @(4;, ..., &) whenever it contains ¢, ..., %. The ecementary
statements are the expressions of the form (?,, ..., &) where z iy a predicate
and 1y, ..., t ¢ T. The stalements are the elements of the smallest set &
such that: (i) & contains all elementary statements; (i) & containg
Fra,...a, whenever it contains ay, ..., a; (iif) S containg Quway whenever
it contains e, provided « is & free variable occurring in « and # is a bound
variable not occurring in « (where of is the result of substituting @ for
throughout «). We shall often write « = «(a), o == a(t), af = a() when «
is a statement containing the free variable a. The degree of a statement
is the number of occurrences in it of connectives and quantifiers. The
definition of sequent and associated notational conventions are taken
over from §1.

An interpretation in a (non-null) set D iz a mapping o—>ol of the
constants, free variables, functions and predicates of the system 8 such
that: (i) for each constant ¢ and each free variable a, ¢l and al € D; (ii) for
each function ¢, @I eD(D'); (iii) for each predicate =, =l € MP 1t g s
a free variable and d ¢ D, then the interpretation I¢ is defined by

if 0.—...“,

1"—~{d
“a=\ol i o+ta.

For each interpretation I in the set .D, there is a unique mapping
t—14J of T into D such that: (i) if ¢ is a constant or free variable then
tJ = tI; (ii) if ¢ is a function and t, ...,% €T, then

Pty ooy ) = @I (1,5 ooy b)) .

Tl}e mapping J will always be denoted by I. The interpretation I deter-
mines, furﬁther, a unique mapping (again denoted by I) of & into M such
that: (i) if = is a predicate and ..., % ¢ T then

Tty oy )= al (4,1, ..., 4 1);

icm°
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(ii) if ayy .y @r € & then (Fray...a) ] = filay I, oy o I); (i) i Quaag is
a statement then
(@wal) I = galy: d e D} .

It is a straight-forward matter to show that if @ is a free variable
and t is a term then for 7¢T and ae¢ &
(9) =1l dI=aly.

Tor each sequent J7, let Ty be the set of terms built up from the free
variables @y, @, ... and the constants and functions occurring in I7;
clearly Ty is denumerable. An interpretation in Ty iy said to be canonical

if tI =1 for every teTn. ‘

The definitions of satisfaction etc. are analogous to those in §1.
Thus the interpretation I satisfies the sequent (1) iff

m e ()T

The set of interpretations which satisty /T is denoted by sl1. A sequent I7

is valid (Valll) iff sIT contains every interpretation; a set 9t of sequents
is simultaneously satisfiable iff ﬂm sIT + @. Tt is clear that formulas
e

for some meM .

(6)-(8) remain true in this new setting.
Levma 2. Let g be o quantifier, m a truth-value. Then there exist p,
q and BECM(i=1,.,p;i=0,.,40 sueh that for every BE CM

i i
(10) @B =m= A (Ta; e B)(Fy, ) Yo < B) (@0 e Bavys e BIV... Vi € Bo) -
T=1

Prootf. Let f be a truth-function of M arguments such that

F&yy oy Tar—1) = Q{M: B = 1}.
Then

QZE = f(XE(O); veey XE(M—]-)) (B ,(_:M) ’

(where yg is the characteristic function of F), and so (by Lemma 1) we
have, for suitable Rj C M,

@B = m = R (xu(0) ¢ BV ..V ym(M —1) € Birs) -
q==1

There is no loss of generality in supposing that each iR} is a subset or
indeed a proper subset of {0,1}. Bach term XE(j)ieRi can bt.a replace&
by an equivalent term of the form (Q2i € B) (2 € Z3) wh(?re QisV or ;
depending on R}; the resulting expression can be readily brought into
the form (10).

For each ¢ (i=1,...,p) we define the sequent

Zz(a(h); Qyy ey ag)= ]a(R)IE:\a(%)!E:--- ]a(@q)IEfl .

Simple computations using (9) and (10) yield:
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Leya 3. (a) If ValII'Zi(a(h); ayy ooy @) IT* (== 1, .., p), then
ValII’|Quwa(®)|mITy, provided a,,..,a, are distinet free variables not
ocourring in II°|Quuwa(s)|mll' or 1y .y by,

(b) Let X be any sequent and let I be a canonical interpretation
in Tg. If Ies|Qaa(®)|m, then there ewist t,..,lpe Ty such that
Ieﬁ1 sZi(a(te)sty, ..., ag) for any free variables a,, ..., ag.

The introduction rule (Fi,m) is adapted from §1 in the form

Hﬂl(al, ey ar) PF}c(IJ-u-arlm; ey ]II.I:)L((ll, sy (Zr) l]f' (lrlm
leaI...(lrlml] :

The introduction rule (@, m) is the following:

”Zl(a(t1)§ by y sy aa),Qlwa(m)lm; w5 T Ep(alty); ayy o, aa)|(gzma(m)],,,
|Quaa (@) |mlT -

with the restriction that a,, ..., a, are distinet free variables not occurring

in |Quea()|mll or t, ..., ty. )

The sequent (1) is said to be fundamental itf the I, (m==0,.., M-1)
have at least one statement in common. Then the provable sequonts are
the elements of the smallest set containing the fundamental sequents
and closed under the application of the rules (B, m), (Qu, m) (b o= \
=1, ,w;m=0,.., M—1).

. The proof of the next theorem Tequires certain preliminary defini-
txons..The letter s will always denote a finite sequence of positive ‘integers.
If s is the sequence (s,, vy 8n-1), then s,i will denote the sequence
{80y ++ey 841, ©); the null sequence will be denoted by 0. If s is an initial
segment of the (finite or infinite) sequence t, we write s < . A non-empty
set T of sequences s is called a free iff ‘ B

{i) if s <8’ e T, then sel,

(i) {i:8,4¢ T} is finite for each s ¢ 7.
ﬁhatlfj ;rfier T 1&1; infinite, then there exists an infinite fequence & such
~(t(0) o —fa.c_l s‘< L. (qu_ea;ch n, let t(n) be the least 4 such that
of T,.)..., ), @) 1s an initial segment of infinitely many elements

For each ; : .
folloms: sequent X we define inductively a mapping s-»3, ag

(a) 2= Z;
(b) Z,: is defined only it 3, is not £
(r \ . undamental, and
specified below. Let s be of length ¢M+m (m ECJI‘II;:; e them only as

(i) it X, is of the form [y
, kO orimd], then X,; iy t squent
e, o) ijal...arlm Py m’;); rlm 11, 1 2y, 18 the sequent

1, u;

icm°®
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(i) if X, is of the form |Qiwa(®)|m II then X,; is the sequent
HZ{a(ts); tay e ag)| @uza(@)lm (i =1, .., p), where (i, ..., 1) is the kth
element of Tpx ... XTIy in some fixed enumeration, & being the number
of proper initial segments s’ <s of length congruent to m(mod M) such
that Zy is of the form |Qiza(z)|mll’, and where a, ..., @, are the first
distinet free variables not occurring in X, or #y, ..., tp;

(iii) if Z, is not of one of the forms mentioned then Z,;= Z,.

Evidently the domain of the mapping s— 2%, is a tree.

THEOREM 3. A sequent is valid iff it is provable.

Proof. Each fundamental sequent is valid; by (8) the application
of rule (Fy ,m) preserves validity, while by lemma 3(a) rule (@i, m)
preserves validity; Hence every provable sequent is valid. Suppose now
that X is unprovable; it follows that ZX, is defined for infinitely many s
and hence that there exists an infinite sequence ¢ such that X, is defined
for each s <t

For each m e M let S, be the set of all statements which occur in
the mth place of some X, (s <t). Let I be any canonical interpretation
in Tz; we show that for each non-elementary statement a

(11) if o€ Sy then o € Syr for some o' of lower degree .

Suppose al = m, a e 8n.
(i) I a= Fxay...ar then by (6) Iesll(ay,...,0) (i=1,..,n); for
some s <t, 2, is of the form |Fyxa,...w|nll and

Zoi= oy, ...

choose that ¢ such that s,i < t; there exist «’ and m' such that '] = m’
and «’ occurs in the m'th place of ITya,,..., ar); hence o’ e Syy and o' is
of degree lower than a. :

(ii) If o = Qi@a(x) then by lemma 3(b) there exist i, ..., t, e Ty such
that for any ay, ..., ag I e sZy(a(te); @yy ey ) (i =1, ..., p); for some s <t
2, is of the form |[Qiza ()T and

Zoi= IIZi(a(t); ay, ..., a)|Quwa(@)lm (i=1, ..., )

for suitable ay, ..., ag; choose that ¢ such that s,i <t; there exist ¢’ and
m' such that o'l = m’ and o’ occurs in the m'th place of Zifa(t); ay, ..., ag);
hence «' € Sy7 and «' is of degree lower than o.

Let I be a canonical interpretation in Tz such that for each predicate o,
if 1y, ..., tr e Tz then wl(ty, ..., &) is the least m such that 7 (t,, ..., &) ¢ Sm;
(the existence of such an I is clear). If X is valid we have a € S,y for some a
oceurring in Y; thus by repeated application of (11) there exists an ele-
mentary statement o' such that a' eS,y; since this contradiets the
assumption on I, it follows, as required, that 2 cannot be valid.,

y o) [ Feagentrln  (i=1, ..., n);
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THEORBM 4. A set of sequents is simultamcously salisfiable iff every
finite subset is simultaneously salisfiable.

Proof. Let M be a set of sequents (of 8) such that each finite subset
of M is simultaneously satisfiable. We may suppose without loss of
generality that the truth-functions fy,...;fu include ¢, ..., gu where
@y y ey Bar—1) = Qi{oy oy Tar—1} (L= 1, ..., w). Consider the infinite se-
quence of systems §,8,,... such that: (i) 8§ == 8; (ii) for each » the
primitive symbols of 8, are those of 8, together with new constants gy, ,
in one-one correspondence with the triples (m, a, a), where m ¢ M, a is
a free variable occurring in a and e is a statement of 8, but not a state-
ment of 8,_;. Let 8* be the union of the systems 8,5 we denotie by I*
resp. G* the set of terms resp. statements of 8% We write a(ey) for
(Emaum)

It can be shown inductively that if R is a finite set of statements
of 8,-; then each interpretation I of (the primitive symbols of) 8§ in D
can be extended to an interpretation I, of 8, in .D such that for each
a(a) e R (with free variable a)

{a(a)Ind: & € D} = {a(eo)In, -, a(ear—1)In} .

Hence if R is a finite subset of &*, then each interpretation I of § in D
can be extended to an interpretation I* of 8* in D such that for a(ae) ¢ R

{a{a)T*: d € D} = {a(a)I*, ..., a(ear—1) I*} .

Let M* C &* be the set of sequents obtained by adding to M all
sequents of the forms

(12) o (t)|z|a(ee) s vy alenr—v)|m
(13) Qe (@) |z |Frals,) .. alerr—1)|w ,

where l=1, ..., w; BCM; B'= M\T; t «T* a(a)cS* and a is a free
variable oceurring in o(a). Then it follows that every finite subset of SR*
is simultaneously satisfiable, i.e., for each finite subset R of M* there
is an interpretation I* of §* such that I* satisfies each element of 9.

Let A be the set of statements o ¢ ©* not of one of the forms Ity v 0ty
(k=1,...,%); ©* may be considered as the sct of statements built up
from atomic statements 9 wsing the connectives Iy, ...y Fy; Dy Theorem 2
there is a valuation v e M™ such that for each JT e M*, hy € sl1.

Let I be the canonical interpretation of ©* in T* such that for
each predicate =

TL(ty oy br) = Romi(tyy vouy t)
One shows by induction that
(14) ol = hya

(by oy tre @) .

for all aeG*.

* ©
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Tndeed it suffices to show that
(15) hoQuza(®) = qi{hya(l): t e T*;

but )
' {hya(t): t e T2 {hoa(eg)y voes hpa(en-1)}

versely, since each sequent of the form (12) is an element of M,
{hpa(t): # € T C {hva()y «ov) hoa(ear—1)};

while con

thus ‘ .
qihoall): te T = glhowlan)s ) o alen-1)) ,

= .(/l(hwa<"’0)7 ) hv“(“:ﬂ‘l'ﬂ)) == hv(Gl (1(30)---0(%1—1))5

Tormula (15) follows since each sequent of the form (13) is an element

of IM*. )
From (14) it follows that I satisfies every element of 9*; hence the

restriction of I to § satisfies every element of M. This completes the
prock i i r sifier, introduction rules can
Tor any given truth-function or quantifier, introductio 5 ¢
be determined explicitly, often in a form more eleganb than that given
by the proofs of lemmas 1 and 2. For example, consider the three-val‘uled‘
Eukasiewicz connectives with the following truth-tables, and the quantifier

\VE = sup B:

0012 Al0 12 v
02 22 0612  0[2
1|12 2 1112 1)1
21012 212 22 2|0

The corresponding introdunction rules, in simplified form, are as follows:

lcl;laﬁ\ﬁi | la’mwaﬁfl |o a_@‘_}ﬁwg\ﬂiﬁ

AL del g Lt

w1 i e

- e o,

Certain semantic and syntactical notions can be defined. for statefmelgf é
relative to a subset D of designated truth»valugs. We W1:1te I‘||AI or‘( )
sequent |I'|up)d|p. The interpretation T is said to satisfy o ([ es*(a
iff aI ¢ D; clearly we have

s*(y)=slly; Cs*(d)=sd|.
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We make the following definitions: (i) a is valid iff every interpretation
is an element of s¥{a); a is provable iff the sequent || is provable; (ii) € iy
simultaneously satisfiable iff ﬁm s*(a) +# @; € ig consistent iff for no I'C ¢

a€ —

is I'} provable. Then we have:
TEEOREM 5. Validity and provability are equivalent properties; € is
simullaneously satisfiable iff € is consistent,
- Proof. By Theorems 3 and 4 we can prove, more generally, that the
following are equivalent:

(2) M s*(» C 1) s40) .
ye€ 4¢D
(b) T4 is provable for some I'C €, 4 CD.

If a suitable quantifier (#) and connectives D and Jm (m e M) are
definable in terms of Fy, ..., I, and @, ..., Quw, theorem 5 can be used
to obtain a set of axiom schemes which, with modus ponens and the rule
of generalization, yield as theorems precisely the valid statements. For
each m e M and each y ¢ S we define the statement "™y inductively
as follows: '

A"y =y,

a, I’[m]y = (Jma D Iy,
If IT is the sequent (1), then II*y iz defined ag the statement
F0[0]P1[1] FM-2[M—2] ITM_].[M""l]y .
Consider the following axiom schemes:
(A1) @D (6D a),
(A2) aD(8D9).D.(aDP)D(ady),
(A3)  (@)(aD B(@)) 2. aD () p(),
(Ad)  alm*y,
(A5)  IL(ayy .oy arf*y Do oo D (g y ey arf*y D [Tty oo ™y
(b=1,..,u4; meM),

(A6) (@) ---(wq)(zx(a(tlﬁ Try ooy ma)*V\) ... 0.
2. (@) . (@) Zp(a(tp); 24, ...,.’vq}*y) D |Qua(@)|w*y (=1, ., w; meM),
(A7) Jmada (meD).
In (A3) it is agsumed that # does not oceur in a, while in (A6) @y, .., %,
do not occur in y.

One shoys quite readily that IT*y is a congequence of (Al)-(A6)
whenever IT is a provable sequent. But if « is a valid statement then,
by Theorem 5, ||« is a provable sequent so that le*a and hence « are conse-
quences of (A1)-(AT). We therefore have
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TumorEM 6. If the awmioms (ALl)-(AT) are valid and if wvalidity is
preserved by modus ponens and the rule of generalization, then a statement
is valid iff it is a consequence of (A1)-(A7).
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