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Cones, products and fixed points
by
Ronald J. Knill* (New Orleans, Louisiana)

In 1930 Kuratowski asked [8] (%), 8¢ le comtinu X, ainsi que ¥,
posséde la propriété que dans chaque transformation continu de ce continu
en sous-ensemble il ewiste un point invariant, est-il vrai que X X ¥ posséde
la méme propriété? In setting the problem Kuratowski specified that X -
and Y be peanian continua. If one replaces the hypothesis peanian with
one of contractibility, then the answer is no. If X is a contractible con-
tinuum the problem may be attacked through the topological cone €(X),
which is defined by identifying to a point the subset X x {1} of the produet
space of X with the closed unit interval I. By 3.1 the cone has the fixed
point property if and only if the product X x I has the fixed point property.
To show the negative answer to the modified Kuratowski problem, we
consider in section 3 a contractible continunm B which has the fixed
point property. However O(B) has a retract, 0(BY), which according
to 2.6 does not have the fixed point property, hence neither does C(B)
nor BxI. One may describe B® as the set of points of the closed unit
dise in the complex plane, together with the points of the spiral
{1+2"™)¢™™: m > 0}. For a discussion of B’ from another point of
view, see [5].

We also direct ourselves to another question of fixed point theory
for which B° serves as the basis of investigation. The question is of the
relationship of higher order local connectedness and dimension to the
fixed point property. Specifically one may ask:

(Q) If X is a compact acyclic LC" ™ space of dimension n+1, where n
is o natural number, does X in general have the fized point property?

If one changes the dimension condition to: dimension of X is less
than n+1, the answer is yes, 2.7; and if dimension of X is greater than
n+1, the answer for n =1 is seen to be no by [2], and it is also no for
n>1, by statement (A), given below. If n were specified to be 0 in (Q)
the question would become the well-known open question:

* Supported in part by National Science Foundation Grant No. GP3989,
(*) We are indebted to A. Lelek for this reference.
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Do tree-like continua have the fimwed point property?

Although we do not offer an answer to either (Q) or the latter
question, we do consider a question analogous to (Q) for cones, showing,
2.6 and 2.7, that the following is true.

(A) Buppose that n is a natural number and X is a compact acylic LO™*
space. If the dimension of X ds less than n--1, then the come, 0(X), has
the fimed point property; but if the dimension of X is mot less than w41,
C(X) need not have the fimed point property, even if X ilself has the fived
point property.

Thus even if the answer to (Q) is affirmative, little can be concluded
about the fixed point properties of the cones over the spaces with which Q)
concerns itself. It still is an open question whether or not the cone over
a tree-like continuum in general has the fixed point property. We conclude
the paper with a discussion of a question of Bing’s, section 4.

We wish to acknowledge the helpful comments of Mr. Jerome Dancis
on a rough draft of this paper.

1. We will work entirely in the Hilbert space H of all square sum-
mable sequences a = (g, @y, 4y, ...). The norm is the usual one,

o= (S,

and addition and scalar multiplication are coordinatewise. The distance

between two points a,b ¢ H is la—b|. Let H, be the subspace of H of

all sequences with null zeroth term, and let v e« H\H, be the sequence
v=(1,0,0,..).

Forp=1,2,..,let E® consist of those points of H, with null ath terms,

% > p. Henceforth a point a of B, p > 2, will be denoted by its cylindrical
coordinates:

0= <0, Tay Ma, Gg, a4, ..., apd
where

‘ Po = (af“F ag)llﬂ
and

1 = 75,008 My,
If 0 <t <1 write w4 (1—t)a a8

Ay == T 8IN My .

- (1-—t)a = <t; ad ),
or a8

W+ (1—t)a = (t,r,, May Oy Qyy e
and if X is a subset of H,, let

O X)={tjad:weX,0<t <1},
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Tor compact X, C(v; X) is homeomorphic with the cone C(X), although
for noncompact X this is not the case.
1.1. DErINTTION. The canonical deformation

ds: Hy—Hy,

is defined by the rules
(1) if ra <1, then

do{a) = <0, 74, Mo+, 2%y, 270y )3
(i) if 1 < 7q, then

do(@) = <0, L+ (rq—1)27°, mg+ms, 27 ag, 27 gy e

— o0 < 8§

41

Fig. 1
We may denote ds(a) by d(a,s).
1.2, Let D= {a e B 1, <1}, 8= {a e ra=1}
Tet ¢ = <0,2,0) in B let Z" be the n-sphere:
2" = {a B ma=0, |a—o|=1},
and let Y™ be the solid sphere:
Y" = {a e B"*% ma=0, la—c| <1},

where 7= 0,1, 2, ... Then for any real s, do(Z") (vesp., da(X™)) I8 & S\ph?:’
(solid sphere) of radius 27° which mee’os‘D in the poth"(O ;,1;1 2 (7;31 En s>'.
Note also that if ¢ = s (mod3) then dy(2") is tangent to ds(2") terval in the
For any real s, let 27 = ds(2"), Y& = do(¥") and if J is an in

real line let

" ___ "
Y= RL‘JJ y?, and Zy= syrzs

1.3. DEFINITION. For n==0,1, ... let B" be defined as
B =D Zhoo -
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2. The properties of B".

2.1. TaEoREM. Bach B* is compact and acyclic,

Proof. By acyclic we mean that B" has the Oech cohomology of
a point. But

Bn = ﬂ (_D w thj.w] w Yﬁ,m))
820

and each of the spaces in the given family is evidently contractible, e.g.,
@y 0 <t <8, deforms D Zjgo v Yoy into D u Yihoy and the later
ig contractible. Then by the continuity axiom for Geeh cohomology
theory, B" is acyclic. :

2.2. TEmOREM. For n>1, B" is LC"™ at points of &, and locally
contractible elsewhere.

Proof. In fact, D\S" is the open unit digk and B™D is readily
seen to be homeomorphic with a closed half space in B™**, so B iy locally
contractible on B™\§". For a point # of 8%, the set

No=U {Znorar: 5> 1,% an integer}

is a union of n-spheres tangent to 2, and every sufficiently small neighbor-
hood of # has the same homotopy type as N, so B™ is LO™™ at .
2.3. THEOREM. For n=0,1,2, ..., B" Las the fiwed point property,
Proof. Suppose that f: B"—B", n > 0, is a continuous map. For
n =0, either f maps D into itself or into the other path component,
BN\D, of B In the former case f has a fixed point in D. In the latter,

BN\D is open so f maps all of B into it, and so f(B) iy a closed connected
subset J of B\D. Such a subset of B

\D is topologically an interval,
80 f has a fixed point in J.

For » > 1, suppose that f has no fixed points, and let p be the ret-
raction of B" onto D which, for @ ¢ D, is defined by p(a) = <0, 1, mq.
Then f(8§!) is not a subset of D, for otherwise pf would have a fixed point
in D which would be a fixed point of f. 8o let @, = <0, 1, m,> be a point

of 8 such that 7(w,) is not an element of D. Then choose a neighborhood ¥
of f(#,) and positive numbers m, & 8o that

(1) m = me(mod2) and 2™ < inf [f (@) —aw];

ze RN
(2) NV is an absolute retract, and

f(Z?m,m.;.,]) C N, and ZEn,m-l‘x] AN=0,
Let X be the contractible polyhedron defined by

X=DUZ€:),MU Yy o
and define maps

X,pre,x

icm
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' =ga. For
fA let f(a)= f(a) and let g(a)=a.
s: For aeD v Zim, ‘ ‘
as f?zllow let ¢(a) = p(a). Since f(Zwx)C N, and N is an AR, Z’? may
o etezlggl?’ws)(; that f'(¥%) C N. Likewise we may extend ¢ so that ¢(Zim,m+a)
?.f a subset of Ym v (8* A Zhnm+s) Now the composition
Bl B
as no fixed points, since: ,
g (4) I a e B* ~ X, then f'q(a) = f(a). o -
(8) It & € Zimme+a, then fg(a) e N, which is dlS]Olgt from Zimmee1-
(6) If @ ¢ Zimsom, then f'g(a) = fp(a), and from (1),
! — 0.
(e (@) —p(a)| > lp(@)—al, 0 [fg(a)—a]> N
i i ither, contrary to the
'y X -»X has no fixed points either, \
ésf:cﬁgési?;:él c;éi%; theorem. By contradiction, the theorem is proven.
e .
9.4. DEFINITION. For {; ay € C(v; Hy), let
a” = {0, ¥y, May — gy — &gy — )
Gyay” = a >
If X is a subset of B" but not of B n =3, let
Xt = {aeX:an>0}, X ={aeX:an<0}.
9.5. TamRoREM. For n =1, B" is the wnion of two compact absolute
retracts (Bt and (B™)". o
Pr,oof. One need only to show that %l?“)‘L nfmi()iB&)gﬂ)fﬁﬂtzcﬁ;{;
i d contractible. We do this only 10 . the
Contra;tlb;?_ [’0863]{::1 (B™* homeomorphically onto (B")". Evidently (B")
map, a->a ,

i m+\ S, To see that it is locally
i traictible at points of (B.) \' . To t el
?o;g:;(i?blzo;t points of 8 and contractible, it sutfices to provide a g

deformation retraction
Tt (BYN\(0}—~(BM"  0<i<1 .
of (B")*\{0} onto &', and to note that st is locally contractible. Since (2°)
is an m-cell, there ig a contraction
he (BN (2, 0<i<1

define
such that h«0,1,0> = <0,1,0) for 0 < t <1, Then
T (BYN\{0}~(BM, o0<it<l1
by letting

(@) = <0, 3+ (1 —1)74y Ma)
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if @« D\{0}, and letting
Ti(a) = dshid_4(a)

if ae(Z5)", 0<s. Then for ae(B")"\{0}, ka) = a, ky(a) ¢ 8, and for
& e 8, Ty(a) = a for 0 << 1, so the theorem is proven.

2.6. TrmorEM. For each n > 0 there is a map of C(v; B") into itself
which has no fized points.

Proof. First note that since O(v; §) is a retract of ¢(v; D), then
also C(v; Zfoeq) I8 a retract of O(v; B*) for n = 0,1,2,..; 80 it suffices
to define a fixed point free map ¢" of C(v; Zjge) into itself for each n,
This will be done indunctively so that ¢" agrees with ¢*™* on ¢ (05 Zl5y)
for #n > 0.

First define a map

9: U 0v; Zfiem)~ U 0(v; Zfpey ),
n=0 nm=0

so that g maps C(v; (Zfi,e9)") into Cfv; (Zi6,00))7) for each n > 1, go that

g(@)” = g(”) for each w, and g has no fixed points, as follows. For g « )y
and any n > 0, let

L g(<t ay) = <0; d(a=, 1—81)>, 0<t< 4,
2. gt ) = At—1; d(a—, 1)), <ty
3. g{<t; @) = <8 —4t; e, Pty
Loglda)=e, $<t<1,
where ¢ iy 0,3, 05, the endpoint of the spiral z?o‘w)\sl. Then ¢ has no

fixed points since g either changes the modulus m, of » or its distance
from ».

Define g by induction on n = 0,1,2,... so that it satisfies
(i) ¢* agrees with g on O(v; Zf o), and it m > 1, g» agrees with g
on ((v; Zn-1 ).

[0,00)
(i) g"(Clo; (ZHh,000)")) C (Ofv; (Zhoew)T)), tor m 3 1.
(iil) g"(z™) = (@)™ for we C{v; B™, n 1.
(iv) g has no fixed points.

_ . For n =10, let ¢° agree with g on 0(v; Zhe). To complete the deti-
nition of ¢° note that it suffices to define it on

K = s di(e
0{%1 C(’I), dt((’)) .
Regard K as a simplicial complex with vertices w, == dy(e), u, == ¢1/4, dy(e)>,
Uy = (1/2, dy(e)), Uy = (3[4, dy(e)y, uy =0, 4y = <3[4, e>, and 1wz == e. The

two dimensional simplexes of K are (g 5 ug) together with (u v Us)s
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i=10,1,2,3. Here, “(ab...)" means “the closed simplex spanned‘ by
a‘b .7..”’. Tt we let L = C{v; dy(e)), then L is a subcomplex of K detfermmed
bgr 1’3he simplexes (% Uir1), _w.hel‘e 71-—-:_ 0,1,2,3, and ¢g|L 1]? (jff'lfl?idé%e?j
may be regarded as a simplicial map into a complex, M, W 1(:JG md ver
mined by simplexes (u, tg) and (ug Us), whe.re Uy = ¢‘Z2(e).. E.io ex en. tg v
all of O(v; Zioew) Dy letting it agree on K w1t‘h the mmphclal map ];n (;)
which takes wug into ug, and ug in‘Fo Uq, andhls' a8 prevmusl_y sp(;jsf}e g?)
Uy, Uy, Uny g, DA ug. By definition ¢° :gemsﬁes. (i) and 1?; Zsoa 18 152 N
and (iii) vacuously. As for (iv), ¢° h.a.s no fixed points on C(v; d[l,m))i[ Kg
does not, and ¢° has none elsewhere, i.e. in I{? for g (K)C M, in on ) ?ﬁo 1;
g (1 %g) = 4, which i not an clement of (wy ), §(Us %) = (Ug Ug) W
meets (s %) only in wg, and g(u, us) = o .
Ug=v Ug=v

AN g°|x

U2
Uy

ug=ds(e) Ug=¢8 uy=dy(e) Wwg=e
K M
Tig. 2
i ine 8 > 1 5o as to satisfy (i)-(iv),
Assuming g»—* has been defined for some n > : 2
define g so that it agrees with g»—* and g where these are defined. Then g*
maps . , )
O(0; Z553) © O(03(Zhe)T) into Ofv; (Zisen)™) -
By 2.5, O(v; (B™)”) is an absolute retract and since C(v; (Zfoen)”) I8 a,retrac;
of O(v; ('B”)“), it, too, is an absolute retract. Thus g"nn.my be exteilied
0 Ofv; (Zf oo))+) $0 a8 to satisfy (ii). The definition of 4" is then conzlf & i
by requiring it to satisfy (iii). Then g satisfies (iv) for it maps O .(v; ( [om'))tl
into O(v; ('Zﬂ'),oo))“), and wice verss, and cannot have” iny f{xed 1fouzti.)
outside of the intersection of these two sets, G(v;n [0,00))+ S;I'lﬁed Z)intr;
¢" has no fixed points in O (v; Zises), it follows that g has no fixed p
so (iv) holds for g». ‘ . .
2.7. TamorEM. If an X C H, is either zero 1d@menswnal or 1‘81;(;7;?:1;
acydlic, of covering dimension n, n = 1, and LC™, then the cone wy
has the fived point property.
Proof. For X zero dimensional this is easy to see. Sjlppoizrt};?ﬁl G]:
is a continuous map of C(v; X) into itself. Then f(v) = (tf, wD>Which
point @, of X. Let %, be the minimum of the values of ¢ for

F(<t @) = <5 oo
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for some ' <. If t=1 then f(v) = v. If {g < 1 then since X ig totally Im

disconnected, there is an ¢ >0 such that for

—e <t Yy,
we have
1(t; mo) = <5 @0 5
for some #'. By the definition of &, ¢ >t if #{y—s <1< %. By the con-
tinnity of £, then, & = %5, 80 {fo; &> 18 a fixed point of f.

For X compact acyelic, of dimension # > 1, and LO™, X is an HLC*
space ([9], [10]): it is HLO™ " as an LO"" space, and since it is acyclic
and has covering dimension n, the n dimensional Gech homology groups
of all compact subsets vanish, so X is HLC™ The dimension condition
then gives that X is HLC*, hence so also is O(v; X). By the Lefschetz-
Begle theorem ([1], [9]), C(v; X) has the fixed point property.

3. 4 compact contractible space B such that B, but not B xI, has the
fiwed point property.

In outline one shows, 3.1, that for compact contractible space X,
X xI has the fixed point property iff O(X) does. Then one defined B
so that O(v; B°) is a retract of C(v; B); then CO(v; B) and BxI do not
have the fixed point property. We conclude with the proof that B has
the fixed point property. :

3.1. TurorEM. If X is a compact contractible space then the topological
cone O(X), with base X, has the fized point property if and only if X xI
has the fized point property.

Proof. ¢(X) is the quotient space of X xI formed by identifying
all of X x {1} to a point, p. For 0 <£< 1, it is convenient to regard
X x[0,1] a8 a subspace of O(X). Since X is contractible, there is a map r:
C(X)—~X such that r(x,0)= o for each x in X. Define a retraction

of 0(X) onto X x[0,}] by letting #(p) = (v and for oo
X [0, 1)7 lettlng ’ ( (p)! %)7 (a;, ) e X X

(@,1) i 0<1gy,
(r(w,20-1),4) # j<t<l.

Smce.X xI i-s; homeomorphic with a retract of O(X), then if ¢(X) has
the fixed 1.)01nt property, 8o does X xI. Conversely if ¢(X) does not
11]13N‘3 the fl?:ed point property and f: C(X)—C(X) has no fixed points
'hen there is a 1, < 1 such that f(p) = (»,,t,). Since X is compact, there
8 8 fyh <t <1, such that f(o,1)e XX[0,1,] for (,1) X X[f,1).
It is no.res‘memon to assume that ¢, = §. Then define a map ' on X xI
by letting f(@,1)=f(p), f'(@,t)=7(a,1) for }<i<1, and [(a,1)
= r'f(w, t) for 0 <t < %, where z ¢ X, Then f hag no fixed points, for if

(2, 1) =
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0<t< %, then f(z,1) ig either f(w,?) or is in X' x {}}, and f <0<,
e, t) = f(x,1), and if t=1, Flaw, 1) = (B, 1)
3.9, DErFINITION. Let R be the seb of points in E* of the form

a=0,r, M,2-r2""%

where 1 <7< 2, and 1 < M. This value of M will be denoted by Ma.
Let 2D (respectively, 28') be the set of points ¢ in E* with rs <2 (ve-
spectively, 7a = 2). Define the set B in E? by letting

B=Ruv2D.

Tvidently the closure of R is in B so B is compact.
ProrosrTIoN. The set B is contractible in itself.
Proof. Since 2D is contractible, it suffices to define a homotopy

h: BB, 0<t<1,

such that kg is the identity of B and hy(B) C 2D. For a point <0, r,m, w)
of B, 0 <r<1, and for 0<t<1 let
he(<0, 7, My wy) = <0, (t+1)'l’, My W)
and let
h(<0, 7y ™m0, w)) = <0, 2t4-(L—t)r, m, (1-tyw,
i 1 < 7 < 2. One readily checks that he is appropriately defined to complete
the proof.

3.4. THEOREM. Neither the cone C(v; B) nor the product space B x [0, 1]
have the fimed poimt property.

Proof. By 3.1 and 3.3 it suffices to show that C(v; B) does not
have the fixed point property.

Note that the set

BY = {a eB: ra <1}
is homeomorphic to B°. By 2.6, C(v; B) does not have the fixed point
property, so it suffices to show that C(v; BY) is a retract of C ('u;.B). Such
a retraction ig the map which is the jdentity on C(v; BY), virhlc_h takes
O(v; 28") into the vertex v, and is extended linearly, that is, it takes
points of C(v; B) of the form (&, 7, M, W), 1 < r < 2, onto points of the
form: {(2—r)t+r—1,1,m, wi(2—7)>. )

3.5. TuEorEM. Hvery continuous function f of B into itself has a fized
point.

Proof. Suppose that f has no fixed points. Recal} the homotop:y
hs: BB, 0 <1< 1, defined in the proof of 3.3. We claim thait there is
an arc J (= a set homeomorphic to I) in 9D from a point a' of S* to
a point a? of 28* such that

(i) J N D= {&t} and J ~ 28" = {s%},
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and
(i) for every aed and 0 <t <1, @ % hef(a).
Indeed let I be the closed seb
F={aeB:a=MNf(a) for some ¢,0 < ¢<1}.

Note i(0) = 0 for all ¢, 0 <t < 1, 80 0 ¢ H. The exigtence of J iy Proven
if we can show that the origin, 0 is in the unbounded component of the
complement of I in B, or equivalently, I' ~ B? is contractible 1o a poing
in BA\{0}. To define a contraction

bie B~ BPBN{O}, 0 =
define first a fixed point frec map
g: 2D -1
by letting g(a) = f(a) it @« 2D ~ F7'(2D), and letting
g(a) =<0, ()2, Myq>

if @ e2D ~ f7(R). Then g is readily seen to bo well defined, and g is con-
tinuous for 2D ~ 71 (2D) and 2D ~ FUR) are closed sots (the lat
closed since f(2D) is locally connected, so meety R in a ¢
define % by letting

=0,

ter being
losed set). Now

, 24 .
Tesla) = 1.._-5___..__._‘1_~._> —q (i
{a) ( F vz g (ta)
for a e '~ B2 and 0 <t < 1. By the definition of F', f maps each point @

of F ~ I? radially inward so To—"1@ > 0 and Ty(a) is well defined. More-
over,

ky(a) = (~ Ta )(a»—f(a)) = g,

Yo"y
Since f hag no fixed points neither does g, 80 To(a)
is a contraction in E\{0} of ¥ ~ B* to
the existence of J is proven. Let
with 1 < r, < 2.

Then evidently there is a retraction

% 0 for all ¢, @ Thus %
& point (the point is —g(0)), and
4 be tho annulus of ail points @ e B2

P Ad w28,
Define a retraction

Pt A URsT U
by letting
2'(8) = p (<0, 4, M,, 03) for aeduR.

We claim that there ig 5 number M - 1 that satisfics the two conditions:

v
Clones, products and fixed poinds 45

(iii) For 0 =t 1 and every ae 28t such that f(a) ¢ B and Myq > M,
we have
p'hf(a) # a.
(iv) For every a ¢ I such that <0, 74, Ma, 0> eJ and My > M, a is
not in F.
To gee (iii), suppose that
& == min{|f(a) —a|: @ eB}.

i i by & 1 itive. Since p’ is the identify on 28, we may
Since B is compact, & is positive. Since p’ is 1 ntity ]
choose a number § V:’itll 0 < 8 < /2 such that if the dlsjmnce from % point a
of A U R to 28" is less than §, then |p'(a)—a| < &/2. Since 7‘(251) is loca.]ly
connected, there is an M, >1 so large that if ae28 and f(a) e B with
My > My, then the distance from f(a) to 261 is less t.han 8. Then for
0 <t <1, the distance from Tuf (@) to either f(a) or 28" is less than 4, 80

p'huf (a) —F(@)] < [p'hef (@) —hef (a)|+ [hef (a) —F (a)| < g2+ B <&
i ist . f(a) i then p'lif(a) # a, 80 any
Since the distance from a to f(a) is abt least ¢, . ) 7 4y
M > M, would satisfy (iii). To choose M go that it also satisfies (iv), one
need only to require that 27 is less than the distance from J to F.

Since J is an are, there is a continuous real valued ﬁ_mction % on J
such that wu(a) = m, (mod2) and u(a) > M for o eJ. Define a map

g J w28 +R
by letting ¢ be the identity on 28, and letting
q(a) == <O, Tay May (2 —7a) 2-—11(:!)) ,

for @ eJ. Then ¢ is a homeomorphism of J v 28* onto & sgblsgetLLWc;ficﬁ
and R\L has two components. Let E’ be the component o ; \Of fn
contains <0,1,1,1/2>, and let K = R’ J. Then the interior
a topological open 2-cell and the set
X=Kwv2D

is a contractible polyhedron. Note from (iv) thab g(J) is (11310111‘35;3’11;;1‘1?1:
50 for 2 ¢ X we may define a number d(z) as the least f’f the I;l 107}
and of the quotient of the distance from # to ¢(J) by the dlSFamlJ?b let%ing
to F. Now define a continnous transformation f' of X into itself by

L. /(@) = hy-aw] (@) i hi—awf(®) i contained in X,

2. () = qp'hy—aw](2), otherwise. /

Thﬁxg j)’ has no fixed points: In case 1,if d(x) = 1 then f (af) = f %Li%
and if 0 < d(w) <1 then @ ¢F so f(v) # @ In case 2 we have
= q(J) v 28" and ' :

My = Mugr > M
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since hi-gmf(2) ¢ X. If weq(J), thon d(z)= 0 so f(w) = by f (@) o @ Im

},f( ;c) ;22’ then (iil) and the fact that ¢ is the identity on 2 imply that

'This is contrary to Lefschetz’s theorem to the effect that ever
coqtmuous transformation of a contractible polyhedron into ityelf h;sr
a fixed point. The assumption that f had no fixed points was false and B
has the fixed point property. .

4. This paragraph is to provide an answer to a i i
his p R g i 0 & question of Bing’s

posed privately. When apprised of B and its pathologies, ho agked: ¢

May one attach a three cell 4. to B so that B v A d()(’;r n ;

- b /4 08 not

poini propaiss ot have the fimed

The answer iy yes: Let

A= {ael 0 <ry5 2, ~1 < a5 0},

Then Bw A does not have the fixed point property. 'We ouly sketch
the a,rgl_lment. Consider the equivalence relation ~ generated on O(v; BY
by the 1dentifi(?&tion of (t; ds(e))> with <t,1, nsd, for $ <<t <1 and 0 ’< 8
Then the quotl_ent space ((v; BY)/~ ig homeomorphié with Bu 4 V;lth
& homeomorphism that maps C(v; D) onto 4, and the remaining ,points
%nto B. Nf)te that if @ ¢ Z}y and $ <1<, then ¢°(<t;ad) == ¢ 50 ¢
Induces a fixed point free map of €'(v; 2% )/~ into 'itsel?f. "J‘he later is
a retract of C(v; B%)/~, 80 we are finighed. ‘
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On subgroups of the homeomorphism group
of the Cantor set™™
by
Armold R. Vobach (Athens, Georgia)

1. Introduction. Two recent strong results in the attempt to
link algebraic and topological structures are due to M. T. ‘Wechsler
and J. V. Whittaker. In the first of these, [4], isomorphism of home-
omorphism groups is shown to be equivalent to homeomorphism of
spaces—but only for spaces satisfying a strong homogeneity condition.
In the second, [5], the same equivalence is obtained for compact manifolds.
In view of the machinery required for these results, it might be wondered
if there are not groups associated with compact metric spaces which,
by sharing a common milien, more easily guarantee space homeomorphisms.
This is the case, as indicated in the main theorem below. The common
setting is the Cantor set, and the groups in question are subgroups,
associated with maps of the Cantor set onto the spaces, of the home-
omorphism group of the Cantor set.

2. Preliminary results. The following definition and lemmas,
dune to M. K. Fort, Jr., [2], will be helpful in later constructions:

DErFINITION. Let X be a separable ‘metric space. Let F be a function
on X such that each F(x) is a non-empty compact subset of a metrie
space Y. Then, I is upper semi-continuous at p if, corresponding to each
open set U of Y for which F(p)C U, there is a neighbourhood V of p
such that if @ ¢ V then F(z) C U. The function F is upper semi-continuous
on X if F is upper semi-continuous at each point of x.

Levma. If By, 7y, Py, ... s o sequence of upper semi-continuous

set-valued functions, Fy(w)DFy(w)D Fay(x)D ... and F(w)= ﬂan(m) for
=
each © € X, then F is also upper semi-continuous.
Levma. If f is a function on X into X and jor each @ e X, F(x) 18

the set whose only member is f{z), then f is continuous if and only if F is
upper Semi-continuous.

* This research was partly supported by NSF Grant No. GP3915.
** Pregented to the Society September 3, 1965.
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