On compact metric space sequences, monotonic by r-domination by ### W. Kuperberg (Warszawa) **Introduction.** In this paper we shall deal with the notion of r-domination, introduced by K. Borsuk [1]. A mapping $\varphi \colon X \to Y$ which is a homeomorphism of X onto $\varphi(X)$, will be called an *embedding*. A space Y r-dominates over a space X (we shall write $X \leqslant_r Y$, or $Y \geqslant_r X$) if there exist an embedding φ of X into Y and a retraction of Y onto $\varphi(X)$ (see [1], p. 322). The spaces X and Y are r-equal $(X =_r Y)$ if $X \leqslant_r Y$ and $Y \leqslant_r X$, otherwise X and Y are r-distinct $(X \neq_r Y)$. The space X is r-less than Y ($X <_r Y$ or $Y >_r X$) if $X \leqslant_r Y$ and $X \neq_r Y$; they are r-uncomparable if neither $X \leqslant_r Y$ nor $Y \leqslant_r X$. DEFINITION 1. Let $\{X_n\}$ be an r-increasing sequence of spaces (i.e. $X_1 <_r X_2 <_r X_3 ...$). The sequence $\{X_n\}$ attains a space X^0 if the following conditions are satisfied: - 1. $X_n \leq_r X^0$ for n = 1, 2, ... - 2. Each space X such that $X_n \leqslant_r X \leqslant_r X^0$ for n = 1, 2, ..., is r-equal to X^0 . DEFINITION 2. Let $\{X_n\}$ be an r-decreasing sequence of spaces (i.e. $X_1 >_r X_2 >_r X_3 \ldots$). The sequence $\{X_n\}$ attains a space X^0 if the following conditions are satisfied: - 1'. $X_n \ge_r X^0$ for n = 1, 2, ... - 2'. Each space X such that $X_n \geqslant_r X \geqslant_r X^0$ for n = 1, 2, ..., is r-equal to X^0 . Remark 1. If a sequence (either r-decreasing or r-increasing) attains two r-distinct spaces, then they are r-uncomparable. Remark 2. If an r-increasing (or r-decreasing) sequence $\{X_n\}$ attains X^0 , then $X^0 >_r X_n$ (or $X^0 <_r X_n$) for n = 1, 2, ... So far "a space" has denoted an arbitrary topological space, but from now on by a space we shall mean a compact metric space. This restriction does not change the sense of definitions 1 and 2, because if X **96** is a compact metric space and $Y \leq_r X$, then Y is also compact and metrisable. W. Kuperberg The aim of this paper is to give some examples illustrating the case where a space is attained by a sequence of spaces, especially if all the spaces are AR-sets. In § 1 an r-increasing sequence $\{C_n\}$ and a family $\{C^r\}_{r \in N}$ of spaces are constructed, such that $C^r \neq_r C^\mu$ for $v \neq \mu$, v, $\mu \in N$, and for each $v \in N$ C^r is attained by $\{C_n\}$, where the set N is of power c. § 2 contains the construction of an r-decreasing sequence and a family of spaces with the same properties. In § 3 it is shown that the dimension of a space attained by an r-decreasing sequence may be less than the dimension of all spaces of that sequence (1). In § 4 it is proved that the n-cube Q^n and the n-sphere S^n (n = 1, 2, ...) are not attained by any r-increasing sequence. The construction given by the following scheme is frequently used in this paper. Given: a space X_0 , a sequence of spaces $\{Y_i\}$, points $x_i \in X_0$ $(x_i \neq x_j \text{ for } i \neq j)$ and $y_i \in Y_i \text{ for } i = 1, 2, ...$ There exists a space (topologically—exactly one) $\Sigma = X_0 \cup \bigcup_{i=1}^{\infty} \widetilde{Y}_i$ such that (see Fig. 1): - (1) $\lim_{t\to\infty} \operatorname{diam} \widetilde{Y}_t = 0;$ - (2) $\widetilde{Y}_i \cap X_0 = \{x_i\}$ and $\widetilde{Y}_i \cap \widetilde{Y}_j = 0$ for $i \neq j, i, j = 1, 2, ...;$ - (3) There exists a homeomorphism of Y_i onto \widetilde{Y}_i which sends y_i onto x_i (i = 1, 2, ...). The construction which gives such a space Σ will be called the construction (σ) . If X_0 and Y_i (i=1,2,...) are all AR-sets, then by construction (σ) we also obtain an AR-set. To prove this, it is sufficient to do it for $X_0 = Y_i = Q^{\omega}$, where Q^{ω} is the Hilbert cube. ## § 1. A family of power c consisting of dendrites attained by one r-increasing sequence. Let $$A = \{(x, y): \ -1 \leqslant x \leqslant 1; \ y = 0 \ , \ \text{or} \ x = 0; \ -1 \leqslant y \leqslant 1\};$$ and $$A_n = A \cup \bigcup_{k=1}^n \{(x, y): x = \frac{k}{n+2}; 0 \le y \le 1\}, \quad n = 1, 2, ...$$ A_n is a dendrite and $A_n <_r A_{n+1}$. It is easy to see that the following lemma is true: LEMMA 1. There exist two r-distinct dendrites attained by $\{A_n\}$, namely $$A^{0} = A \cup \bigcup_{k=1}^{\infty} \left\{ (x, y) \colon x = 1 - \frac{1}{k}; \ 0 \leqslant y \leqslant \frac{1}{k!} \right\}$$ and $$A^1 = A \cup \bigcup_{k=2}^{\infty} \left\{ (x, y) \colon x = \frac{1}{k}; \ 0 \leqslant y \leqslant \frac{1}{k} \right\}$$ (see Fig. 2). Let us notice the following properties of A^{i} and A_{n} (i = 0, 1; n = 1, 2, 3, ...). - (1a) For each $p \in A_n$, $\operatorname{Ord}_p A_n \leqslant 4$, and similarly $\operatorname{Ord}_p A^i \leqslant 4$. - (2a) A_n is a tree; A^i contains only one point of order 4. - (3a) The sequence $\{A_n\}$ is r-increasing. Now let $\{B_n\}$ be the r-decreasing sequence of dendrites constructed by K. Sieklucki in [2], p. 331. Let us notice the following properties of dendrites B_n (n = 1, 2, 3, ...): - (1b) For each $p \in B_n$, $\operatorname{Ord}_p B_n \leqslant 5$. - (2b) The set of points of order 4 in B_n is infinite. - (3b) The sequence $\{B_n\}$ is r-decreasing. Let C be union of the following segments on the plane (see Fig. 3): (-1,0),(3,0), (0,1),(0,-1), (-1,-1),(0,0), (-1,1),(0,0), (2,1),(2,-1), (3,1),(2,0), (3,-1),(2,0). Now let us make the construction (σ) substituting $X_0 = C$, $Y_i = B_i$, $x_i = (1/(2i-1), 0)$, y_i -being an arbitrary point of order 1 in B_i . $^{^{(1)}}$ A. Trybulec gave an example of an r-increasing sequence which attains a finite-dimensional space of dimension greater than the dimension of all spaces of that sequence. Let B denote the dendrite Σ obtained by this construction. For simplicity we may assume that $B_t = \widetilde{Y}_t$. For an arbitrary positive integer n let C_n denote the dendrite obtained by the construction (σ) if we substitute $X_0 = B$, $Y_i = A_n$, $x_i = (1/2i, 0)$, $y_i = (-1, 0)$ (y_i is an end-point in A_n). The subset \widetilde{Y}_i of C_n will be denoted by $A_{n,i}$. Let us remark that the sequence $\{C_n\}$ is r-increasing. Naturally, $C_n \leqslant_r C_{n+1}$; to prove that $C_n \neq_r C_{n+1}$ let us suppose, on the contrary, that φ is an embedding of C_{n+1} into C_n . It follows from (1a) and (1b), that the points $c_1 = (0, 0)$ and $c_2 = (2, 0)$ are the only points of order 6 in C_n and in C_{n+1} ; therefore we must have $\varphi(\{c_1, c_2\}) = \{c_1, c_2\}$; further $\varphi(\overline{c_1, c_2}) = \overline{c_1, c_2}$ and $\varphi(1/k, 0) = (1/i, 0)$, and in particular $\varphi(1, 0) = (1/m, 0)$ Fig. 3 where m is a positive integer. But by (2a), (2b), and (3b) there is no embedding of B_1 into A_k (for k=1,2,...) and into B_k (for k=2,3,...), whence $\varphi(1,0)=(1,0)$. Similarly $\varphi(\frac{1}{3},0)=(\frac{1}{3},0)$ and consequently $\varphi(\frac{1}{2},0)=(\frac{1}{2},0)$, which implies $\varphi(A_{n+1,1})\subset A_{n,1}$ and we get a contradition of (3a). THEOREM 1. There exists a family of power c consisting of mutually r-uncomparable dendrites which are attained by the sequence $\{C_n\}$ (constructed above). Proof. Let N be the set of all sequences $\{v_i\}$ such that $v_i = 0$ or 1 for i = 1, 2, ... For each $v \in N$ let C' denote the dendrite obtained by the construction (σ) if we substitute $X_0 = B$, $Y_i = A''$, $x_i = (1/2i, 0)$, $y_i = (-1, 0)$, where B, A^0 , A^1 are the dendrites described at the beginning of this section. Let $A''^{i,i}$ be the subset \widetilde{Y}_i of C''. We shall prove that $\{C'\}_{v \in N}$ is the required family. First we prove that $\{C_n\}$ attains C'' for each $v \in N$. The inequality $C_n \leq_r C'$ (for n = 1, 2, ...) is a consequence of the fact that A_n may be embedded into A' in such a way that the image of the point (-1, 0) is (-1, 0) (for i = 0, 1; n = 1, 2, ...). Now let X be a space such that $C_n \leq_r X \leq_r C'$ for n = 1, 2, ... X must be a dendrite, and we may suppose that $X \subset C'$. Let $\varphi_n \colon C_n \to X$ be an embedding. Then φ_n is simultaneously an embedding of C_n into C', which implies $\varphi_n(0,0) = (0,0)$, $\varphi_n(2,0) = (2,0)$, $\varphi_n(0,0)$; further $\varphi_n(1,0) = (1,0)$, since by (2a), (2b) and (3b) the set B_1 cannot be embedded into A^0 , A^1 , and B_i (for i=2,3,...); similarly $\varphi_n(\frac{1}{3},0)=(\frac{1}{3},0)$ and by induction $$arphi_n\left(rac{1}{2k-1},\,0 ight)=\left(rac{1}{2k-1},\,0 ight) \quad ext{ for } \quad k=1\,,\,2\,,\,3\,,\,...$$ This yields $$arphi_n\left(rac{1}{2k},\,0 ight)=\left(rac{1}{2k},\,0 ight) \quad ext{ and } \quad arphi_n(A_{n,k})\subset A^{*_{k,k}}$$, whence $$\varphi_n(A_{n,k}) \subset X \cap A^{\nu_k,k}$$. But the sequence $\{A_n\}$ attains A'^k , and therefore $X \cap A'^{k,k} =_r A'^k$ and there exist an embedding φ^k of $A'^{k,k}$ into $X \cap A'^{k,k}$; we may suppose that $\varphi^k(1/2k, 0) = (1/2k, 0)$, because $(1/2k, 0) \in X$. The existence of the embedding φ of C' into X defined by $\varphi|B = \varphi_1|B$ and $\varphi|A'^{k,k} = \varphi^k$ (for k = 1, 2, ...) proves that $C' \leq_r X$. Finally, we shall prove that $C' \leq_r C^{\mu}$ is possible only if $\nu = \mu$, for $\nu, \mu \in \mathbb{N}$. Let ψ be an embedding of C' into C'', where $\nu = \{\nu_k\}$ and $\mu = \{\mu_k\}$. As before, we must have $\psi(1,0) = (1,0), \psi(\frac{1}{3},0) = (\frac{1}{3},0)$ and so on, i.e. $\psi(1/(2k-1),0) = (1/(2k-1),0)$, which yields $\psi(1/2k,0) = (1/2k,0)$ (for $k=1,2,\ldots$). Hence $\psi(A'^{\nu_k,k}) \subset A^{\mu_{k,k}}$, but by the r-incomparability of A^0 and A^1 , this is possible only if $\nu_k = \mu_k$, which ends the proof. § 2. A family of power $\mathfrak c$ consisting of 2-dimensional AR-sets attained by one r-decreasing sequence of 2-dimensional AR-sets. As in § 1 we shall first construct an r-decreasing sequence which attains (at least) two r-distinct spaces. Let $$P = \{(x,\,y\,,z)\colon z=0\ ,\ x^2+y^2\leqslant 1\} \, \cup \, \{(x,\,y\,,z)\colon x=0\ ,\ y=\tfrac{1}{2},\, -1\leqslant z\leqslant 0\}\ ,$$ and $$Q = \{(x, y, z) \colon z = 1, x^2 + y^2 \leqslant 1\}.$$ Let us remark that P cannot be embedded into Q. Now let $$C_{n,k} = \left\{ (x, y, z) \colon y = 0, \ x^2 + \left(z - \frac{2k - 1}{2n}\right)^2 \le \left(\frac{1}{2n}\right)^2 \right\}$$ and let $$F_n = P \cup Q \cup igcup_{k=1}^n C_{n,k} \quad (n=1,2,3,...) \quad ext{(see Fig. 4)} \,.$$ The sequence $\{F_n\}$ obtained is r-decreasing, and all F_n are 2-dimensional AR-sets (compare with [1], p. 325). LEMMA 2. The sequence $\{F_n\}$ constructed above attains two (r-distinct) 2-dimensional AR-sets, namely $$F^0=P \cup Q \cup R \cup \bigcup_{n=1}^{\infty} C_{2^n,2} \quad \text{ and } \quad F^1=P \cup Q \cup S \cup \bigcup_{n=1}^{\infty} C_{2^n,2^n-1}\,,$$ where $$R = \{(x, y, z): y = 0, x^2 + (z+1)^2 \leq 1\},$$ $$S = \{(x, y, z): y = 0, x^2 + (z-2)^2 \le 1\}$$ (see Fig. 4). Proof. First we prove that $F^0 \neq_r F^1$. On the contrary, suppose that φ is an embedding of F^0 into F^1 . The points p=(0,0,0) and q=(0,0,1) are the only points in F^0 and F^1 which have neighbourhoods arbitrarily small, homogeneously 2-dimensional and unflat (i.e. such as cannot be embedded into the plane); therefore $\varphi(\{p,q\})=\{p,q\}$. If $\varphi(p)=q$, then $\varphi(P)\subset Q$, but this is impossible. If $\varphi(p) = p$, then $\varphi(q) = q$, $\varphi(Q) \subset Q$ and $\varphi(F^0 - Q) \subset S$, because q has in F^0 a neighbourhood which is not separated by any point_except q. In particular, then $\varphi(P) \subset S$, but this is also impossible, because S is a disk, like Q. This contradiction proves that $F^0 \neq_r F^1$. Next we prove that the sequence $\{F_n\}$ attains F^0 ; the proof for F^1 is analoguous. Evidently, $F^0 \leq_r F_n$ for n = 1, 2, ...; let F be a space such that $F^0 \leq_r F_n$ for n = 1, 2, We may assume that $F^0 \subset F$. From $F \leq_r F_1$ it follows that F is an AR-set, whence to prove that $F^0 =_r F$ it is sufficient to find an embedding of F into F^0 . For each F^0 we have an embedding F^0 for F^0 is also embedding which gives successively: $\varphi_k(p) = p$, $\varphi_k(q) = q$, $\varphi_k(P) \subset P$, $\varphi_k(Q) \subset Q$. Since there are in F_k exactly k-1 points separating F_k between P and Q, F contains an infinite number of points separating F between P and Q also separates F^0 between P and Q, because $P \cup Q \subset F^0 \subset F$ and F^0 is connected. But the only points separatnig F^0 between P and Q are the points $p_i = (0, 0, 1/2^i)$, whence there is a subsequence $\{q_i\}$ of $\{p_i\}$ each point of which separates F between P and Q. Evidently, $F = \varphi_1^{-1}(P) \cup \varphi_1^{-1}(Q) \cup \varphi_1^{-1}(C_{1,1})$. The point q_1 separates the set $\hat{F} = \varphi_1^{-1}(C_{1,1})$ between p and q; let \hat{F}_1 denote the closure of the union of these components of $\hat{F} - \{q_1\}$ which do not contain p. \hat{F}_1 contains q and q_1 and there is an embedding ψ_1 of \hat{F}_1 into $C_{2,2}$, which sends q onto q and q_1 onto p_1 . Let \hat{F}_2 denote the closure of the union of those components of $(\hat{F} - \hat{F}_1) - \{q_2\}$ which do not contain p. \hat{F}_2 contains q_1 and q_2 and there is an embedding ψ_2 of \hat{F}_2 into $C_{4,2}$, which sends q_1 onto p_1 and q_2 onto p_2 . Let us suppose that we have defined the sets $\hat{F}_1, \hat{F}_2, \dots, \hat{F}_n$ and the embeddings ψ_i of \hat{F}_i into $C_{2,2}$ such that $$\psi_i(q_{i-1}) = p_{i-1} \,, \quad \psi_i(q_i) = p_i \quad ext{ for } i = 1, 2, 3, ..., n \geqslant 2 \,.$$ Let \hat{F}_{n+1} denote the closure of the union of those components of $(F - \bigcup_{i=1}^{n} F_i) - \{q_{n+1}\}$ which do not contain p. \hat{F}_{n+1} contains q_n and q_{n+1} and there is an embedding ψ_{n+1} of \hat{F}_{n+1} into $C_{2^{n+1},2}$ which sends q_n onto p_n and q_{n+1} onto p_{n+1} . Finally, the set $\hat{F}_0 = \hat{F} - \bigcup_{n=1}^{\infty} \hat{F}_n$ is the closure of the union of those components of the set $\hat{F} - \{p\}$ which do not contain q; there is an embedding ψ_0 of \hat{F}^0 into R which sends p onto p. The required embedding φ of F into F^0 is defined as follows: $$\varphi|\varphi_1^{-1}(P \cup Q) = \varphi_1|\varphi_1^{-1}(P \cup Q) \;, \quad \varphi|\hat{r}_i = \psi_i \quad \text{ for } i = 0, 1, 2, ... \;,$$ and the proof is finished. Let D_1 , D_2 , D_3 be three mutually disjoint disks; in the interior of D_i , let there be a disk D_i' (i=1,2,3). Now let D be the set obtained from $D_1 \cup D_2 \cup D_3$ after the identification of the disks D_1' , D_2' , D_3' onto a new disk D_1' . Let us assume that D is a subset of the Euclidean 3-space such that D_1' is a triangle with vertices (0,0,0), (2,2,0), (2,-2,0) and the set $D-D_1'$ lies in the half-space z<0 (see Fig. 5). The boundary of D_1' will be denoted by D_1' . Let D_1 be the segment with endpoints $\left(\frac{1}{2n-1},\frac{1}{2n-1},0\right)$, $\left(\frac{1}{2n-1},\frac{-1}{2n-1},0\right)$ and let $v_n=\left(\frac{1}{2n},0,0\right)$ for n=1, 2, ... Let us remark that the ends of D_1' lie in D_1' ; between D_1 and J_{n+1} there lies exactly one point from the sequence $\{v_k\}$, namely v_n . In the set F_n (see Lemma 2) we choose a closed arc J'_n lying in the boundary of the disk Q. There is a sequence $\{\zeta_n\}$ of embeddings such that ζ_n maps F_n into the half-space $z\geqslant 0$ and such that the following conditions are satisfied: (1) $\zeta_n(J'_n) = J_n$; (2) $\zeta_n(F_n) \cap D' = J_n$; (3) $\zeta_n(F_n) \cap \zeta_m(F_n) = 0$ for $n \neq m$: (4) $\lim_{n\to\infty} \operatorname{diam} \zeta_n(F_n) = 0$. The set $E = D \cup \bigcup_{n=1}^{\infty} \zeta_n(F_n)$ is a 2-dimensional AR-set. Now for each positive integer k let H_k denote the 2-dimensional AR-set obtained by construction (σ) if we substitute $X_0 = E$, $Y_i = F_k$, $x_i = v_i$, $y_i = (0, \frac{1}{2}, -1)$. The subset \widetilde{Y}_i of H_k will be called $F_{k,i}$. The sequence $\{H_k\}$ is r-decreasing. To prove this, let us suppose that φ is an embedding of H_n into H_{n+1} . Then $\varphi(D'^{\bullet}) \subset D'^{\bullet}$, which implies $\varphi(D'^{\bullet}) = D'^{\bullet}$; furthermore $\varphi(D') = D'$, $\varphi(J_1) = J_1$, $\varphi(J_2) = J_2$, $\varphi(v_1) = v_1$ and finally $\varphi(F_{n,1}) \subset F_{n+1,1}$, which is impossible. This proves that $H_n \neq_r H_{n+1}$. On the other hand, there is an embedding of F_{n+1} into F_n , which sends y_{n+1} onto y_n ; thus $H_{n+1} \leq_r H_n$. Fig. 5 THEOREM 2. There exists a family of power c consisting of mutually r-distinct 2-dimensional AR-sets which are attained by the r-decreasing sequence $\{H_n\}$ constructed above. Outline of the proof. Let N denote the set of all sequences $v = \{v_i\}$ such that $v_i = 0$ or 1, for i = 1, 2, ...; the power of this set is equal to c. For each $v \in N$ let H' denote the 2-dimensional AR-set obtained by construction (σ) if we substitute $X_0 = E$, $Y_i = F''$, $y_i = (0, \frac{1}{2}, -1)$, $x_i = v_i$, where E, F^0, F^1 are the sets described at the beginning of this section. $\{H'\}_{r \in N}$ is the required family. The continuation of this proof is almost exactly a repetition of the proof of Theorem 1; therefore we omit it. § 3. r-decreasing sequence of 3-dimensional AR-sets attaining a 2-dimensional AR-set. In this section let E denote the set E from § 2; let T^2 be the Cartesian product $T \times T$, where T is the union of three segments disjoint except a common endpoint, and let Q be a 3-cube. It is well known that T^2 cannot be embedded into Q; let us remark, moreover, that T^2 is not separated by any point. Let T_1 denote the 3-dimensional AR-set obtained by construction (σ) if we substitute $X_0 = E$, $x_i = v_i$, $Y_1 = T^2$, $Y_i = Q$ for i > 1, y_i being an arbitrarily chosen point in Y_i . The subset \widetilde{Y}_1 of T_1 may be identified with T^2 ; the subset \widetilde{Y}_i of T_1 , for i > 1, will be called Q_i . Thus $T_1 = E \cup T^2 \cup \bigcup_{i=2}^{\infty} Q_i$. For n = 2, 3, ..., let r_n be the mapping of T_1 into itself given by the formula $$r_n(x) = \left\{ egin{array}{ll} x & ext{for} & x \in E \cup T^2 \cup igcup_{i=n+1}^{\infty} Q_i \ , \ v_i & ext{for} & x \in Q_i \ , \ i=2 \ , 3 \ , \ldots , n \ . \end{array} ight.$$ It is easy to see that r_n is a retraction of T_1 onto $T_n = r_n(T_1)$. The sequence $\{T_n\}$ is r-decreasing. In fact: T_n is an AR-set for n=1,2,..., and $T_1 \supset T_2 \supset T_3 \supset ...$, whence $T_1 \geqslant_r T_2 \geqslant_r ...$ On the other hand, let ζ be an embedding of T_n into T_m . Then $\zeta(D'^*) = D'^*$, or there exists an i such that $\zeta(D'^*) \subset Q_i$. But if $\zeta(D'^*) \subset Q_i$, then $\zeta(D') \subset Q_i$, $\zeta(v_1) \in Q_i$ and $\zeta(T^2) \subset Q_i$, which is impossible. Hence $\zeta(D'^*) = D'^*$ and further $\zeta(D') = D'$, $\zeta(J_k) = J_k$ (for k = 1, 2, ...) and if the dimension of T_n at the point v_i is equal to 3, then $\zeta(v_i) = v_i$ and the dimension of T_m at v_i is 3; therefore $m \leqslant n$. Thus we get $T_n \leqslant_r T_m$ if and only if $m \leqslant n$, whence $\{T_n\}$ is r-decreasing. THEOREM 3. The r-decreasing sequence $\{T_n\}$ constructed above attains the 2-dimensional AR-set $T_0 = \bigcap_{n=1}^{\infty} T_n$. Proof. T_0 is an AR-set and $\dim T_0=2$, because $T_0=E\cup T^2$. Naturally, $T_0\leqslant_r T_n$ for n=1,2,... Now let X be a space such that $T_0\leqslant_r X\leqslant_r T_n$ for n=1,2,... We may assume that $T_0\subset X$; by $X\leqslant_r T_1$, X is an AR-set also. Let φ_n be an embedding of X into T_n , for n=1,2,... $\varphi_n|T_0$ is also an embedding, thus we have successively: $\varphi_n(D')=D'$, $\varphi_n(D')=D$, $\varphi_n(J_k)=J_k$ (n,k=1,2,...), and it follows that if X is separated by v_i for i>1, then it is impossible to embed X into T_i ; hence the points $v_2,v_3,...$ do not separate X. But this means that the embedding φ_1 maps X into T_0 , and we obtain $X\leqslant_r T_0$, which ends the proof. Remark 3. Using the dendrite B from § 1 and an n-dimensional compact set K containing no arcs, we may obtain, in the same way as above, an r-decreasing sequence of n-dimensional spaces which attains a dendrite. ## § 4. The *n*-cube Q^n and the *n*-sphere S^n . THEOREM 4. For each r-increasing sequence $\{X_k\}$ such that $X_k \leq_r Q^n$ there exists a space X such that $X_k \leq_r X <_r Q^n$. Proof. For n=1 the theorem is trivially true. Let Q^n , for n>1, be the unique ball in the Euclidean n-space, and let Q_i be the ball in this space, with centre $(1/2^i+1/2^{i+1},0,0,...,0)$ and radius $1/2^{i+1}$. The set $\hat{Q} = \bigcup_{i=1}^{\infty} Q_i$ is an AR-set lying in Q^n , whence $\hat{Q} \leqslant_r Q^n$. Let q_i denote the point $(1/2^i,0,0,...,0)$ for i=0,1,2,... For $i=1,2,...,q_i$ is the only common point of Q_i and Q_{i+1} . In each space X_i (for i=1,2,...) there are two points s_i and t_i such that there is an embedding q_i of X_i into Q_i , which sends s_i onto q_{i-1} and t_i onto q_i . Let $X = \bigcup_{i=1}^{\infty} q_i(X_i) \subset \hat{Q}$. There is a retraction of Q_i onto $q_i(X_i)$, whence there is a retraction of \hat{Q} onto X, and thus $X \leqslant_r \hat{Q} \leqslant_r Q^n$. Simultaneously $X_i \leqslant_r X$, because $q_i(X_i) \subset X$. For each $k, l, k \neq l$ there is a point q_i which separates X between $\varphi_k(X_k)$ and $\varphi_l(X_l)$, and no point separates Q^n . Thus, if there were an embedding of Q^n into X, it would be into some $\varphi_l(X_l)$, which is impossible by $X_l <_r Q^n$. Hence there is no embedding of Q^n into X and we obtain $X_k \leq_r X <_r Q^n$. Remark 4. An analoguous theorem for the *n*-sphere S^n is also true. Indeed: if $X_i <_r S^n$, then $X_i <_r Q^n$. #### References [1] K. Borsuk, Concerning the classification of topological spaces from the standpoint of the theory of retracts, Fund. Math. 46 (1959), pp. 321-330. [2] K. Sieklucki, On a family of power c consisting of r-uncomparable dendrites, Fund. Math. 46 (1959), pp. 331-335. Reçu par la Rédaction le 22, 3, 1966 ## PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE DE L'ACADÉMIE POLONAISE DES SCIENCES - Z. Janiszewski, Oeuvres choisies, 1962, p. 320, \$ 5.00. - J. Marcinkiewicz, Collected papers, 1964, p. VII+673, \$10.00. - S. Banach, Oeuvres, Vol. I, en préparation. #### **JOURNAUX** ACTA ARITHMETICA I-XII. ANNALES POLONICI MATHEMATICI I-XVIII. APPLICATIONES MATHEMATICAE (ZASTOSOWANIA MATEMATYKI) I-IX. COLLOQUIUM MATHEMATICUM I-XVI. DISSERTATIONES MATHEMATICAE (ROZPRAWY MATEMATYCZNE) I-LII. FUNDAMENTA MATHEMATICAE I-LX. STUDIA MATHEMATICA I-XXVIII+ Série spéciale, vol. I. #### MONOGRAFIE MATEMATYCZNE - 10. S. Saks i A. Zygmund, Funkcje analityczne, 3-ème éd., 1959, p. VIII+431, \$ 4.00. - 20. C. Kuratowski, Topologie I, 4-ème éd., 1958, p. XII+494, \$ 8.00. - 21. C. Kuratowski, Topologie II, 3-ème éd., 1961, p. IX+524, \$8.00. - K. Kuratowski i A. Mostowski, Teoria mnogości, 2-ème éd., augmenteé et corrigée, 1966, p. 376, \$ 5.00. - S. Saks and A. Zygmund, Analytic functions, 2-ème éd. augmentée, 1965, p. IX+508, 8 10.00. - 30. J. Mikusiński, Rachunek operatorów, 2-ème éd., 1957, p. 375, \$4.50. - W. Ślebodziński, Formes extérieures et leurs applications I, 1954, p. VI+154, \$ 3.00. - W. Sierpiński, Cardinal and ordinal numbers, 2-ème éd., corrigée, 1965, p. 492, \$ 10.00. - 35. R. Sikorski, Funkcje rzeczywiste I, 1958, p. 534, \$ 5.50. - 36. K. Maurin, Metody przestrzeni Hilberta, 1959, p. 363, \$ 5.00. - 37. R. Sikorski, Funkcje rzeczywiste II, 1959, p. 261, \$ 4.00. - 38. W. Sierpiński, Teoria liczb II, 1959, p. 487, \$ 6.00. - 39. J. Aczel und S. Golab, Funktionalgleichungen der Theorie der geometrischen Obiekte, 1960, p. 172, \$ 4.50. - 40. W. Ślebodziński, Formes extérieures et leurs applications II, 1963, p. 271. \$ 8.00. - 41. II. Rasiowa and R. Sikorski, The mathematics of metamathematics, 1963, p. 520, \$ 12.00. - 42. W. Sierpiński, Elementary theory of numbers, 1964, p. 480, \$ 12.00. - 43. J. Szarski, Differential inequalities, 1965, p. 256, \$ 8.00. - 44. K. Borsuk, Theory of retracts, 1967, p. 251, \$ 9.00. - 45. K. Maurin, Methods of Hilbert spaces, en préparation. - 46. M. Kuczma, Functional equations in a single variable, en préparation. Słownik polsko-rosyjsko-angielski statystyki matematycznej i statystycznej kontroli jakości produkcji, 1958, p. 48.