

Equationally compact algebras (III)

by

B. Weglorz (Wrocław)

This paper is a continuation of [3] and [5]. We discuss here some facts and questions related to the following theorem (Theorem 3.1): If $\mathfrak X$ is a subalgebra of an equationally compact algebra, then there is an equationally compact algebra in $\operatorname{RSS}(\mathfrak X)$ (= the smallest equational class containing $\mathfrak X$), which contains $\mathfrak X$ as a subalgebra.

This theorem would be an obvious corollary if we knew that every equationally compact algebra is isomorphic to a subalgebra of a compact topological algebra. But this is an open problem. In [2] (Problem P484) J. Mycielski asked if moreover every equationally compact algebra is a retract of compact topological algebra? We know only that the answer is affirmative for Abelian groups, linear spaces, and Boolean algebras (see [2] and [5]).

Next we apply the above theorem to show that every equationally compact semigroups with cancellation is a group (Theorem 4.2) which refines the well-known fact (Numakura [4]) that this holds for the topologically compact case.

1. Terminology. The terminology and notation of [5] will be used troughout this paper. We suppose a theory of ordinal numbers such that for every ordinal a, we have $a = \{\xi : \xi < a\}$. We write often (as in [5]) $a \in \mathfrak{A}$, for $a \in A$ and $|\mathfrak{A}|$ for |A| (= card A).

Let Σ be an arbitrary set of equations with constants in $\mathfrak A$; then, Σ is said to be *finitely satisfiable* in $\mathfrak A$ if each finite subset of Σ is satisfiable in $\mathfrak A$. The symbol $S(\Sigma)$ denotes the set of all indices of free variables (unknowns) of the set Σ ; recall that in our considerations, $S(\Sigma)$ does not need to be denumerable. $\operatorname{\mathscr{WST}}(\mathfrak A)$ denotes the smallest equational class containing $\mathfrak A$.

2. Some closures of algebras. Let m be an infinite cardinal and let $\mathfrak A$ be an algebra. An algebra $\mathfrak B$ is said to be an m-closure of $\mathfrak A$ (in symbols $\mathfrak B \in c_m \mathfrak A$) if and only if $\mathfrak A \subseteq \mathfrak B$ and each set Σ of equations with constants in $\mathfrak A$, with $|\Sigma| \leqslant \mathfrak m$, which is finitely satisfiable in $\mathfrak A$, is satisfiable in $\mathfrak B$.

An algebra $\mathfrak B$ is called a *closure* of $\mathfrak A$ if $\mathfrak B \in c_{\mathfrak m}\mathfrak A$ for every cardinal $\mathfrak m$ (in symbols $\mathfrak B \in c\mathfrak A$).

B. Weglorz

First note some properties of the operators c_m and c:

- (i) If $\mathfrak{A}_0 \subseteq \mathfrak{A}_1$, then for each m: $c_m \mathfrak{A}_1 \subseteq c_m \mathfrak{A}_0$ and $c \mathfrak{A}_1 \subseteq c \mathfrak{A}_0$.
- (ii) If $\mathfrak{B} \in \mathbf{c}_{\mathfrak{m}} \mathfrak{A}$ ($\mathfrak{B} \in \mathbf{c} \mathfrak{A}$) and $\mathfrak{B} \subseteq \mathfrak{C}$ then $\mathfrak{C} \in \mathbf{c}_{\mathfrak{m}} \mathfrak{A}$ ($\mathfrak{C} \in \mathbf{c} \mathfrak{A}$).
- (iii) If $\mathfrak{m} \geqslant \mathfrak{n}$, then $c_{\mathfrak{m}}\mathfrak{A} \subseteq c_{\mathfrak{m}}\mathfrak{A}$.
- (iv) The following conditions are equivalent: (a) \mathfrak{A} is equationally compact (\mathfrak{A} is equationally \mathfrak{m} -compact), (b) for each $\mathfrak{B} \subseteq \mathfrak{A}$, we have $\mathfrak{A} \in c\mathfrak{B}$ ($\mathfrak{A} \in c\mathfrak{m}\mathfrak{B}$), (c) for each $\mathfrak{B} \supseteq \mathfrak{A}$, we have $\mathfrak{B} \in c\mathfrak{A}$ ($\mathfrak{B} \in c\mathfrak{m}\mathfrak{A}$).
- (v) For each algebra $\mathfrak A$ and a cardinal $\mathfrak m$, there is an algebra $\mathfrak B \in \mathfrak c_{\mathfrak m} \mathfrak A$ which is an elementary extension of $\mathfrak A$ (a refinament of this proposition is given in (v), in the next section).
 - (vi) There is an algebra \mathfrak{A}_0 for which $c\mathfrak{A}_0 = 0$.
- (i)-(iii) are immediate consequences of the definitions of $c_{\mathfrak{m}}$ and c, and (iv) is a simple corollary of the definition of equational compactness (m-compactness). (v) and its refinement in the next section was proved in [3]. An algebra satisfying (vi) was defined in [2]. Namely, $\mathfrak{A}_0 = \langle w, 0, 1, \cdot \rangle$, where $x \cdot y = 0$ if x = y and $x \cdot y = 1$ if $x \neq y$. Suppose that $\mathfrak{A}_0 \subseteq \mathfrak{B}$ and let η be an ordinal such that $|\eta| > |\mathfrak{B}|$. The following set of equations:

$$\{``x_{\alpha} \cdot x_{\beta} = 1": \alpha \neq \beta, \alpha, \beta < \eta\} \cup \{``x_{\alpha} \cdot x_{\alpha} = 0": \alpha < \eta\}$$

is finitely satisfiable in \mathfrak{A}_0 but cannot be satisfied in \mathfrak{B} . Thus (vi) follows. Now we shall investigate sets of equations which are finitely satisfiable in a given algebra \mathfrak{A} . Note the following obvious lemma.

LEMMA 2.1. Let $\mathfrak X$ be an arbitrary algebra and let for each $i \in I$, Σ_i be a set of equations with constants in $\mathfrak X$, which is finitely satisfiable in $\mathfrak X$. Then there exists a set Σ of equations which is finitely satisfiable in $\mathfrak X$ and such that Σ is satisfiable in an algebra $\mathfrak B \supseteq \mathfrak X$ if and only if for each $i \in I$, the set Σ_i is satisfiable in $\mathfrak B$.

Lemma 2.1, and the definition of c_{ii} easily imply the following proposition.

PROPOSITION 2.2. For each algebra $\mathfrak A$ and each infinite cardinal $\mathfrak m$ there is a set Σ of equations with constants in $\mathfrak A$, which is finitely satisfiable in $\mathfrak A$, such that $\mathfrak B \in \mathfrak c_{\mathfrak m} \mathfrak A$ if and only if $\mathfrak A \subseteq \mathfrak B$ and Σ is satisfiable in $\mathfrak B$. Moreover, Σ can be such that $|\Sigma| \leqslant (|\mathfrak A|+t)^{\mathfrak m}$ where t is the cardinality of the type of $\mathfrak A$ (1).

Finally we prove the following theorem.

THEOREM 2.3. If $\mathfrak{B} \in c\mathfrak{A}$, then there exists a $\mathfrak{C} \subseteq \mathfrak{B}$ such that $\mathfrak{C} \in c\mathfrak{A}$ and $\mathfrak{C} \in \mathit{JCST}(\mathfrak{A})$.

Proof. Let $\Sigma_{\mathfrak{m}}$ be a set satisfying Proposition 2.2, for \mathfrak{A} and \mathfrak{m} , let $S_{\mathfrak{m}}=S(\Sigma_{\mathfrak{m}})$, and let Λ be a set of equations which are axioms for the class $\operatorname{RST}(\mathfrak{A})$. Let $W_{\mathfrak{m}}$ be the set of all terms with constants in \mathfrak{A} and free variables x_{α} ($\alpha \in S_{\mathfrak{m}}$). Finally, let $\Xi_{\mathfrak{m}}$ be the smallest set of equations such that if " $\tau(x_1, \ldots, x_n) = \vartheta(x_1, \ldots, x_n)$ " $\in \Lambda$ then all equations of the form $\tau(\sigma_1, \ldots, \sigma_n) = \vartheta(\sigma_1, \ldots, \sigma_n)$, where $\sigma_1, \ldots, \sigma_n \in W_{\mathfrak{m}}$, belong to $\Xi_{\mathfrak{m}}$, i.e. $\Xi_{\mathfrak{m}}$ contains all results of substitutions of elements of $W_{\mathfrak{m}}$ for free variables in Λ . Clearly, the set $\Xi_{\mathfrak{m}}$ is satisfied by any sequence $\{a_{\alpha}\}_{\alpha \in S_{\mathfrak{m}}}$ of elements of \mathfrak{A} . Moreover, if $\Xi_{\mathfrak{m}}$ is satisfied in an algebra $\mathfrak{A}' \supseteq \mathfrak{A}$ by a sequence $\{a_{\alpha}\}_{\alpha \in S_{\mathfrak{m}}}$, then the subalgebra of \mathfrak{A}' generated by the set $A \cup \{a_{\alpha}: \alpha \in S_{\mathfrak{m}}\}$ belongs to $\mathfrak{RST}(\mathfrak{A})$.

It is easy to see that $\mathcal{E}_{\mathfrak{m}} \cup \mathcal{E}_{\mathfrak{m}}$ is finitely satisfiable in \mathfrak{A} ; hence it is satisfiable in \mathfrak{B} by a sequence $\{c_a\}_{a \in S_{\mathfrak{m}}}$. Let $\mathfrak{C}_{\mathfrak{m}}$ be the subalgebra of \mathfrak{B} which is generated by the set $A \cup \{c_a : \alpha \in S_{\mathfrak{m}}\}$. It is easy to see that $\mathfrak{C}_{\mathfrak{m}} \in c_{\mathfrak{m}} \mathfrak{A}$ since the set $\mathcal{E}_{\mathfrak{m}}$ is satisfied in $\mathfrak{C}_{\mathfrak{m}}$. Also we have $\mathfrak{C}_{\mathfrak{m}} \in \mathfrak{KST}(\mathfrak{A})$ since $\mathcal{E}_{\mathfrak{m}}$ is satisfied in $\mathfrak{C}_{\mathfrak{m}}$ by $\{c_a\}_{a \in S_{\mathfrak{m}}}$ and $\mathfrak{C}_{\mathfrak{m}}$ is generated by $A \cup \{c_a : \alpha \in S_{\mathfrak{m}}\}$.

Let M be the set of all maximal subalgebras of $\mathfrak B$ which belong to $\operatorname{\mathcal{UST}}(\mathfrak A)$. Since for each infinite cardinal $\mathfrak m$, $\mathfrak C_\mathfrak m \in \operatorname{\mathcal{UST}}(\mathfrak A)$ is a subalgebra of $\mathfrak B$, there is an $\mathfrak A_\mathfrak m \in M$ such that $\mathfrak C_\mathfrak m \subseteq \mathfrak A_\mathfrak m$ and $\mathfrak A_\mathfrak m \in \mathfrak c_\mathfrak m \mathfrak A$ by (ii). Obviously such an $\mathfrak A_\mathfrak m \in \mathfrak c_\mathfrak m \mathfrak A$ for all $\mathfrak m \subseteq \mathfrak m$. Thus there is a $\mathfrak C \in M$ such that $\mathfrak A_\mathfrak m = \mathfrak C$ for arbitrary large $\mathfrak m$ and hence $\mathfrak C \in \mathfrak C \mathfrak A$. Q.E.D.

Finally, as in [5], we can characterize closures and m-closures of a given algebra in terms of ultrapowers and homomorphisms.

Let $\mathfrak B$ and $\mathfrak C$ be two algebras which contain a given algebra $\mathfrak A$. A homomorphism h of $\mathfrak B$ into $\mathfrak C$ is called an $\mathfrak A$ -homomorphism if h restricted to $\mathfrak A$ is the identity mapping.

THEOREM 2.4. The following conditions are equivalent:

- (i) \mathfrak{B} is a closure of \mathfrak{A} (i.e. $\mathfrak{B} \in c\mathfrak{A}$);
- (ii) B contains an $\mathfrak A$ -homomorphic image of every algebra in which $\mathfrak A$ is pure;
- (iii) $\mathfrak B$ contains an $\mathfrak A$ -homomorphic image of every elementary extension of $\mathfrak A$;
- (iv) $\mathfrak B$ contains an $\mathfrak A$ -homomorphic image of every ultrapower of $\mathfrak A$.

The proof is the same as the proof of Theorem 2.3, in [5]. A similar characterization of m-closures can be obtained but then some restrictions on $\mathfrak A$ or m are needed.

⁽¹⁾ By the cardinality of the type of an algebra $\mathfrak{A} = \langle A, \{F_i\}_{i \in T} \rangle$ we mean the cardinality of T. In fact we could replace in this proposition t by min $(t, 2^{|\mathfrak{A}|})$.

3. Equational compactifications. An algebra $\mathfrak B$ is said to be an m-compactification of $\mathfrak A$ (in symbols $\mathfrak B \in C_{\mathfrak m}\mathfrak A$) if $\mathfrak A \subseteq \mathfrak B$ and $\mathfrak B$ is equationally m-compact.

An algebra $\mathfrak B$ is called a *compactification of* $\mathfrak A$ if $\mathfrak B \in C_{\mathfrak m}\mathfrak A$ for each $\mathfrak m$ (in symbols $\mathfrak B \in C\mathfrak A$), i.e. $\mathfrak A \subseteq \mathfrak B$ and $\mathfrak B$ is equationally compact.

First let us note a few properties of C_m and C, similar to (i)-(vi) of Section 2.

- (i) If $\mathfrak{A}_0 \subseteq \mathfrak{A}_1$, then $C_{\mathfrak{m}}\mathfrak{A}_1 \subseteq C_{\mathfrak{m}}\mathfrak{A}_0$ for each \mathfrak{m} and $C\mathfrak{A}_1 \subseteq C\mathfrak{A}_0$.
- (ii) If $\mathfrak{A} \subseteq \mathfrak{C} \subseteq \mathfrak{B}$ and $\mathfrak{B} \in C_{\mathfrak{m}}\mathfrak{A}$ ($\mathfrak{B} \in C\mathfrak{A}$), then $\mathfrak{B} \in C_{\mathfrak{m}}\mathfrak{C}$ ($\mathfrak{B} \in C\mathfrak{C}$).
- (iii) If $m \ge n$, then $C_m \mathfrak{A} \subseteq C_n \mathfrak{A}$.
- (iv) An algebra $\mathfrak A$ is equationally $\mathfrak m$ -compact (equationally compact) if and only if for each $\mathfrak B\subseteq \mathfrak A$, we have $\mathfrak A\in C_\mathfrak m \mathfrak B$ ($\mathfrak A\in C\mathfrak B$).
- (v) For each algebra $\mathfrak A$ and cardinal m, there is an algebra $\mathfrak B \in C_m \mathfrak A$, which is an elementary extension of $\mathfrak A$ and $|\mathfrak B| \leqslant |\mathfrak A|^m$ (see [3], Theorem 1).
 - (vi) If $\mathfrak{B} \in C_{\mathfrak{m}}\mathfrak{A}$ and $|\mathfrak{B}| \leq \mathfrak{m}$, then $\mathfrak{B} \in C\mathfrak{A}$ (by [3], Theorem 3).
 - (vii) $C_{\mathfrak{m}}\mathfrak{A}\subseteq c_{\mathfrak{m}}\mathfrak{A}$ and $CA\subseteq c\mathfrak{A}$.

THEOREM 3.1. If $\mathfrak{B} \in C\mathfrak{A}$, then there exists a $\mathfrak{C} \subseteq \mathfrak{B}$ such that $\mathfrak{C} \in C\mathfrak{A}$ and $\mathfrak{C} \in FCST(\mathfrak{A})$ and such is any maximal subalgebra of \mathfrak{B} containing \mathfrak{A} and belonging to FCST(\mathfrak{A}).

The proof is easy (a simplification of the proof of Theorem 2.3). For completeness, let us state the following obvious proposition mentioned in the introduction.

PROPOSITION 3.2. If $\mathfrak A$ is a subalgebra of a compact topological algebra $\mathfrak B$, then there is a compact topological algebra in $\operatorname{RST}(\mathfrak A)$ which contains $\mathfrak A$, and such is the topological closure of $\mathfrak A$ in $\mathfrak B$.

The following problems are open. Let $\mathfrak A$ be a subalgebra of a weakly equationally compact algebra. Does there exist a weakly equationally compact algebra in $\operatorname{\mathscr{H}ST}(\mathfrak A)$ which contains $\mathfrak A$? All examples of algebras, which I know, satisfying $C\mathfrak A=0$, are such that $c\mathfrak A=0$. Does $C\mathfrak A=0$ imply $c\mathfrak A=0$ for all algebras?

Theorem 3.1 can be generalized to algebraic systems in the following way (the proof does not change essentially):

THEOREM 3.1'. Let $\mathfrak A$ be a subsystem of an atomic compact algebraic system $\mathfrak B$. Then there is an atomic compact system $\mathfrak C\subseteq \mathfrak B$ such that $\mathfrak A\subseteq \mathfrak C$ and $\mathfrak C$ satisfies each universal positive sentence with constants in $\mathfrak A$, which is valid in $\mathfrak A$.

I do not know if such a C can be chosen as an elementary extension of M?

Lemma 4.1. An Abelian equationally compact semigroup with cancellation is a group.

Proof. Let us consider the following set of equations:

$$\Sigma = \{ \text{``} x = ay_a \text{''} : a \in \mathfrak{S} \}.$$

It is easy to see that each finite subset of Σ can be solved in $\mathfrak S$. Thus, by equational compactness of $\mathfrak S$, Σ can be solved in $\mathfrak S$. Let x=d and $y_a=c_a$ be such a solution. Thus we have:

$$d=d\cdot c_d$$
.

Using cancellation, we see that c_d is a unity of \mathfrak{S} .

Next, for each $b \in \mathfrak{S}$ we have

$$b \cdot d \cdot c_{bd} = d = d \cdot c_d,$$

and using cancellation again, we see that c_{bd} is an inverse of b. Thus $\mathfrak S$ is a group.

THEOREM 4.2. An equationally compact semigroup with left and right cancellation is a group.

Proof. It follows from 4.1, using 3.1, that such a semigroup is a union of Abelian groups. It is easy to check that their unit elements coincide, whence this is a group.

This proof, shorter than the earlier proof of the author, was found by A. Hulanicki.

In an analogous way, we can eliminate the topological assumptions from several theorems proved in [1] and [4] concerning semigroups, semirings, semimodules etc.

Thanks are due to Jan Mycielski for many remarks and help in the composition of this paper.

References

- [1] S. Bourne, On compact semirings, Proc. Japan Acad., 35 (1959), pp. 332-334.
- [2] Jan Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), pp. 1-9.
- [3] and C. Ryll-Nardzewski, Equationally compact algebras (II), Fund. Math. (in appear).
- [4] H. Numakura, On bicompact semigroups, Math. Journ. Okayama Univers. 1 (1952), pp. 99-108.
- [5] B. Weglorz, Equationally compact algebras (I), Fund. Math. 59(1966), pp. 289-298.

Reçu par la Rédaction le 21. 2. 1966