[8] Ranga R. Rao, Relations between weak and uniform convergence of measures with applications, Ann. Math. Stat. 33 (1962), pp. 659-680.

[9] K. A. Ross, A. H. Stone, Products of separable spaces, Amer. Math. Monthly

71 (1964), pp. 398-403.

[10] N. A. Sanin, On the product of topological spaces, Trudy Math. Inst. Steklova 24 (1948) (Russian).

[11] D. Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. 9 (1961), pp. 521-524.

[12] S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), pp. 140-150 (especially pp. 149 and 141).

[13] V. S. Varadarajan, Measure on topological spaces, Math. Sbornik 55 (1961), pp. 35-100 (Russian).

[14] I. Glicksberg, The representation of functionals by integrals, Duke Math. J. 19 (1951), pp. 253-261.

[15] P. Halmos, Measure theory, Van Nostrand 1959.

[16] A. P. and W. J. Roberston, Topological vector spaces, Cambridge 1964,

[17] A. Hulanicki, Means and Folner condition on locally compact groups, Studia Math. 27(1966), pp. 87-104.

[18] E. Hewitt, K. A. Ross, Abstract harmonic analysis I, Heidelberg 1963.

[19] J. L. Kelley, General topology, Toronto, New York, London 1955.

[20] R. H. Bing, Extending a metric, Duke Math. J. 14 (1947), pp. 511-519.

[21] P. Billingsley, The invariance principle for dependent random variables, Trans. A.M.S. 83 (1956), pp. 250-268.

[22] J. Namioka, On a recent theorem of Reiter, Proc. A. M. S. 17(1966), pp. 1101-1102.

CORNELL UNIVERSITY

Reçu par la Rédaction le 3. 7. 1965

Sequents in many valued logic l

b

G. Rousseau (Leicester)

The calculus of sequents for two-valued predicate logic is well known, either in the original formulation of Gentzen [1] or in any of the many variants in the literature. In this paper we show that there exists an analogous calculus for each finitely many valued predicate logic based on arbitrary connectives F_1, \ldots, F_u and quantifiers Q_1, \ldots, Q_w .

1. Propositional calculus. Let $M = \{0, 1, ..., M-1\}$ be the set of truth-values and for each k (k = 1, ..., u) let f_k be a truth-function of $r = r_k \geqslant 1$ arguments, i.e., a mapping of $M \times ... \times M = M^r$ into M. Let \mathfrak{A} and $\{F_1, ..., F_u\}$ be disjoint sets of symbols, the elements of which are called atomic statements and connectives respectively. The set $\mathfrak S$ of statements is the smallest set of expressions which contains all atomic statements and which, for each connective F_k , contains $F_k a_1 ... a_r$ whenever it contains $a_1, ..., a_r$. The degree of a statement is the number of occurrences of connectives in it. We will denote statements by the letters $a, \beta, \gamma, ...$ and finite (possibly null) sequences of statements by $\Gamma, \Delta, ...$; in particular, the null sequence will be denoted by Λ .

A sequent is an expression of the form

$$\Gamma_0 \mid \Gamma_1 \mid \dots \mid \Gamma_{M-2} \mid \Gamma_{M-1}.$$

We denote sequents by the letters Π , Σ , If Π is the sequent (1) and Σ is the sequent

$$\Delta_0 \mid \Delta_1 \mid \dots \mid \Delta_{M-2} \mid \Delta_{M-1}$$
,

then $\Pi \Sigma$ will denote the sequent

$$\Gamma_0 \Delta_0 \mid \Gamma_1 \Delta_1 \mid \dots \mid \Gamma_{M-2} \Delta_{M-2} \mid \Gamma_{M-1} \Delta_{M-1}$$
.

If R is a subset of **M** then the sequent (1) may be written $|\Gamma|_R$ (or $|\Gamma|_m$ if $R = \{m\}$) provided

$$\Gamma_i = \begin{cases} \Gamma & \text{if} & i \in R, \\ \Lambda & \text{if} & i \notin R. \end{cases}$$

A sequent is said to be atomic iff each statement occurring in it is atomic.

The elements of $M^{\mathfrak{A}}$ are called *valuations*. Each valuation v determines a unique mapping h_v of $\mathfrak S$ into M such that for each connective F_k

(2)
$$h_v(F_k \alpha_1 \dots \alpha_r) = f_k(h_v(\alpha_1), \dots, h_v(\alpha_r))$$

whenever $a_1, ..., a_r \in \mathfrak{S}$.

The valuation v is said to satisfy the sequent (1) iff

(3)
$$m \in h_v(\Gamma_m)$$
 for some $m \in M$.

The set of valuations which satisfy Π is denoted by $s\Pi$; clearly we have

$$\mathfrak{s}\Pi_1...\Pi_n=\mathfrak{s}\Pi_1\cup...\cup\mathfrak{s}\Pi_n.$$

We say that the sequent Π is valid (Val Π) iff $\mathfrak{s}\Pi = M^{\mathfrak{A}}$, and a set \mathfrak{M} of sequents is simultaneously satisfiable iff $\bigcap_{\Pi \in \mathfrak{M}} \mathfrak{s}\Pi \neq \emptyset$.

LEMMA 1. Let f_k be a truth-function of $r=r_k$ arguments and let m be a truth-value. Then there exist subsets R_j^i of M $(i=1,\ldots,n;\ j=1,\ldots,r)$, where $n\leqslant M^{r-1}$, such that for all $x_1,\ldots,x_r\in M$

(5)
$$f_k(x_1,\ldots,x_r) = m \equiv \bigwedge_{i=1}^n (x_1 \in R_1^i \vee \ldots \vee x_r \in R_r^i).$$

Proof. Each subset X of M^r can be represented as the union of not more than M^{r-1} cartesian products of subsets of M. In fact, if r > 1 then X is the union of all the products

$$\{m_1\} \times ... \times \{m_{r-1}\} \times \{m: (m_1, ..., m_{r-1}, m) \in X\}$$

such that $(m_1, ..., m_{r-1}) \in M^{r-1}$. The lemma now follows by an application of this remark to the set $M' \setminus f_k^{-1}(m)$. We note that the bound M^{r-1} is best possible; for $\{(m_1, ..., m_r): m_1 + ... + m_r \equiv 0 \pmod{M}\}$ has M^{r-1} elements but contains no product with more than one element.

If $a_1, ..., a_r$ are any statements, then for each i (i = 1, ..., n) let $H_i(a_1, ..., a_r)$ be the sequent $|a_1|_{R_1^i} ... |a_r|_{R_r^i}$. From (5) we obtain with the aid of (2) and (4) the formula

(6)
$$s | F_k \alpha_1 \dots \alpha_r |_m = \bigcap_{i=1}^n s \Pi_i(\alpha_1, \dots, \alpha_r).$$

If Π^0 and Π^1 are arbitrary sequents we have by (6) and (4)

(7)
$$5\Pi^{0}|F_{k}\alpha_{1}...\alpha_{r}|_{m}\Pi^{1} = \bigcap_{i=1}^{n} 5\Pi^{0}\Pi_{i}(\alpha_{1},...,\alpha_{r})\Pi^{1},$$

whence also

(8)
$$\operatorname{Val} \Pi^{0} | F_{k} \alpha_{1} \dots \alpha_{r}|_{m} \Pi^{1} = \bigwedge_{i=1}^{n} \operatorname{Val} \Pi^{0} \Pi_{i}(\alpha_{1}, \dots, \alpha_{r}) \Pi^{1}.$$

'ormula (8) suggests characterizing the valid sequents by means of "introduction rules" (F_k, m) for each connective F_k and each truth-value m, of the form

$$\frac{\varPi^0\varPi_1(a_1,\ldots,a_r)\varPi^1;\ldots;\varPi^0\varPi_n(a_1,\ldots,a_r)\varPi^1}{\varPi^0|F_ka_1\ldots a_r|_m\varPi^1}.$$

We say that Π is an immediate consequence by rule (F_k, m) of Π_1, \ldots, Π_n iff Π has the form $\Pi^0|F_k\alpha_1\ldots\alpha_r|_m\Pi^1$ while each Π_i $(i=1,\ldots,n)$ has the form $\Pi^0\Pi_i(\alpha_1,\ldots,\alpha_r)\Pi^1$. An atomic sequent of the form (1) is called an initial sequent iff the Γ_m $(m=0,\ldots,M-1)$ have at least one statement in common.

The set of *provable* sequents is the least set which contains all initial sequents and which contains a sequent Π whenever it contains sequents $\Pi_1, ..., \Pi_n$ of which Π is an immediate consequence by some rule (F_k, m) (k = 1, ..., u; m = 0, ..., M-1).

THEOREM 1. A sequent is valid iff it is provable.

Proof. Each initial sequent is valid; by (8) an immediate consequence of valid sequents is valid; consequently every provable sequent is valid. We now prove the converse. For each sequent Π , let $m\Pi$ be the maximum degree of statements occurring in Π and let $n\Pi$ be the number of occurrences in Π of statements of degree $m\Pi$. Let Π be a valid sequent. If $m\Pi=0$, then Π is atomic; but all valid atomic sequents are initial sequents; hence Π is provable. If $m\Pi>0$, we suppose that all valid sequents Σ are provable for which

(i)
$$m\Sigma < m\Pi$$
, or

(ii)
$$m\Sigma = m\Pi$$
 and $n\Sigma < n\Pi$.

Since $m\Pi > 0$, Π may be expressed in the form $\Pi^0|F_k a_1 \dots a_r|_m \Pi^1$ where $F_k a_1 \dots a_r$ is of degree $m\Pi$. By (8) the sequents $\Pi^0 \Pi_i(a_1, \dots, a_r) \Pi^1$ ($i = 1, \dots, n$) are valid; but for each of these sequents either (i) or (ii) holds, so by inductive hypothesis each is provable; hence Π is provable, being an immediate consequence by rule (F_k, m) of provable sequents. The proof is thus complete by induction.

As a corollary we have the elimination theorem: If $\Pi|a|_R$ and $|a|_S \Sigma$ are provable sequents $(R \cap S = \emptyset)$, then $\Pi \Sigma$ is provable.

THEOREM 2. A set of sequents is simultaneously satisfiable iff every finite subset is simultaneously satisfiable.

Proof. Let us assign to M the discrete topology and to $M^{\mathfrak{A}}$ the product topology. Since M is a compact Hausdorff space, the same is true of $M^{\mathfrak{A}}$ by Tychonoff's theorem. The proof will therefore be complete on showing that, for each Π , $\mathfrak{s}\Pi$ is a closed subset of $M^{\mathfrak{A}}$. Let \mathfrak{A}_{Π} be the set of atomic statements occurring in Π . Since \mathfrak{A}_{Π} is finite, the restrictions to \mathfrak{A}_{Π} of the elements of $\mathfrak{s}\Pi$ form a finite set $\{w^1, ..., w^s\}$, say. Then $\mathfrak{s}\Pi$

26

may be expressed as the union of the sets $\bigcap_{\alpha \in MII} pr_a^{-1}(w^j(\alpha))$ (j = 1, ..., s), so that $\mathfrak{s}II$ is in fact both open and closed.

2. Predicate calculus. A quantifier is a mapping q of P(M) into M. In this section we consider quantifiers $q_1, ..., q_w$ in addition to the truth-functions $f_1, ..., f_u$. We introduce a system 8 whose primitive symbols fall into the following (disjoint) categories: free variables $a_1, a_2, ...$; bound variables $a_1, a_2, ...$; constants $a_1, a_2, ...$; predicates $a_1, a_2, ...$; quantifiers $a_1, ..., a_n$ (of $a_1, ..., a_n$); connectives $a_1, ..., a_n$; quantifiers $a_1, ..., a_n$.

The terms are the elements of the smallest set $\mathfrak X$ such that: (i) $\mathfrak X$ contains all constants and free variables; (ii) for each function φ , $\mathfrak X$ contains the expression $\varphi(t_1,\ldots,t_r)$ whenever it contains t_1,\ldots,t_r . The elementary statements are the expressions of the form $\pi(t_1,\ldots,t_r)$ where π is a predicate and $t_1,\ldots,t_r\in \mathfrak X$. The statements are the elements of the smallest set $\mathfrak S$ such that: (i) $\mathfrak S$ contains all elementary statements; (ii) $\mathfrak S$ contains $F_ka_1\ldots a_r$ whenever it contains a_1,\ldots,a_r ; (iii) $\mathfrak S$ contains $Q_lxa_a^x$ whenever it contains a_1,\ldots,a_r ; (iii) $\mathfrak S$ contains a_1,\ldots,a_r whenever it contains a_1,\ldots,a_r ; (iii) a_1,\ldots,a_r whenever it contains a_1,\ldots,a_r is the result of substituting a_1,\ldots,a_r for a_1,\ldots,a_r throughout a_1,\ldots,a_r whenever it a_1,\ldots,a_r is the result of substituting a_1,\ldots,a_r for a_1,\ldots,a_r is a statement containing the free variable a_1,\ldots,a_r and a_1,\ldots,a_r when a_1,\ldots,a_r is a statement containing the free variable a_1,\ldots,a_r and a_1,\ldots,a_r statement is the number of occurrences in it of connectives and quantifiers. The definition of sequent and associated notational conventions are taken over from § 1.

An interpretation in a (non-null) set D is a mapping $\sigma \to \sigma I$ of the constants, free variables, functions and predicates of the system S such that: (i) for each constant c and each free variable a, cI and $aI \in D$; (ii) for each function φ , $\varphi I \in D^{(D^r)}$; (iii) for each predicate π , $\pi I \in M^{(D^r)}$. If a is a free variable and $d \in D$, then the interpretation I_a^d is defined by

$$\sigma I_a^d = \left\{ egin{array}{ll} d & ext{if} & \sigma = a \ \sigma I & ext{if} & \sigma
eq a \ . \end{array}
ight.$$

For each interpretation I in the set D, there is a unique mapping $t \rightarrow tJ$ of $\mathfrak T$ into D such that: (i) if t is a constant or free variable then tJ = tI; (ii) if φ is a function and $t_1, \ldots, t_r \in \mathfrak T$, then

$$\varphi(t_1,\ldots,t_r)J=\varphi I(t_1J,\ldots,t_rJ).$$

The mapping J will always be denoted by I. The interpretation I determines, further, a unique mapping (again denoted by I) of $\mathfrak S$ into M such that: (i) if π is a predicate and $t_1, \ldots, t_r \in \mathfrak T$ then

$$\pi(t_1,\ldots,t_r)I=\pi I(t_1I,\ldots,t_rI);$$

(ii) if $a_1, ..., a_r \in \mathfrak{S}$ then $(F_k a_1 ... a_r)I = f_k(a_1 I, ..., a_r I)$; (iii) if $Q_1 x a_a^x$ is a statement then

$$(Q_l x a_a^x) I = q_l \{ a I_a^d : d \in D \} .$$

It is a straight-forward matter to show that if a is a free variable and t is a term then for $\tau \in \mathfrak{T}$ and $a \in \mathfrak{S}$

(9)
$$\tau_a^t I = \tau I_a^{tI}; \quad a_a^t I = a I_a^{tI}.$$

For each sequent Π , let \mathfrak{T}_{Π} be the set of terms built up from the free variables a_1, a_2, \ldots and the constants and functions occurring in Π ; clearly \mathfrak{T}_{Π} is denumerable. An interpretation in \mathfrak{T}_{Π} is said to be *canonical* if tI = t for every $t \in \mathfrak{T}_{\Pi}$.

The definitions of satisfaction etc. are analogous to those in $\S 1$. Thus the interpretation I satisfies the sequent (1) iff

$$m \in (\Gamma_m)I$$
 for some $m \in M$.

The set of interpretations which satisfy Π is denoted by $s\Pi$. A sequent Π is valid (Val Π) iff $s\Pi$ contains every interpretation; a set \mathfrak{M} of sequents is simultaneously satisfiable iff $\bigcap_{\Pi \in \mathfrak{M}} s\Pi \neq \emptyset$. It is clear that formulas (6)-(8) remain true in this new setting.

LEMMA 2. Let q_i be a quantifier, m a truth-value. Then there exist p, q and $E_i^i \subseteq M$ (i = 1, ..., p; j = 0, ..., q) such that for every $E \subseteq M$

$$(10) \quad q_1 E = m \equiv \bigwedge_{i=1}^p (\exists x_i \in E) (\forall y_1, \dots, y_q \in E) (x_i \in E_0^i \vee y_1 \in E_1^i \vee \dots \vee y_q \in E_q^i) .$$

Proof. Let f be a truth-function of M arguments such that

$$f(x_0, ..., x_{M-1}) = q_l\{m: x_m = 1\}.$$

Then

$$q_i E = f(\chi_E(0), \ldots, \chi_E(M-1)) \quad (E \subseteq M),$$

(where χ_E is the characteristic function of E), and so (by Lemma 1) we have, for suitable $R_i^i \subseteq M$,

$$q_i E = m \equiv \bigwedge_{i=1}^p \left(\chi_E(0) \; \epsilon \; R_0^i \lor ... \lor \chi_E(M-1) \; \epsilon \; R_{M-1}^i \right).$$

There is no loss of generality in supposing that each R_j^i is a subset or indeed a proper subset of $\{0,1\}$. Each term $\chi_{\mathcal{B}}(j) \in R_j^i$ can be replaced by an equivalent term of the form $(Qz_j^i \in \mathcal{B})(z_j^i \in Z_j^i)$ where Q is ∇ or Ξ depending on R_j^i ; the resulting expression can be readily brought into the form (10).

For each i (i = 1, ..., p) we define the sequent

$$\Sigma_i(\alpha(t_i); a_1, ..., a_q) = |\alpha(t_i)|_{E_0^i} |\alpha(a_1)|_{E_1^i} ... |\alpha(a_q)|_{E_q^i}$$

Simple computations using (9) and (10) yield:

LEMMA 3. (a) If $\operatorname{Val} \Pi^o \Sigma_t(\alpha(t_i); a_1, ..., a_q) \Pi^1$ (i=1, ..., p), then $\operatorname{Val} \Pi^o|Q_l x \alpha(x)|_m \Pi^1$, provided $a_1, ..., a_q$ are distinct free variables not occurring in $\Pi^o|Q_l x \alpha(x)|_m \Pi^1$ or $t_1, ..., t_p$.

(b) Let Σ be any sequent and let I be a canonical interpretation in \mathfrak{T}_{Σ} . If $I \in \mathfrak{S}|Q_{l}x\alpha(x)|_{m}$, then there exist $t_{1}, \ldots, t_{p} \in \mathfrak{T}_{\Sigma}$ such that $I \in \bigcap_{i=1}^{p} \mathfrak{S} \Sigma_{i}(\alpha(t_{i}); a_{1}, \ldots, a_{q})$ for any free variables a_{1}, \ldots, a_{q} .

The introduction rule (F_k, m) is adapted from § 1 in the form

$$rac{IIII_1(a_1,\,...,\,a_r)\,|F_k\,a_1\,...\,a_r|_m;\,...\,;\,IIII_n(a_1,\,...,\,a_r)\,|F_k\,a_1\,...\,a_r|_m}{|F_k\,a_1\,...\,a_r|_m\,II}$$

The introduction rule (Q_l, m) is the following:

$$\frac{\mathit{\Pi}\varSigma_1(a(t_1);\,a_1,\,\ldots,\,a_q)|Q_lxa(x)|_m;\,\ldots\,;\,\mathit{\Pi}\varSigma_p(a(t_p);\,a_1,\,\ldots,\,a_q)|Q_lxa(x)|_m}{|Q_lxa(x)|_m\mathit{\Pi}}$$

with the restriction that a_1, \ldots, a_q are distinct free variables not occurring in $|Q_l x \alpha(x)|_m H$ or t_1, \ldots, t_p .

The sequent (1) is said to be fundamental iff the Γ_m (m=0,...,M-1) have at least one statement in common. Then the provable sequents are the elements of the smallest set containing the fundamental sequents and closed under the application of the rules (F_k, m) , (Q_l, m) (k=1,...,u; l=1,...,w; m=0,...,M-1).

The proof of the next theorem requires certain preliminary definitions. The letter s will always denote a finite sequence of positive integers. If s is the sequence $(s_0, ..., s_{n-1})$, then s, i will denote the sequence $(s_0, ..., s_{n-1}, i)$; the null sequence will be denoted by 0. If s is an initial segment of the (finite or infinite) sequence t, we write $s \leq t$. A non-empty set T of sequences s is called a *tree* iff

- (i) if $s \leqslant s' \in T$, then $s \in T$,
- (ii) $\{i: s, i \in T\}$ is finite for each $s \in T$.

If a tree T is infinite, then there exists an infinite sequence t such that $s \in T$ for each $s \leq t$. (For each n, let t(n) be the least i such that (t(0), ..., t(n-1), i) is an initial segment of infinitely many elements of T.)

For each sequent Σ we define inductively a mapping $s \rightarrow \Sigma_s$ as follows:

- (a) $\Sigma_0 = \Sigma$;
- (b) $\Sigma_{s,i}$ is defined only if Σ_s is not fundamental, and then only as specified below. Let s be of length qM+m $(m \in M)$:
- (i) if Σ_s is of the form $|F_k \alpha_1 \dots \alpha_r|_m H$, then $\Sigma_{s,i}$ is the sequent $\Pi\Pi_i(\alpha_1, \dots, \alpha_r) |F_k \alpha_1 \dots \alpha_r|_m (i = 1, \dots, n)$;

(iii) if Σ_s is not of one of the forms mentioned then $\Sigma_{s,1} = \Sigma_s$. Evidently the domain of the mapping $s \to \Sigma_s$ is a tree.

THEOREM 3. A sequent is valid iff it is provable.

distinct free variables not occurring in Σ_s or $t_1, ..., t_p$;

Proof. Each fundamental sequent is valid; by (8) the application of rule (F_k, m) preserves validity, while by lemma 3(a) rule (Q_l, m) preserves validity; hence every provable sequent is valid. Suppose now that Σ is unprovable; it follows that Σ , is defined for infinitely many s and hence that there exists an infinite sequence t such that Σ , is defined for each $s \leq t$.

For each $m \in M$ let S_m be the set of all statements which occur in the mth place of some Σ_s ($s \leq t$). Let I be any canonical interpretation in \mathfrak{T}_{Σ} ; we show that for each non-elementary statement α

(11) if $\alpha \in S_{\alpha I}$ then $\alpha' \in S_{\alpha' I}$ for some α' of lower degree.

Suppose aI = m, $a \in S_m$.

(i) If $a = F_k a_1 \dots a_r$ then by (6) $I \in \mathfrak{S}H_i(a_1, \dots, a_r)$ $(i = 1, \dots, n)$; for some $s \leq t$, Σ_s is of the form $|F_k a_1 \dots a_r|_m \Pi$ and

$$\Sigma_{i,i} = \Pi \Pi_i(\alpha_1, \ldots, \alpha_r) | F_k \alpha_1 \ldots \alpha_r |_m \qquad (i = 1, \ldots, n);$$

choose that i such that $s, i \leq t$; there exist a' and m' such that a'I = m' and a' occurs in the m'th place of $\Pi_i(a_1, ..., a_r)$; hence $a' \in S_{a'I}$ and a' is of degree lower than a.

(ii) If $a = Q_l x a(x)$ then by lemma 3(b) there exist $t_1, ..., t_p \in \mathfrak{T}_{\Sigma}$ such that for any $a_1, ..., a_q I \in \mathfrak{S} \Sigma_t(a(t_l); a_1, ..., a_q)$ (i = 1, ..., p); for some $s \leq t$ Σ_s is of the form $|Q_l x a(x)|_m \Pi$ and

$$\Sigma_{s,i} = \prod \Sigma_i(\alpha(t_i); a_1, \ldots, a_q) |Q_i x \alpha(x)|_m \quad (i = 1, \ldots, p)$$

for suitable a_1, \ldots, a_q ; choose that i such that $s, i \leq t$; there exist a' and m' such that a'I = m' and a' occurs in the m'th place of $\Sigma_i(\alpha(t_i); a_1, \ldots, a_q)$; hence $\alpha' \in S_{\alpha'I}$ and α' is of degree lower than α .

Let I be a canonical interpretation in \mathfrak{T}_{Σ} such that for each predicate π , if $t_1, \ldots, t_r \in \mathfrak{T}_{\Sigma}$ then $\pi I(t_1, \ldots, t_r)$ is the least m such that $\pi(t_1, \ldots, t_r) \notin S_m$; (the existence of such an I is clear). If Σ is valid we have $\alpha \in S_{\alpha I}$ for some α occurring in Σ ; thus by repeated application of (11) there exists an elementary statement α' such that $\alpha' \in S_{\alpha' I}$; since this contradicts the assumption on I, it follows, as required, that Σ cannot be valid.

Sequents in many valued logic I

31

THEOREM 4. A set of sequents is simultaneously satisfiable iff every finite subset is simultaneously satisfiable.

Proof. Let \mathfrak{M} be a set of sequents (of S) such that each finite subset of \mathfrak{M} is simultaneously satisfiable. We may suppose without loss of generality that the truth-functions $f_1, ..., f_u$ include $g_1, ..., g_w$ where $g_l(x_0, ..., x_{M-1}) = q_l(x_0, ..., x_{M-1})$ $\{l = 1, ..., w\}$. Consider the infinite sequence of systems $S_0, S_1, ...$ such that: (i) $S_0 = S$; (ii) for each n the primitive symbols of S_{n+1} are those of S_n together with new constants $\varepsilon_{m,a,a}$ in one-one correspondence with the triples (m, a, a), where $m \in M$, a is a free variable occurring in a and a is a statement of S_n but not a statement of S_{n-1} . Let S^* be the union of the systems S_n ; we denote by \mathfrak{T}^* resp. \mathfrak{S}^* the set of terms resp. statements of S^* . We write $a(\varepsilon_m)$ for $a(\varepsilon_{m,a,a(a)})$.

It can be shown inductively that if \Re is a finite set of statements of \mathbb{S}_{n-1} then each interpretation I of (the primitive symbols of) \mathbb{S} in D can be extended to an interpretation I_n of \mathbb{S}_n in D such that for each $\alpha(a) \in \Re$ (with free variable a)

$$\{a(a)I_{na}^{d}: d \in D\} = \{a(\varepsilon_0)I_n, ..., a(\varepsilon_{M-1})I_n\}.$$

Hence if \Re is a finite subset of \mathfrak{S}^* , then each interpretation I of S in D can be extended to an interpretation I^* of S^* in D such that for $\alpha(a) \in \Re$

$$\{\alpha(a)I^{*d}_{a}: d \in D\} = \{\alpha(\varepsilon_0)I^*, ..., \alpha(\varepsilon_{M-1})I^*\}.$$

Let $\mathfrak{M}^*\subseteq\mathfrak{S}^*$ be the set of sequents obtained by adding to \mathfrak{M} all sequents of the forms

(12)
$$|\alpha(t)|_E |\alpha(\varepsilon_0), \ldots, |\alpha(\varepsilon_{M-1})|_{E'}$$

$$(13) |Q_l x \alpha(x)|_E |G_l \alpha(\varepsilon_0) \dots \alpha(\varepsilon_{M-1})|_{E'}.$$

where l=1,...,w; $E\subseteq M$; $E'=M\setminus E$; $t\in \mathfrak{T}^*$; $\alpha(a)\in \mathfrak{S}^*$ and α is a free variable occurring in $\alpha(a)$. Then it follows that every finite subset of \mathfrak{M}^* is simultaneously satisfiable, i.e., for each finite subset \mathfrak{R} of \mathfrak{M}^* there is an interpretation I^* of \mathfrak{S}^* such that I^* satisfies each element of \mathfrak{R} .

Let $\mathfrak A$ be the set of statements $a \in \mathfrak S^*$ not of one of the forms $F_k a_1 \dots a_r$ $(k=1,\dots,u); \mathfrak S^*$ may be considered as the set of statements built up from atomic statements $\mathfrak A$ using the connectives F_1,\dots,F_u ; by Theorem 2 there is a valuation $v \in M^{\mathfrak A}$ such that for each $H \in \mathfrak M^*$, $h_v \in \mathfrak S H$.

Let I be the canonical interpretation of \mathfrak{S}^* in \mathfrak{T}^* such that for each predicate π

$$\pi I(t_1,\ldots,t_r)=h_v\pi(t_1,\ldots,t_r) \qquad (t_1,\ldots,t_r\in\mathfrak{T}^*).$$

One shows by induction that

(14)
$$aI = h_v a for all a \in \mathfrak{S}^*.$$

Indeed it suffices to show that

(15)
$$h_v Q_l x \alpha(x) = q_l \{ h_v \alpha(t) \colon t \in \mathfrak{T}^* \};$$

but

$$\{h_v \alpha(t): t \in \mathfrak{T}^*\} \supseteq \{h_v \alpha(\varepsilon_0), \ldots, h_v \alpha(\varepsilon_{M-1})\},$$

while conversely, since each sequent of the form (12) is an element of M*,

$$\{h_v \alpha(t): t \in \mathfrak{T}^*\} \subseteq \{h_v \alpha(\varepsilon_0), \ldots, h_v \alpha(\varepsilon_{M-1})\};$$

thus

$$q_{l}\{h_{v}\alpha(t)\colon t\in\mathfrak{T}^{*}\} = q_{l}\{h_{v}\alpha(\varepsilon_{0}), \ldots, h_{v}\alpha(\varepsilon_{M-1})\}$$

$$= q_{l}(h_{v}\alpha(\varepsilon_{0}), \ldots, h_{v}\alpha(\varepsilon_{M-1})) = h_{v}(G_{l}\alpha(\varepsilon_{0})\ldots\alpha(\varepsilon_{M-1}));$$

Formula (15) follows since each sequent of the form (13) is an element of \mathfrak{M}^* .

From (14) it follows that I satisfies every element of \mathfrak{M}^* ; hence the restriction of I to S satisfies every element of \mathfrak{M} . This completes the proof.

The corresponding introduction rules, in simplified form, are as follows:

Certain semantic and syntactical notions can be defined for statements, relative to a subset D of designated truth-values. We write $\Gamma \| \Delta$ for the sequent $|\Gamma|_{M \setminus D} |\Delta|_D$. The interpretation I is said to satisfy α ($I \in \mathfrak{S}^*(\alpha)$) iff $\alpha I \in D$; clearly we have

$$\mathfrak{s}^*(\gamma) = \mathfrak{s} \| \gamma; \quad \mathbb{C}\mathfrak{s}^*(\delta) = \mathfrak{s}\delta \|$$

We make the following definitions: (i) a is valid iff every interpretation is an element of $\mathfrak{s}^*(\alpha)$; α is provable iff the sequent $\|\alpha\|$ is provable; (ii) \mathbb{C} is simultaneously satisfiable iff $\bigcap_{\alpha \in \mathbb{C}} \mathfrak{s}^*(\alpha) \neq \emptyset$; \mathfrak{C} is consistent iff for no $\Gamma \subseteq \mathfrak{C}$ is Γ provable. Then we have:

THEOREM 5. Validity and provability are equivalent properties: C is simultaneously satisfiable iff C is consistent.

Proof. By Theorems 3 and 4 we can prove, more generally, that the following are equivalent:

(a)
$$\bigcap_{\gamma \in \mathbb{C}} s^*(\gamma) \subseteq \bigcup_{\delta \in \mathfrak{D}} s^*(\delta) .$$

(b)
$$\Gamma \parallel \Delta$$
 is provable for some $\Gamma \subseteq \mathbb{C}$, $\Delta \subseteq \mathfrak{D}$.

If a suitable quantifier (x) and connectives \supset and J_m $(m \in M)$ are definable in terms of $F_1, ..., F_u$ and $Q_1, ..., Q_w$, theorem 5 can be used to obtain a set of axiom schemes which, with modus ponens and the rule of generalization, yield as theorems precisely the valid statements. For each $m \in M$ and each $\gamma \in S$ we define the statement $\Gamma^{[m]} \gamma$ inductively as follows:

$$\begin{cases} \Lambda^{[m]} \gamma = \gamma , \\ \alpha, \Gamma^{[m]} \gamma = (J_m \alpha \supset \Gamma^{[m]} \gamma) . \end{cases}$$

If Π is the sequent (1), then $\Pi^*\gamma$ is defined as the statement

$$\Gamma_0^{[0]}\Gamma_1^{[1]}...\Gamma_{M-2}^{[M-2]}\Gamma_{M-1}^{[M-1]}\gamma$$
.

Consider the following axiom schemes:

- (A1) $a \supset (\beta \supset a)$,
- $\alpha \supset (\beta \supset \gamma) . \supset (\alpha \supset \beta) \supset (\alpha \supset \gamma),$ (A2)
- $(x)(\alpha \supset \beta(x)) \supset \alpha \supset (x)\beta(x),$ (A3)
- $|\alpha|_{\mathbf{M}}^* \gamma$, $(\mathbf{A4})$
- $\Pi_1(\alpha_1, \ldots, \alpha_r)^* \gamma \supset \ldots \supset \Pi_n(\alpha_1, \ldots, \alpha_r)^* \gamma \supset |F_k \alpha_1 \ldots \alpha_r|_m^* \gamma$ $(\mathbf{A6}) \quad (x_1) \dots (x_q) \Big(\varSigma_1(\alpha(t_1); x_1, \dots, x_q)^* \gamma \Big) \supset \dots \supset .$
- $(x_1) \dots (x_q) (\angle_1(\alpha(t_1); x_1, \dots, x_q)^* \gamma) \supset \dots \supset .$ $\supset (x_1) \dots (x_q) (\angle_p(\alpha(t_p); x_1, \dots, x_q)^* \gamma) \supset |Q_l x \alpha(x)|_m^* \gamma \qquad (l == 1, \dots, w; m \in \mathbf{M}),$
- (A7) $J_m \alpha \supset \alpha \quad (m \in \mathbf{D}).$

In (A3) it is assumed that x does not occur in α , while in (A6) x_1, \ldots, x_d do not occur in v.

One shows quite readily that $\Pi^*\gamma$ is a consequence of (A1)-(A6) whenever Π is a provable sequent. But if α is a valid statement then, by Theorem 5, $\|a\|$ is a provable sequent so that $\|a^*a\|$ and hence a are consequences of (A1)-(A7). We therefore have

THEOREM 6. If the axioms (A1)-(A7) are valid and if validity is preserved by modus ponens and the rule of generalization, then a statement is valid iff it is a consequence of (A1)-(A7).

References

[1] G. Gentzen, Untersuchungen über das logische Schliessen, Mathematische Zeitschrift 39 (1934-5), pp. 176-210, 405-431.

[2] H. Rasiowa and R. Sikorski, On the Gentzen theorem, Fund. Math. 48 (1960),

pp. 57-69.

[3] A. Mostowski, Axiomatizability of some many valued predicate calculi. Fund.

Math. 50 (1961), pp. 165-190.

[4] J. B. Rosser and A. Turquette, Many valued logics, Studies in Logic and the Foundations of Mathematics, Amsterdam 1952.

Recu par la Rédaction le 21. 7. 1965