References

- [1] R. D. Anderson, The three conjugates theorem, to appear.
- [2] M. K. Fort, Jr., One-to-one mappings onto the Cantor set, J. Indian Math. Soc. 25 (1961), pp. 103-107.
- [3] W. Sierpiński, General topology, trans. by C. C. Krieger, Univ. of Toronto Press, 1952.
- [4] M. T. Wechsler, Homeomorphism groups of certain topological spaces, Annals of Math. 62 (1955), pp. 360-373.
- [5] J. V. Whittaker, On isomorphic groups and homeomorphic spaces, Annals of Math. 78 (1963), pp. 74-91.

THE UNIVERSITY OF GEORGIA

Reçu par la Rédaction le 8. 11. 1965

Upper semi-continuous decompositions of irreducible continua

by

William S. Mahavier (Atlanta, Ga.)

Introduction. In 1935, B. Knaster showed [6] that there is a continuous collection of nondegenerate continua which is an arc with respect to its elements and such that the union of its elements is a compact irreducible continuum. In 1949, E. E. Moise [7] showed that there is no such collection with the additional property that each of its members is an arc. Moise's theorem was improved in 1952 by M. E. Hamstrom [4], and further improved in 1953 when E. Dyer showed [3] that there is no continuous collection of decomposable continua such that the union of the members is a compact irreducible continuum. It is known [6] that there is an upper semi-continuous collection of arcs which is an arc with respect to its elements and such that the union of its elements is a compact irreducible continuum. In this paper we consider an upper semi-continuous collection G having the following property.

(A) If $g \in G$, each point of g is a limit point of the union of the members of each component of G-g.

As a corollary to Theorem 4 of this paper we have that there is no upper semi-continuous collection G of arcs such that G has property (A), G is an arc with respect to its elements, and G^* is a compact irreducible metric continuum.

Continua with degenerate E-continua. If M is a compact, hereditarily decomposable, irreducible, metric continuum, M contains two continua such that each is the complement in M of a composant of M. These are called the E-continua of M by H. C. Miller [9]. We see from the following theorem that if M is chainable, M contains a continuum which has a degenerate E-continuum. The constructive proof of this theorem is essentially identical with that of G. W. Henderson for Theorem 13 of [5]. The theorem may also be compared with Theorem 6 of [1].

THEOREM 1. If M is a hereditarily decomposable, compact, chainable metric continuum and P' and Q' are points of M and $\varepsilon > 0$, there is a sub-

continuum K of M such that K is irreducible from a point P within a distance ε of P' to a point Q within a distance ε of Q' and irreducible from P to no point except Q.

Before beginning our proof of Theorem 1 (1) we make some definitions and state several lemmas. For each of the lemmas of this section we assume that our space is compact and metric. If $\varepsilon > 0$, by an ε -chain is meant a finite ordered collection $d_1, d_2, ..., d_n$ of open sets each of diameter less than ε such that d_i intersects d_j if and only if $|i-j| \leq 1$. A simple chain is a chain such that no link is a subset of any other and such that each two non-intersecting links have non-intersecting closures. A chain D is said to be embedded in a chain E if and only if the closure of each link of D is a subset of some link of E. By a subchain D of a chain E is meant a chain each link of which is a link of E. It may of course be ordered in two ways. A chain minimally covers a set E if and only if it covers E but no proper subchain does so. By a chain sequence for a set E is meant a sequence E is a simple E in meant a sequence E in such that E is embedded in E in the sequence E is a simple E in the sequence E in the sequence E in the sequence E is a simple E in the sequence E in the sequence E in the sequence E is embedded in E and E in the sequence E in the sequence E in the sequence E in the sequence E is embedded in E and E in the sequence E in the sequence E in the sequence E is embedded in E and E in the sequence E in t

LEMMA 1. If M is a chainable continuum there is a chain sequence for M.

For a method of proof of Lemma 1, see the proof of Theorem 4 of [2]. The statement that the chain D loops in the chain E means that E has at least three links, D is embedded in E, the closure of the union of the end links of D is a subset of an end link of E and the other end link of E contains the closure of a link of D.

LEMMA 2. If C_1 , C_2 , ... is a sequence such that for each i > 0, C_i is a simple (1/i)-chain and C_{i+1} loops in C_i , then $\bigcap_{i=1}^{\infty} C_i^*$ is a nondegenerate compact indecomposable continuum.

If C denotes a sequence of chains, by a C-chain is meant a subchain of a chain of the sequence C. If D is a chain, F(D) and L(D) denote the first and last links of D, respectively. By a terminal subchain of D is meant a subchain of D having L(D) as its last link. A chain D is said to be embedded in a chain E from F(E) if and only if D is embedded in E and $\overline{F(D)} \subset F(E)$.

LEMMA 3. If M is a chainable and hereditarily decomposable continuum and $C = C_1, C_2, ...$ is a chain sequence for M and B is a C-chain, then there is a C-chain D and a terminal subchain T of D such that (1) D is

embedded in B from F(B), (2) T has at least three links and is embedded in L(B), and (3) if E is a C-chain embedded in D from F(D), then no terminal subchain of E loops in T.

Proof. Suppose that M is a chainable and hereditarily decomposable continuum, $C = C_1$, C_2 , ... is a chain sequence for M, and B is a C-chain. There is a C-chain B_1 and a terminal subchain T_1 of B_1 such that (1) B_1 is embedded in B from F(B) and (2) T_1 has at least three links and is embedded in L(B). Suppose that the lemma is false. It follows that there is a C-chain B_2 embedded in B_1 from $F(B_1)$ such that some terminal subchain of B_2 loops in T_1 . Let T_2 denote one such terminal subchain. B_2 is a C-chain embedded in B from F(B) and T_2 is a terminal subchain of B_2 which has at least three links and is embedded in L(B). Thus there is a C-chain B_3 embedded in B_2 from $F(B_2)$ such that some terminal subchain T_3 of T_3 loops in T_3 . This process may be continued to establish the existence of a sequence T_1 , T_2 , ... of T_3 -chains such that for each T_3 -chains in T_3 -chains in T_3 -chains and the lemma 2 that $\int_{1}^{\infty} T_3^*$ is a nondegenerate compact indecomposable continuum. But T_3 -contains no such continuum and the lemma follows from this contradiction.

We now begin our proof of Theorem 1. Let M denote a hereditarily decomposable, compact, chainable metric continuum. Suppose that P' and Q' are two points of M and that $\varepsilon > 0$. Let $C = C_1, C_2, \ldots$ denote a chain sequence for M. There is a C-chain B_1 which has at least three links such that $P' \in F(B_1)$, $Q' \in L(B_1)$, and each link of B_1 is of diameter less than ε . By Lemma 3, there is a C-chain B_2 and a terminal subchain T_2 of B_2 such that (1) B_2 is embedded in B_1 from $F(B_1)$, (2) T_2 has at least three links and is embedded in $L(B_1)$, and (3) if E is a C-chain embedded in B_2 from $F(B_2)$, then no terminal subchain of E loops in T_2 . By repeated application of Lemma 3, we see that there is a sequence B_1, B_2, \ldots and a sequence T_2, T_3, \ldots such that for each i > 0, (1) B_i is a C-chain, (2) T_{i+1} is a terminal subchain of B_{i+1} , (3) B_{i+1} is embedded in B_i from

of E loops in T_{i+1} . Let $K = \bigcap_{i=1}^{\infty} B_i^*$, $P = \bigcap_{i=1}^{\infty} F(B_i)$ and $Q = \bigcap_{i=1}^{\infty} L(B_i)$. K is a compact continuum irreducible from P to Q, and, since (P+P') $\subset F(B_1)$, the distance from P to P' is less than ε . Similarly, the distance

 $F(B_i)$, (4) T_{i+1} has at least three links and is embedded in $L(B_i)$, and (5)

if E is a C-chain embedded in B_{i+1} from $F(B_{i+1}^{rr})$, then no terminal subchain

from Q to Q' is less than ε . Let E denote the set of all points x such that K is irreducible from P to x, and suppose that E is nondegenerate. Let $A \in E-Q$. Let n denote a positive integer such that no link of B_n contains both A and Q. By Theorems 37 and 116 of Chapter I of [8], Q is a limit point of K-E, and $L(B_{n+2})$ contains Q, so $L(B_{n+2})$ contains a point P in P in P in P to P theorem 116 of Chapter I of [8], P is a continuum, so there

⁽¹⁾ A proof of Theorem 1 which is like that of Henderson is included for the sake of completeness at the suggestion of the referee.

is a positive integer m such that no link of B_m contains both B and a point of E. B_m is embedded in B_{n+1} and there exist three distinct links U_A , U_B , and $U_Q = L(B_m)$ of B_m containing A, B, and Q, respectively. Since $\overline{F(B_m)} \subset F(B_{n+1})$ and $\overline{U}_B \subset L(B_{n+1})$, there is a link U of B_m which precedes U_B such that $\overline{U} \subset F(T_{n+1})$ and the closure of each link of B_m between U and U_B is a subset of a link of T_{n+1} . U_B does not intersect the connected set E, so U_A is between the links U_B and U_Q in B_m . Further since A is not in $L(B_n)$, \overline{U}_A is a subset of a link in B_{n+1} which is not in T_{n+1} . Thus there is a link V of B_m which follows U_B such that $\overline{V} \subset F(T_{n+1})$ and each link of B_m between V and U_B has a closure which is a subset of a link of T_{n+1} . But we now have that the subchain of B_m having $F(B_m)$ as its first link and V as its last link is a C-chain embedded in B_{n+1} from $F(B_{n+1})$ which has a terminal subchain which loops in T_{n+1} . This is a contradiction from which it follows that E is degenerate.

Upper semi-continuous collections with property A. In the following let G denote an upper semi-continuous collection of mutually disjoint continua such that G has property A, G is an arc with respect to its elements, and G^* is a compact metric continuum.

THEOREM 2. If G^* is irreducible between two of its points and M is a subcontinuum of G^* which is not a subset of a member of G, there is a subarc H of G such that $H^* = M$. Moreover, if A and B are points of different end elements of H, then M is irreducible from A to B.

Proof. Suppose that G^* is irreducible and M is a subcontinuum of G^* which is not a subset of a member of G. There is a subarc H of G with end elements h and k each intersecting M and such that no member of G-H intersects M. We shall show that each subcontinuum of M which intersects both h and h must contain H^* from which it follows that $M = H^*$ and that M is irreducible from each point of h to each point of h. Let M' denote a subcontinuum of M which intersects both h and h, and let h denote the union of h which contains the end elements of h and h is a subcontinuum of h which contains the end elements of h and h is a subcontinuum of h which contains the end elements of h and h is a subset of h, and thus of h is h and h is a subset of h and h is a subset of h and h and h is a subset of h and h we have that h is h in h and h is a subset of h and h and h is a subset of h and h and h is a subset of h and h and h is a subset of h and h and h is a subset of h and h is a subset of h and h is a subset of h and h and h is a subset of h and h is an analysis of h and h is a subset of

We next note that with certain conditions on the elements of G, G^* is chainable.

Theorem 3. If G^* is irreducible and each element of G is hereditarily decomposable and hereditarily irreducible, then G^* is chainable and hereditarily decomposable.

Proof. If M is a nondegenerate subcontinuum of G^* contained in a member of G, then M is decomposable and irreducible by our hypo-

thesis. If M intersects two members of G, then M is decomposable and irreducible by Theorem 2. Thus G^* is hereditarily decomposable and hereditarily irreducible. It then follows from a theorem of H. C. Miller [9] that G^* is attriodic and hereditarily unicoherent and from a theorem of H. H. Bing [2] that G^* is chainable.

Theorem 4. If each member of G is nondegenerate, hereditarily decomposable and hereditarily irreducible, then G^* is not an irreducible continuum.

Proof. If G^* is irreducible, then by Theorem 3, G^* is chainable and hereditarily decomposable. By Theorem 1, G^* must contain a continuum M intersecting two members of G such that M is irreducible between two points P and Q but not irreducible from P to any point except Q. But by Theorem 2, there must be two elements h and k of G such that M is irreducible from each point of h to each point of k. It follows that P is in one of h or k and that the other of these sets is degenerate, contrary to our hypothesis.

References

- L. K. Barrett, The structure of decomposable snakelike continua, Duke Math. Journ. 28 (1961), pp. 515-522.
 - [2] R. H. Bing, Snake-like continua, Duke Math. Journ. 18 (1951), pp. 653-663.
- [3] E. Dyer, Irreducibility of the sum of the elements of a continuous collection of continua, Duke Math. Journ. 20 (1953), pp. 589-592.
- [4] M. E. Hamstrom, Concerning continuous collections of continuous curves, Proc. Amer. Math. Soc. 4 1953, pp. 240-243.
- [5] G. W. Henderson, Proof that every compact decomposable continuum which is topologically equivalent to each of its nondegenerate subcontinua is an arc, Annals of Math. 72 (1960), pp. 421-428.
- [6] B. Knaster, Un continu irréductible à décomposition continue en tranches, Fund. Math. 25 (1935), pp. 568-577.
- [7] E. E. Moise, A theorem on monotone interior transformations, Bull. Amer. Math. Soc. 55 (1949), pp. 810-811.
- [8] R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ. XIII, New York 1932.
- [9] H. C. Miller, On unicoherent continua, Trans. Amer. Math. Soc. 69 (1950), pp. 179-194.

EMORY UNIVERSITY

Reçu par la Rédaction le 23. 12. 1965