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sinee  hi-qwf(@) ¢ X. If weq(J), then d(w)=0 so f'() == h,f(n)
- £ T i A Ty #= &
},f( ;c) ;22’ then (iil) and the fact that ¢ is the identity on 2 imply that
'This is contrary to Lefschetz’s theorem to the effect that ever
coqtmuous transformation of a contractible polyhedron into ityelf h;sr
a fixed point. The assumption that f had no fixed points was false and B
has the fixed point property. .

4. This paragraph is to provide an answer to a i i
his p R g i 0 & question of Bing’s

posed privately. When apprised of B and its pathologies, ho agked: ¢

May one attach a three cell 4. to B so that B v A d()(’;r n ;

- b /4 08 not

poini propaiss ot have the fimed

The answer iy yes: Let

A= {ael 0 <ry5 2, ~1 < a5 0},

Then Bw A does not have the fixed point property. 'We ouly sketch
the a,rgl_lment. Consider the equivalence relation ~ generated on O(v; BY
by the 1dentifi(?&tion of (t; ds(e))> with <t,1, nsd, for $ <<t <1 and 0 ’< 8
Then the quotl_ent space ((v; BY)/~ ig homeomorphié with Bu 4 V;lth
& homeomorphism that maps C(v; D) onto 4, and the remaining ,points
%nto B. Nf)te that if @ ¢ Z}y and $ <1<, then ¢°(<t;ad) == ¢ 50 ¢
Induces a fixed point free map of €'(v; 2% )/~ into 'itsel?f. "J‘he later is
a retract of C(v; B%)/~, 80 we are finighed. ‘

References

gi ]]3i GrB Begle, 4 fized poz‘frt,i theorem, Annaly of Maith, 2 (51) (1950), pp. 544-550.
i . orsu}:, S’u‘/f un continy, acyelique qui se laisse transformer topologiquement
wL meme sans points invariants, Fund., Math. 24 (1935), pp. 51-68 '
[8] — Problem 54, Collog. Math. 1 (1948), p. 332, o

[4] E. H. Connel ? i i
(1089), . 27400 nell, Properties of fimed point gpaces, Proc. Amer. Math. Soe. 10

[6] J. B. Keisler, Dissertation, p. 50, University of Michigan 1959.

[6]1 8. Kinoshita, On som, i i i i v
Pund. Math. 40 ot 93.:) Se‘ contractible continua without the fived point property,

[71 V. Klee, 4 { to | i ! i
VI (1960), pp. 81.8; example related to the fized point property, Nisuw. Arch. Wisk. (3)

[8] XK. Kuratowski, Problem 49, Fund, Math. 15 (1030), p. 856,

[9] 8. Lefschet ics 1 )
loss. chetz, Topics in topology, Ann. of Math. Studies No. 10, Princeton

[10] — Algebraic % ’
York vasm, gebraic topology, Amer. Math. Soc, Collog. Publ. Vol. XXVII, New

[11] R. L. Wilder, Topolo ) ]
Publ Vol KEX(L porn ::;e gi/g:fg :ma,mjolde (Ohapter VI ), Amer. Math. Soc. Collog.

Regu par la Rédaction le 4, 11, 1965

re———————— s

On subgroups of the homeomorphism group
of the Cantor set™™
by
Armold R. Vobach (Athens, Georgia)

1. Introduction. Two recent strong results in the attempt to
link algebraic and topological structures are due to M. T. ‘Wechsler
and J. V. Whittaker. In the first of these, [4], isomorphism of home-
omorphism groups is shown to be equivalent to homeomorphism of
spaces—but only for spaces satisfying a strong homogeneity condition.
In the second, [5], the same equivalence is obtained for compact manifolds.
In view of the machinery required for these results, it might be wondered
if there are not groups associated with compact metric spaces which,
by sharing a common milien, more easily guarantee space homeomorphisms.
This is the case, as indicated in the main theorem below. The common
setting is the Cantor set, and the groups in question are subgroups,
associated with maps of the Cantor set onto the spaces, of the home-
omorphism group of the Cantor set.

2. Preliminary results. The following definition and lemmas,
dune to M. K. Fort, Jr., [2], will be helpful in later constructions:

DErFINITION. Let X be a separable ‘metric space. Let F be a function
on X such that each F(x) is a non-empty compact subset of a metrie
space Y. Then, I is upper semi-continuous at p if, corresponding to each
open set U of Y for which F(p)C U, there is a neighbourhood V of p
such that if @ ¢ V then F(z) C U. The function F is upper semi-continuous
on X if F is upper semi-continuous at each point of x.

Levma. If By, 7y, Py, ... s o sequence of upper semi-continuous

set-valued functions, Fy(w)DFy(w)D Fay(x)D ... and F(w)= ﬂan(m) for
=
each © € X, then F is also upper semi-continuous.
Levma. If f is a function on X into X and jor each @ e X, F(x) 18

the set whose only member is f{z), then f is continuous if and only if F is
upper Semi-continuous.

* This research was partly supported by NSF Grant No. GP3915.
** Pregented to the Society September 3, 1965.
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Let H(0) be the group of homeomorphisms of the Cantor set ¢f onto
itself. Let M be a compact metric space and p a map of € onto M.

DEFINITION. G(p, M) = {h e H(0)| Va e 0, p(2) = ph(x)}.

G(p, M) is a subgroup of H(C().

From among the multitude of maps of € onto M, it is desirable to
study those with the following characteristic:

DErINITION. A map p of € onto a compact metric space M is a standard
map if, for each pair of points & and y such that p(e) = 2 (y), there ig
~ a sequence {#,}%; C 0 and a sequence {hy}nm: C @(p, M) such that By~
and hn(n) —y.
LeMyMA. Given a compact metric M, there is o slandard map of ¢
onto M.

Proof. First we shall construct a map p: 0—M and then show that
it has the desired property: Let us consider a gequence of finite cloged
covers of M, {Ti}i%, {TH7%), ..., with the properties:

(1) Mesh{T¥¥# < 1/, and

(2) T§ ~ T§ # @ is the union of two or more of the olements of
@,

What remaing in the construetion of p is the usual routine pro-
cedure, [3]. It is interesting to note that, with what follows, the second
condition on the covers, above, ig sufficient to make 2 a standard map.
In this sense, standard maps are very natural.

We divide the interval [0, 1] into 2n(1) equal subintervals. Label
every second one of these, end points included, as i, B, ..., Hhg,.
Suppose that we have the interval Elf(l),i(g),_",',:(]c) , where the sequence
i(1), ..., 4(k) is such that TiyD Ty D .. D Thyy. We divide it into
2m(i(k)) equal subintervals, where m(i(k)) is the number of elements
of {T7)1% which are contained in Ty

Denote every second one
of these intervals by

Bii o riwnian B . iagrs - 3 ity 10,5 (m(itiy))
where the j (r)’s, r = 1, ..., m(i(k)) ave the subscripts, from {T%"™}, of the ele-
ments of this collection which are contained in T,
Set Sp = U By, .00 for all sequences (1), ., i(k) for which
Thoy D Thyy D 0. D Thyy. Set ¢ = ﬁ Si. O is a Oantor set.
Next, define the upper semi-continuous set-valued function 7y 0—-M

by Fy(z) = _T}@) for a ¢ 0 ~ Bly. Likewise, Fy(w) = T%y for o ¢ 0 ~ By i
WiGh (1), %(2) such that TiyD T%,. In general, set Fy(z) = T, for
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@€ 0~ Bigy,... i With 4(1), ..., i(n) such that ThyD Ty D... D Thy. Let

P (@) =) Fu(z), a single point. By Fort’s lemmas, p is continuous, a map

n=1

of ¢ onto M. )

To show that p is a standard map: Suppose that » = ¥y with p(z)
= p(y). For each positive integer n, we wish tofi nd a point z, of C
within 1/n of # and a homeomorphism %, of G(p, M) for which hal2n)
is within 1/n of y. Let & be a positive integer > 7 such that # ¢ ¢ ~ By, i
Y e 0 Blay,..iws Bi.....it ~ Biw....s09 = B, and the diameter of each
of E?{l), eyilE) and E;—cm,__,,;(k) is less than l/k. NOW, _'p(O I} Eif(l),m, i(k.)) = T?(k)
and (0 n B, . q9) = Tiy. We have p(a)=p(y) e Thy ~ Ty # 0,
so that Tf(k) A T;‘(k, is the union of elements of the (k-+1)st cover. At
least one of these, call it simply T%*', contains p(z)= p(y). To return
to C, there is an Byl i C Bly,..iy such that p(C ~ BiE . i.0)
= T*"'. Let @, be a point of € ~ BE . iy With p-image p(x). Likewise,
there is an Zjd,...j095 C Biw,..q09 Such that p(C ~ Bl jus) = TFH.

If we can find an hy, e G(p, M) which carries O nEﬁTﬁ:..,i(k),i onto
C ~ By . ity ha(@s) will be within 1/n of y. On ONC ~ (B itk
© Bjih,...,ia4), ha 5 to be the identity. As before, we use a sequence of
set-valued functions to define hn, on € ~ (Bid) . i, v ot as.g). We
may shorten the notation by setting B s = B and BEG . s
=By Let Hy(z)= C ~BE" for zeCn EF™ and Hy(z) = C ~ BEH
for z € C ~ By*'. Now T"" is the union of subsets of the (k--2)nd cover,
{TF 7% possibly renumbered, and hence ¢ ~ E¥t = ¢ A (M;QQ)EE;:FE),

i=1,2, where »(C ~ Eif*)=T{", j=1,.., m(k+2). Define H,(2)

=0 nEL® for 26 O~ BYS? and Hyfe) = O ~ BF 2 forze O ~ BE?,j=1,

oy m(k+2). Generally, define Hy(2)= 0 ~ ng(g),_.,,r(s) forze Gn Ef,',*é)m’,.(s),
and Hy(z) = 0 ~ Bisd, .9 o 2¢O~ BESE, ., for those sequences
7(2), ., 7(s) for which T*7D TFED . D TEE. On € ~ (B O EEHY,

let hn(2) = ﬁ Hy(z), and observe that %, on this set is, by Fort’s lemmas,
§=1

continuous. Since %, merely interchanges, at each stage of its construction,
correspondingly indexed sub-intervals—intersected with C—of [0, 1], it
is also 1-1, onto and a homeomorphism. Further, this switching of corres-
pondingly indexed subintervals of Bf™* and E5™, assures us that p(2)
= pha(z) on C ~ (BY™ © BE). Outside this set, hy, was already given as
the identity.

Remark. From the way in which the map p was constructed above
we were able to choose the sequence {Z,}n—: such that p(z) = p (@)
= Phu(®n) = p(y), which implies that p-i(m), m « M, is a perfect subset

Fundamenta Mathematicae, T. XL 4
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of C. This says that p may be very naturally chosen so that the closed
set pi(m), m e M, is either a single point or a Cantor set.

The following simple theorem, while of secondary interest in the
present development, is so nicely related to the Lemma as to suggest itg
inclusion. )

TuEoREM. Let f: M —N be continuous and onto, with M and N compact
ongtm'o. Then there exist standard maps p: O—>M and ¢: C—N such that/
&(p, M) CG(q, N).

Proof. Let {Tii%, (T3, ..., be a sequence of finite closed
of M with the properties: covers

1) Mesh of {THi% and of {f(TF)}}¥ < 1/k, and

N ,

2) Ti ~ T7 #0 (and hence f(T§ ~ f(TF) # @) is the union of bwo
or more of the elements of {T¢ %D ({f(k+2)ydkin),

One may now construct a standard map p: 0 —M exactly as in the
Lemma, z}tnd obsclscrve th.a,t ¢=7jp: C—N will also be standard because
each f(Ti) ~ /{T5) # @ is the union of two or more elements of the cover
(T,

For heG(p, M), p(®) = ph(®), 2¢, which impl

. , h implies ¢(2) =
= fph() = qh(®), ¢ C, and h e G(g, V). 1o =1

3. Main theorem. Let p be a standard map of the Cantor set ¢ onto
compact metric M. The compact metric space N is homeomorphic to M if
and only if G(p, M) = G(q, N) for some standard map q of C onto N

P}r;)of. Z]Igoil}g the easy way first, suppose that h: M —N ig a hom'e-
anggdjﬁ'maifne g: =N by q=hp; G(g,N)= G(p, M) and q is

In the other direction, suppose G(p, M) = G( ;
maps p and q of ¢ onto M and N ) respeetiv(g;r. F)or m e( q]l,st)etf;:?mjting ?;)d
where « ep~t(m). Is this choice of h(m) well-deﬁned’? Suppose p('w;
= p(y) = m, then, since p is standard, there exigt {&n}n= and {hu}n.
CG(p, M) such that w,—z and hn(@a)—y. Since G(p M) = G‘(q”‘;f-)1
4(@n) = glhn(@n)); q(@n)>g(2) and qfha(@n) —q(y). Hence q(w) = ,(4 )’
Clearly, the not-necessarily continuous function A is onto N. o
Sincé[‘(;_f&))wisc?;ﬁxll;?g, letl(j)q N be closed; then ¢-(4) is closed.

- i )
pg"l(];i) is Just oh) S,O p}g o conii Eﬁﬁf;,wt and thus closed. However,
inally, the continuous, onto function A: ig 1-1:
h(m;) = h(my). Then there are z and y in € such thﬁ;g) i ;bl p (‘S;;Ii—l:m;e
anqu(m) = q(y) = h(m;), i=1,2. Since ¢ is standard, let lémn}“ 1 an(;
{hutn=1 C G(q, N) be such that T —>@y ho(n) —y. Since G(p, M) = (;?q N)
P (@) = p(ha(@a)); D (@n)—>p () = my, together with jp(h,,(m, )= (y) =’m ’
imply m, = m,. Hence h is g homeomorphism. R N

©
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It is natural to inquire whether the set equality of the theorem might
be replaced by isomorphism. A simple example shows this is not possible:
Let O be the Cantor middle third set on [0,1]. Let M be a single point
and p: C—M = {m}; then G(p, M)= H(C). Let N be the union of an
isolated point and a copy of O ~ [2/3, 1], with ¢ carrying all of C ~ [0,1/3]
onto the isolated point and O ~ [2/3,1] identically onto its copy in N.
@(g, N) is isomorphic to H(C) but properly contained in it. Observe
that G(p, M) and G(g, N) are not conjugate.

Conjugacy appears to be the more natural setting for algebraic
comparisons—not surprising in view of [1]—and we get the following:

CoROLLARY. Let p and g be standard maps of C onto compact metric M
and N, respectively. If, for some heH(0), @(p, M)= hG(q, N)h 1,
M and N are homeomorphic.

Proof. We observe that for any & e H(C), G(ph, M) = k'G(p, M)h:
Let f e G(p, M); then, since p(x) = pf(x), =« C, ph(z) = ph(h~*fh)(x) for
each # e C. Thus, G(ph, M)D s1@(p, M)h. Likewise, if ge G(ph, M),
then ph(s) = phg(x) implies phh=(z) = p (hgh™)(x) for each z e . This
says hghte@G(p, M), and G(ph, M)Chr'G(p, M)k TFinally, then,
G(ph, M) = h'G(p, M)h = G(¢, N), and since ph: C—M is standard
(because p is), M is homeomorphic to N by the theorem.

To summarize, each standard map of C onto a compact metric space
determines a whole class of conjugate subgroups, each the group of some
standard map onto the space, and two compact metric spaces are home-
omorphic if and only if they determine, in this manmner, precisely the
same classes of conjugate subgroups of H(C).

For p and ¢ standard onto X, how, if at all, are G(p, M) and G(g, M)
related? What algebraic properties of these groups are associated with
what topological properties of their associated spaces? How might the
G(p, M)’s be computed?

Added in proof. The following example is due simultaneously to Professors
W. R. Alford and H. Cook: Let ¢’ be the middle-third Cantor set on [0,1]. Let
p":0"[0,1] be defined by identifying end points of deleted intervals of [0,1]: 1/3 with
2/3, 1/9 with 2/9 and 7/9 with 8/9, etc. While p’ is not standard, ¢’ may be augmented
to yied a Cantor set and a map, associated with p’, which is standard. Consider the
Cantor subset of

O'x 0" O=[0 %{00] U [{1/3,2/8)x O"] L [{1/9, 2/9,7/9,8/9}x[C" A [0,1 /3]]] U

0 is ¢’ with matching Cantor sets stacked over the gap end points identified with each
other by p’. Define p:0—[0,1] by first projecting € onto C’x {0} and following this by
9’; p is standard. The homeomorphisms of G(p, [0,1]) are precisely those which only
interchange points in the Cantor sets which are stacked over end points of the same
gaps.

4%
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Upper semi-continuous decompositions of irreducible
continua

by
William S. Mahavier (Atlanta, Ga.)

Introduction. In 1935, B. Knaster showed [6] that there is a con-
tinuous eollection of nondegenerate continua which is an are with respect
to its elements and such that the union of its elements is a compact irre-
ducible continuum. In 1949, E. E. Moise [7] showed that there is no such
collection with the additional property that each of its members is an
arc. Moise’s theorem was improved in 1952 by M. E. Hamstrom [4], and
further improved in 1953 when E. Dyer showed [3] that there is no con-
tinnous collection of decomposable continua such that the union of the
members is a compact irreducible continuum. It is known [6] that there
is an upper semi-continuous collection of arcs which is an arc with respect
to its elements and such that the union of its elements is a_compact irre-
ducible continuum. In this paper we consider an upper semi-continuous
collection @ having the following property.

(A) If g € G, each point of g is a limit point of the union of the members
of each component of G@—g.

As a corollary to Theorem 4 of this paper we have that there is no
upper semi-continuous collection @ of arcs such that G has property (A),
G is an arc with respect to its elements, and G* is a compact irreducible
metric continuum.

Continua with degenerate F-continua. If M is a compact,
hereditarily decomposable, irreducible, metric continuum, JM contains
two continua sueh that each is the complement in M of a composant
of M. These are called the E-continua of M by H. C. Miller [9]. We see
from the following theorem that if M is chainable, M contains a con-
tinuum which has a degenerate H-continuum. The constructive proof
of this theorem is essentially identical with that of G. W. Henderson
for Theorem 13 of [5]. The theorem may also be compared with Theorem 6
of [1].

THEOREM 1. If M is a hereditarily decomposable, compact, chainable
metric continuwm and P’ and Q' are points of M and & > 0, there is a sub- .
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