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On compact metric space sequences,
monotonic by r-domination

by

W. Kuperberg (Warszawa)

Introduction. In this paper we shall deal with the notion of
r-domination, introduced by K. Borsuk [1].

A mapping ¢: X —Y which is a homeomorphism of X onto p(X),
will be called an embedding.

A space Y r-dominates over a space X (we shall write X <, ¥, or
Y >, X) if there exist an embedding ¢ of X into ¥ and a retraction of ¥
onto p(X) (see [1], p. 322). The spaces X and Y are r-equal (X =, Y)
it X < ¥ and Y <, X, otherwise X and Y arve r-distinct (X #, Y). The
space X is r-less than ¥ (X <, Y or Y >, X) if X < ¥ and X #, Y;
they are r-uncomparable if neither X <, ¥ nor ¥ <, X.

DrriniTioNn 1. Let {X,} be an r-increasing sequence of spaces
(i.e. Xy <» X, <r X;...). The sequence {X,} attains a space X° if the follow-
ing conditions are satisfied:

1. XX for n=1,2, ...

2. Bach space X such that X, <, X <, X°forn=1,2, ..., iz r-equal
to X°. ~

DeriNITION 2. Let {X,} be an r-decreasing sequence of spaces
(l.e. X} >r X, >¢ X;...). The sequence {Xn} attains a space X° if the follow-
ing conditions are satisfied:

V. Xyzr X0 for n=1,2,..

2'. Bach space X such that X, >, X > X° for n=1,2,.., is
r-equal to X°.

Remark 1. If o sequence (either r-decreasing or r-increasing)
attaing two r-distinet spaces, then they are r-uncomparable.

Remark 2. If an 7-increaging (or r-decreaging) sequence {Xn}
attaing X0, then X0 >, X, (or X<, Xy) for n=1, 2, ..

So far “a space” has denoted an arbitrary topological space, bub
from now on by a space we shall mean a compact metric space. This
restriction does not change the semnse of definitions 1 and 2, because if X
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is a compact metric space and Y <, X, then ¥ is also compact anq
metrisable.

The aim of this paper is to give some examples illustrating the cage
where a space is attained by a sequence of spaces, especially if all the spaces
are AR-sets. In §1 an r-increasing sequence {Un} and a family {("},.y
of spaces are constructed, such that 0" #, 0" for v % u, v, ue N, and
for each v ¢ N 0" is attained by {Ca}, where the set IV i of power c. § 2
containg the construction of an r-decreasing sequence and a fzumily of
spaces with the same properties.

In §3 it is shown that the dimension of a space attained by an
r-decreasing sequence may be lesy than the dimension of all spaces of
that sequence (*).

In § 4it is proved that the n-cube Q" and the n-sphere 8 (n = 1, 2, ...)
are not attained by any r-increasing sequence.

Fig. 1

The construction given by the following scheme is frequently used
in this paper. Given: a space .X,, a sequence of spaces {¥}, points x; e X,
(¢ 5 o5 for 4 # §) and ye e Yy for ¢ = 1, 2, ... There exists a space (topolo-
gically—exactly one) 2= X,uv {J Y. such that (see Tig. 1):

Fel

(1) Limdiam ¥ = 0;

1-+00

@) ¥inX,= (@) and ¥i~ Y= 0 for i 9, T, i=1,2,.;

(3) There exists a homeomorphism of ¥y onto ¥y which sends y; onto @
(i=1,2,..).

The construction which gives such a space £ will be called tho con-
struction (o). If X, and ¥y (i=1,2,..) ave all AR-sets, then by con-
struction (o) we also obtain an AR-get. To prove thiy, it is sufficient to
do it for X, = ¥;= @, where Q” iy the Hilbert cube.

§1. A family of power ¢ consisting of dendrites attained
by one r-increasing sequence. Let

Ad={m,y): —I<s<L; y=0, or o=0; -l <y <1}

() A. Trybulec gave an example of an r-increasing sequence which attains a finite-
dimensional space of dimension greater than the dimension of all gpaces of that sequence.
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and

4 k
dn=av Ol gy 0= Lo 0<y<1l, n=1,2,.

Ay is a dendrite and A, <; An4q. Tt is easy to see that the following
lemma is true:

LemmA 1. There exist two v-distinet dendrites atiained by {4}, namely

400 L
=4 e a=1-350<y<]

and

#=4v o, a=3; 0<y <3
(see Fig. 2).
n
———

H\H

A 20 A
Fig. 2

1 in | Ll

Let us notice the following properties of A° and A, (i=10,1;
n=1,2,3,..).

(1a) For each p e An, OrdpyAn < 4, and similarly Ord,gA‘7

(22) Ay is a tree; A contains only one point of order 4.

(3a) The sequence {An} is r-increasing. ‘ ,

Now let {B} be the »-decreasing sequence of dendrites constructed

by K. Bieklucki in [2], p. 331. Let us notice the following properties of
dendrites B, (n=1, 2,3, ..):

(1b) For each p € By, OrdyBy < 5.

(2b) The set of points of order 4 in By is infinite.

(3b) The sequence {Bn} is r-decreasing.

Let O be union of the following segments on the plane (see Fig. 3):
(_1)0)y(370), (‘071):(07"‘1)1 (—17”‘1);(0:0): (—1,1),(0,0),
(271)1(27_1)’ (‘3’1)a(210)7 (37“1)7(270)-

Now let us make the construction (¢) substituting X,= ¢, ¥;= By,

= (1/(2é—1), 0), y;-being an arbitrary point of order 1 in By.

Fundamenta Mathematicae, T. XL 7
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Let B denote the dendrite 2 obEained by this construction. For
simplicity we may assume that B; = Y.

For an arbitrary positive integer » let 0, denote the dendrite obtained
by the construction (o) if we substitute X, = B, Yi= Ay, 01 = (1/24, 0),
y: = (—1, 0) (y;is an end-point in 4,). The subset Y; of ¢, will be denoted
by An,:. Leb us remark that the sequence {C,} is r-increasing. Naturally,
On <r Opyy; to prove that Cu sy Cnyy let us suppose, on the contrary,
that ¢ is an embedding of Cuiqinto Cy. It follows from (la) and (1b),
that the points ¢, = (0, 0) and ¢, = (2, 0) are the only points of order §
in Ou and in Cpyy; therefore we must have g({e,, ¢,}) = {¢, ¢;}; further

p(e1y @) = ¢1, ey and p(1/k, 0) = (1/i, 0), and in particular @(L,0) = (1/m, 0)

¢

Tig. 3

where m is a positive integer. But by (2a), (2b), and (3b) there is no em-
bedding of B, into Ay (for k= 1,2,..) and into B (for k= 2,3,..),
whence @(1,0)=(1,0). Similarly oF,0)=(%,0) and consequently
(%, 0) = (%, 0), which implies ¢(dpi14) C Ap, and we get a contradition
of (3a).

THEOREM 1. There ewists a family of power ¢ consisting of mutually

r-uncomparable dendrites which are attained by the sequence {Cp} (con-
structed above).

Proof. Let N be the set of all sequences {ve} such that » =0 or 1
fori=1,2,.. For each » ¢ N let (" denote the dendrite obtained by the
construction (o) if we substitute X,= B, ¥;= AM, @y = (1/21, 0),
¥1= (—1, 0), where B, A% A' are the dendrites deseribed at the beginning
of this section. Let 4™ be the subset ¥, of ¢”. Wo shall prove that {C"}en
Is the required family. First we prove that {Ou} attaing C" for cach v e V.
The inequality Cy <, 0" (for n =1, 2,...) is a consequencoe of the fact
that 4, may be embedded into 4* in such a way that the image of the
point (—1, 0) is (-1, 0) (for = 0,1; n=1,92,..).

Now let X be a space such that On < X< 0" for m=1,2,..

=T
X must be a dendrite, and we may suppose that X C 0", Let ¢,: Oy —X
be an embedding. Then

on i simultaneously an embedding of O,

nto 0", which implies ¢4(0, 0)= (0, 0), gu(2, 0) = (2, 0), g[(0, 0), (2, 0)
= (0,0),(2, 0); further #a(1,0) = (1, 0), since by (2a), (2b) and (3b)
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the set B, cannot be embedded into A4° 4%, and B; (for i=2,3,..);
gimilarly ga(%,0) = (%, 0) and by induection

1 1
(p"<270—1’0)=<2k—1’0) for k=1,2,3,..
This yields

1 1 ks
P (’2—757 0) - (5%’ O) and  pa(dnz) CA™,

whence
n{An ) CX ~ A™

But the sequence {4} attains A, and therefore X ~ A4™F =, 4" and
there exist an embedding ¢" of A"™" into X ~ A™%; we may suppose
that ¢1/2k, 0) = (1/2k, 0), because (1/2k,0) ¢ X. The existence o’f the
embedding @ of ¢’ into X defined by ¢|B= ¢,|B and ¢|d™" = ¢" (for
k=1,2,..) proves that " <, X.

Finally, we shall prove that ¢" <, 0" is possible only if » = y, for
v, 4 € N. Let p be an embedding of ¢” into (*, where » = {3} and u= {,Lf}f}-
As before, we must have y(1,0)= (1, 0), v(},0) = (},0) and so on, Le.
p(1(2k—1), 0) = (1/(2k—1), 0), which yields w(1/2k, 0) = (1/2k, 0) (for
k=1,2,..). Hence (4" CA"" but by the r-incomparability
of A° and A, this is possible only if »; = ux, which ends the proof.

§ 2. A family of power ¢ consisting of 2-dimensional AR:sets
attained by one r-decreasing sequence of 2-d§mensmnal
AR-sets. As in §1 we shall first construct an r-decreasing sequence
which attaing (at least) two r-distinct spaces.

Let

P={(w,y,2): 2=0, 2 +yr <1} v {(z,y,2): p=0,y=1%, -1<2<0},

and
Q= {(w,y,2): 2=1,22+9><1}.
Let us remark that P cannot be embedded into Q.
Now let
2k —1\2 112
Oy = {(w; Y, y=10, 2+ (z~_—52—7%__) < (’2_%) }
and let

=P oQu | JOu: (n=1,2,3,.) (see Fig. 4).
Joms1

The sequence {F,} obtained is r-decreasing, and all Fy are 2-dimensional
AR-sets (compare with [1], p. 325). .
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LmmmA 2. The sequence {Fn} constructed above attaing two (r- distinet
2-dimensional AR-sets, namely )
0 — * P >
ya —-—PuQuRungloznig and Fl“PUQUSUnglozn,znq,
where
B={&,y,2): y=0, 2*+(2-+12 < 1},
8={w,y,2): y=0, a?+ (¢ —2P <1}

(see TFig. 4).

Proof. First we prove that F°:#,F. On the contrary, suppose
that ¢ is an embedding of F° into F'. The points p = (0,0 0)'and
g=(0,0,1) are the only points in I and I* which have neighl)(;urhoods
a;rbitr:ri}l)y smabll, homogeneously 2-dimensional and wunflat (i.e. such as
cannot be embedded into the plane); therefore =
o(p)=gq, then ¢(P)CQ, but thispis in):x’possible. =0 o

It o(p) =p, then ¢(g)=g¢, p(@)CQ and @(F°—@)C 8, because ¢
has in F"" a neighbourhood which is not separated by any point except ¢.
In pa.rmcular, then ¢(P)C 8, but this is also impossible, because § is
a disk, like ¢. This contradiction proves that J® 7-{_, I, Next we prove
that the sequence {F,} attains I*; the proof for I is analoguous. Evidently,
PO < By for m=1,2,..; let I be a space such that 70 <<, I <Zp Fa for
'n= 1,2, ... We may assume that F° C F. From F <, I, i'i: follows that I
is an A_R—set, whenee to prove that F°=, ' it iy sufficient to find an
embeddm.g 9f I into F". For each %k we have an embedding ¢ of F into Iy;
the restriction of ¢x to F° is also embedding which gives succesivelyz
7e(P) = 2, ex(9) = ¢, ¢&(P) C P, p1(Q) C Q.

Since there‘ are in F exactly k—1 points separating ¥ between P
and @, ¥ contains an infinite number of pointy separating I' between P
and @. Bach point separating ¥ between P and @ also separates I°

icm®
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petween P and @, because PU@QCHCF and F® is connected. But the
only points separatnig F° between P and @ are the points ps= (0,0, 1 129,
whence there is a subsequence {g:} of {p:} each point of which separates F
between P and Q.

Tvidently, F = ¢i'(P) v g1 (@) v er 1(O'IA,l). The point, g, separates
the set 7= ¢i(Ci,) between p and ¢; let ¥, denote the closure of the
union of these components of F'—{g;} which do not contain p. If“l con-
tains ¢ and ¢, and there is an embedding y, of ﬁ’l into C:p, which sends ¢
onto ¢ and ¢, or}to D1 Let I, denote the closure of the union of those
components of (I —F) —{qs} Whigh do not contain p. 17‘2 containg ¢; and g,
and there i an embedding v, of F'; into Oye, which sends ¢, onto p, and g,
onto p,. Let us suppose that we have defined the sets ?, %, ..., 7, and
the embeddings w; of Iy into O such that

wilQior) = Pi-1y  pi{@)=p¢ for i=1,2,3,..,0>2.

Let ff’,,.H denote the closure of the union of those components of
(F— L”jlf’i)—{qnﬂ} which do not contain p. P confains gn and Qn+a
and gﬁére is an embedding gy, of Fpyq into Cgasp which sends g. onto pn
F— Cojﬁ’n is the closure of the

=1

union of those components Pf the set 7 —{p} which do not contain g;
there is an embedding w, of 7 into B which sends p onto p. The required
embedding ¢ of I into F° is defined as follows:

‘P!‘Pl_l(vp v @)= ‘Pli‘Pl_l(P v@),

and the proof is finighed.

Let Dy, D, D, be three mutually disjoint disks; in the interior of Dy,
let there be a disk D} (4 = 1,2, 3). Now let D be the set obtained from
D, v D, u D, after the identification of the disks Di, Di, Pi onto a new
disk I’. Let us assume that D is a subset of the Buclidean 3-space such
that D’ iz a triangle with vertices (0,0,0), (2,2,0), (2, —2,0) and
the set D—D' lies in the half-space z <0 (see Fig. ). The boundary

of D’ will be denoted by D'*. Let Jn be the segment with endpoints

1 1 0 1 -1
m—1’ on—1’' )" \2n—1L'2n—1’

and ¢ne1 onto Ppi1. Finally, the set By =

Pl =ps fori=0,1,2,..,

1
0) and let vnz(%o,o) for n=1,

2, ... Let us remark that the ends of Jn lie in D’; between Jp and
Jn41 there lies exactly one point from the sequence {vg}, namely n-
In the set F, (see Lemma 2) we choose a closed arc J lying in the
boundary of the disk @. ’
There is a sequence {{} of embeddings
the half-space z > 0 and such that the following conditions are

guch that ¢, maps Fy into
satisfied:
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(1) Cn(J:L) = Jn; (2) Cn( Yn) A D = Jﬂi (3) Cn(lﬂn) m Cm(v-lﬂm) =0 for g # e
. . 0] *® B . !
(4) Limdiam{a(Fa) = 0. The~set H=D v Ulé'n(l"n) is & 2-dimensiong]

ne=n
AR-set. Now for each positive integer & let Hjy denote the 2-dimensiong]
AR-set obtained by construction (o) if we substitute X, = B Y= Fa
@e=vs, y= (0, }, —1). The subset ¥; of H; will be called 1’«’,”, "
The sequence {H} is r-decreasing. To prove this, let 11s'sup 086
that p is an embedding of Hy into Hyyy. Then (D) C D'*, which imllzlies
qa(D"). = D"*; furthermore ¢(D') = D', p(Jy) == J,, p(J,) = Jay () =,
and finally ¢(#y,) C Fpyr,, which is impossible. Thiy proves th:w H, i
#r Hyya. On the other hand, there is an embedding of 7, ., into B! w;grl i ]’;
sends Y41 onto yu; thus My =0 Hy. m Ve

Tig. 5

n ") 7, i@ 1 y
i _.D.HEORLM.?J. Tlhe)e ewists o family of power ¢ consisting of mutually
r-distinet 2-dimensional AR-sets which are attained by the v -decreasing
sequence {Hp} constructed above.

, {Ol}ltlin}e “oft the proof. Let N denote the set of all sequences
= {n} such that » = P P =1, 4 HY i i
o ito v 1 that »s=0 or 1, for 4 =1, 2, ...; the power of this get is
. For ea.cl_l veN 'let H’ denote the 2-dimensional AR-set obtained
y construction (o) if we substitute X, =, ¥;= B 4y = (0, %, —1)
:9(: T Ve, Wh:zre I ) o, I are the sets described at the heginning of ‘hhié
ction. {H'}, ey is the required family. The continuation of this proof

is almost e £+ ol of .
oy xactly a repetition of the proof of Theovem 1. ; thevefore we

§3. r-decreasing sequence of 3-dimensional A
- R-sets
?]::asi;iljl?gfrzlmZ;(;l'n;e?sTi:mal AR-set.. In this section let X denote
the i rom § ; lo be t.hfa ‘Oarteswn product 1'x 7', where T is
ot g ne s 3-cubee§t sggments digjoint except a common endpoint, and
ot e 8 8-obe. 18 well known that 7% cannot be embedded into Q;
mark, moreover, that T2 iy not separated by any point.
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Let T, denote the 3-dimensional AR-set obtained by construction (o)
it we substitute X, = B, &= v, Y, =1% ¥i= Q for i > 1, y; being an
arbitrarily chosen point in Y.

~ .

The subset ¥, of T, may be identified with T?; the subset Yot 1),
for i > 1, will be called ¢;. Thus T,=EBoT*u | j@ For n=2,3,..,
. =2

let 7, be the mapping of T into itself given by the formula

o
‘ x for weBouT*ov U @,
ru(®) = i=n+1
v, for weQi, i=2,3,..,n.

Tt is easy to see that 7, i3 a retraction of T, onto Ty = ru(Ty). The se-
quence {T,} is r-decreasing. In fact: T, is an AR-set for n=1,2,..,
and T,D T, T32 ..., whence T > T, =y «. On the other hand, let £
be an embedding of Ty into Tp. Then {(D'*) = D'", or there exists an %
such that ¢(D'*) CQ¢. But if {(D*) CQy, then ¢(D') CQs, £(v,) €@ and
£{12) C @i, which is impossible. Hence £(D'*) == D'* and further {(D’) =D,
t(Jx)=Jx (for k=1,2, ...} and if the dimension of Ty at the point vg
is equal to 3, then {(vi) = v4 and the dimenglon of Ty at vy is 3; therefore
m<n Thus we get Tn <r Tm if and only if m < n, whence {Th} is
r-decreasing. .

TaEoREM 3. The r- decreasing sequence {Tn} constructed above attains

e
the 2-dimensional AR-set Ty= (| Tn.
n=1

Proof. T, is an AR-set and dimT, = 9, because To= K « T2 Nat-
wrally, Tp <r Tn for n =1, 2, ... Now let X e a space such that Ty <r X
< Ty for n=1,2,.. We may assume that T,C X; by X < Ty, X 18
an AR-set also. Let @, be an embedding of X into Ty, for n=1,2,..
@n|T, is also an embedding, thus we bave succesively: gu(D'*)= D",
D)= D', gu(Jp)=Jdr (R, =1,2,..), and it follows that if X is
separated by o4 for ¢ > 1, then it is impossible to embed X into T';; hence
the points vy, vy, ... do not separate X. Bub this means that the embed‘-
ding ¢, maps X into T, and we obtain X <y Ty, which ends the proof.

Remark 3. Using the dendrite B from §1 and an n-dimensional
compact set K containing no arcs, we may obtain, in the same way as
above, an r-decreasing sequence of n-dimensional spaces which attaing
a dendrite.

§4. The n-cube Q" and the n-sphere s".

n
THEOREM 4. For each r-increasing sequence {Xi} such that Xx <r @
there exists a space X such that Xip <r X <r Q"
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Proof. For m =1 the theorem is trivially true. Let Q" for n~ 1
be the unique ball in the Euclidean n-space, and let @; be the hall iﬁ
this space, with centre (1/2°41/2°"*,0,0,...,0) and radius 12", he
set Q: J Q¢ is an AR-set lying in ", whence Q@, 0", Let ¢ denote

=1
the point (1/2°,0,0,...,0) for i=0,1,2,... For 6=1,2, ..., ¢/ is the

icm®

only common point of Q¢ and Q1. In cach space X; (for 4=1,9, w)

there are two points s; and % such that there is an embedding ¢ of X,

into @4, which sends 8 onto ¢;—. and & onto g;. Let X = GW( X)Co.

fuel
There is a retraction of Qi onto ¢ X;), whenee there iy & retraction of §
onto X, and thus X <

< Q < Q" Simultancously X; <, X , because
pi( X} C X.

Tor each k,1,%k # 1 there is a point ¢; which separates X between
px(Xx) and @(X), and no point separates Q. Thus, if there were an
embedding of Q" into X, it would be into some py(X;), which is impossible
by Xi<yQ". Hence there is no embedding of @" into X and we obtain
X k <r X <r Qn'

Remark 4. An analoguous theorem for the n-sphere 8™ is also true.
Indeed: if X; <, 8", then X; <, Q™
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