Equationally compact algebras (III)
by
B. Weglorz (Wroclaw)

This paper is a continuation of [3] and [5]. We discuss here some
facts and questions related to the following theorem (Theorem 3.1):
If Wis a subalgebra of an equationally compact algebra, then there is an
equationally compact algebra in JCSF(W) (= the smallest equational class
containing A), which contains A as a subalgebra.

This theorem would be an obvious corollary if we knew that every
equationally compact algebra is isomorphic to a subalgebra of a compact
topological algebra. But this is an open problem. In [2] (Problem P484)
J. Mycielski asked if moreover every equationally compact algebra is
a retract of compact topological algebra? We know only that the answer
is affirmative for Abelian groups, linear spaces, and Boolean algebras
(see [2] and [5]).

Next we apply the above theorem to show that every equationally
compact semigroups with cancellation s a group (Theorem 4.2) which
refines the well-known fact (Numakura [4]) that this holds for the topologi-
cally compact case.

1. Terminology. The terminology and notation of [5] will be
uged troughout this paper. We suppose a theory of ordinal numbers
such that for every ordinal ¢, we have a= {£: § < a}. We write often
(a8 in [5]) a e, for a e 4 and |U| for |4| (= card 4).

Let X be an arbitrary set of equations with constants in %U; then,
2 is said to be finitely satisfiable in A if each finite subset of 2 is satistiable
in %, The symbol S(Z) denotes the set of all indices of free variables
(unknowns) of the set X recall that in our considerations, S(Z) does not
need to be denumerable. JeST(W) denotes the smallest equational class
containing 9. '

2. Some closures of algebras. Let m be an infinite cardinal
and let A be an algebra. An algebra B is said to be an m-closure of A
(in symbols B e ¢, A) if and only if A C B and each set T of equations
with constants in %, with |Z| < m, which is finitely satisfiable in 9, is
satisfiable in B.


Artur


90 B. Weglorz

An algebra B is called a closure of U if B e ¢, A for every cardinal m
(in symbols B e ).

First note some properties of the operators ¢, and e:

(i) If Wy C Ay, then for each m: enlly Cenly and e, C %,

(i) If Been¥ (BeeW) and B C € then €e ey (€e ).

(ili) If m =n, then en C en.

(iv) The following conditions are equivalent: (a) U s equationally
compact (N is equationally ni-compact), (b) for cach B C A, we have A ¢ ¢B
(A e enB), (c) for each BDOW, we have B e W (B e cn ).

(v) For each algebra A and o cardinal m, there is an alyebra B e ¢, U
which s an elementary catension of W (a refinament of this proposition is
given in (v), in the next section).

(vi) There is an algebra W, for which ¢y = 0.

(i)-(iii) are immediate consequences of the definitions of e, and e,
and (iv) is a simple corollary of the definition of equational com-
pactness (i-compactness). (v) and its refinement in the next section
was proved in [3]. An algebra satisfying (vi) was defined in [2]. Namely,
Wy = <w, 0,1,->, where -y =0if =y and o -y=1 if x ¢ y. Suppose
that % C B and let % be an ordinal such that |5| > |B|. The following
set of equations:

{“tamg=1" asB,0,8< 9w {“By a0, = 0": a < 7}

is finitely satisfiable in 9, but cannot he satisfied in B. Thus (vi) follows.
Now we shall investigate sets of equations which are finitely satisfiable
in a given algebra %. Note the following obvious lemma.

Lemyma 2.1. Let W be an arbitrary algebre and let for each ¢ ¢ I, Xy be
a set of equations with constants in W, which is finitely satisfiable in W. Then
there ewists a set 2 of equations which s finitely satisfiable in A and such
that X is satisfiable in an algebra B2 U if and only if for each i eI, the
set X; is satisfiable in B.

Lemma 2.1, and the definition of ¢, easily imply the following pro-
position.

ProPOSITION 2.2. For each algebra N and cach infinite cardinal m
there is @ set X' of equations with comstants in N, which is finilely satisfiable
in A, such that B eenW if and only if AW L B and X is satisfiable in B.
HMoreover, Z can be such that |Z| < (|41 where t is the cardinality
of the type of W (*).

(*) By the cardinality of the type of an algebra % = <A, {Fiher> we meoan the
cardinality of 7. In fact we could replace in this proposition t by min(t, 2¥).
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Finally we prove the following theorem.

THEOREM 2.3. If B e, then there exists a § C B such that € ¢ N
and € eJCST (A).

Proof. Let 2y be a set satisfying Proposition 2.2, for % and m, let
S8n= S(Zn), and let A be a set of equations which are axioms for the
class 38T (A). Let Wy be the set of all terms with constants in % and
free variables #. (a € Sy). Finally, let &, be the smallest set of equations
such that if “v(zy, ..., @p) = (@1, ..., @)’ € A then all equations of the
form 7(0yy ..y On) = #(0y, ..., 0u), Where o1, ..., 04 ¢ Wy, belong to Hy,
i.e. By contains all results of substitutions of elements of W, for free
variables in 4. Clearly, the set 5, is satisfied by any sequence {a.}oes,, of
elements of A. Moreover, if 5, is satistied in an algebra W D A by a se-
quence {Ga}aes,,, then the subalgebra of A’ generated by the set 4 v
w {a;: @€ S8n} belongs to JEST(A).

It is easy to see that By v X, is finitely satisfiable in %; hence it is
satisfiable in B by a sequence {Cujses, . Let € be the subalgebra of B
which is generated by the set 4 u {c;:aeSn}. It is easy to see that
G e e since the set X, is satisfied in €. Also we have G ¢JST(Y)
since By, is satisfied in € by {Co}ees,, and €y is generated by 4 © {¢:: @ € Sm}-

Let M be the set of all maximal subalgebras of B which belong to
8T (A). Since for each infinite cardinal m, €, €JCSF(A) is a subalgebra
of B, there is an Wy, ¢ M such that €, C Wy, and W, € e, A by (ii). Obviously
such an Wy, € enW for all n < m. Thus there is a € ¢ M such that Yy = €
for arbitrary large m and hence € e c¥. Q.E.D.

Finally, as in [5], we can characterize closures and m-closures of
a given algebra in terms of ultrapowers and homomorphisms.

Let B and € be two algebras which contain a given algebra .
A homomorphism » of B into € is called an -homomorphism if h re-
stricted to 2 is the identity mapping.

THEOREM 2.4. The following conditions are equivalent:

(1) B is a closure of A (i.e. B e cWN);

(il) B contains an A-homomorphic image of every algebra in which A
8 pure;

(iii) B contains an W-homomorphic image of every elementary ex-
tension of UA;

(iv) 8
of .

The proof is the same as the proof of Theorem 2.3, in [5]. A similar

characterization of m-closures can be obtained but then some restrictions
on A or m are needed.

contains an UA-homomorphic image of every wultrapower
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3. Equational compactifications. An algebra B is maid to
be an m-compactification of A (in symbols B e CuMN) it A C B and B is
equationally m-compact.

An algebra B is called a compactification of N if B ¢ CU for each m
(in symbols B e CA), ie. AC B and B is equationally compact.

First let us note a few properties of G, and C, similar to (i)-(vi) of
Section 2.

() If Wy C Wy, then Cuy C CuW,y for each m and CUA, C CY,.
(i) If ACCC B and B eCu (B ¢ CA), then B e CoE (B « CE).
(iil) If m = n, then C, U C C,N.

(iv) An algebra U is equationally wm-compact (equationally compact)
if and only if for each B C A, we have We C, B (A ¢ CB).

(v) For each algebra U and cardinal m, there is an algebra B e G\,
which is an elementary estension of A and |B| < A" (see [3], The-
orem 1). )

(vi) If B eCu¥W and |B| <m, then B ¢ CA (by [3], Theorem 3).
(vii) C ¥ C enW and CA C .

TeeorREM 3.1. If B ¢ CH, then there ewists a € C B such that € ¢ CUA
and € ST (A) and such is any mawimal subalgebra of B containing A
and belonging to JEST ().

The proof is eagy (a simplification of the proof of Theorem 2.3).
For completeness, let us state the following obvious proposition
mentioned in the introduction.

Proposirion 3.2. If W is a subalgebra of a compact topological algebra B,
then there is a compact topological algebra in 38T (A) which contains A, and
such is the topological closure of A in B.

The following problems are open. Let % be a subalgebra of a weakly
equationally compact algebra. Does there exist a weakly equationally
compact algebra in JEST () which contains A% All examples of algebras,
which I know, satisfying G = 0, are such that W = 0. Does CUY = 0
imply €W = 0 for all algebras?

Theorem 3.1 can be generalized to algebraic systems in the following
way (the proof does not change egsentially):

TemorEM 3.1'. Let U be a subsystem of an atomic compact algebraic
system B. Then there is an atomic compact system € C B such that A C €

and © satisfies each universal positive sentence with constants in A, which
8 valid in A,

. Qé do not know if such a € can be chosen as an elementary extension
(1)

icm°®

Equationally compact algebras (II1) 93

4, Equationally compact semigroups. Now, we shall apply
Theorem 3.1 to prove the result on semigroups mentioned in the introdue-
tion. First we prove a special case of this theorem.

Lemma 4.1. An Abelian equationally compact semigroup with can-
cellation is a growp.

Proof. Let us consider the following set of equations:
Z={=ays": aeB}.

It is easy to see that each finite subset of X can be solved in &. Thus,
by equational compactness of S, X can be solved in &. Let z = d and
9o = Cs be such a solution. Thus we have:

d= d-cd.

Using cancellation, we see that ¢; is a unity of &.
Next, for each b e © we have

b-d-cbd= d= d-cd,
and using cancellation again, we see that ¢, is an inverse of b. Thus &
is a group.
THEEOREM 4.2. An equationally compact semigroup with left and vight
cancellation is a group.

Proof. If follows from 4.1, using 3.1, that such a semigroup is a union
of Abelian groups. It is easy to check that their unit elements coincide,
whence this is a group.

This proof, shorter than the earlier proof of the author, was found
by A. Hulanicki.

In an analogous way, we can eliminate the topological assumptions
from several theorems proved in [1] and [4] concerning semigroups,
semirings, semimodules ete.

Thanks are due to Jan Myecielski for many remarks and help in the
composition of this paper.
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