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Toroidal decompositions of E* which yield 2

by
H. W. Lambert (Salt Lake City, Utah)

1. Introduction. The purpose of this paper is to develop a neces-
sary and sufficient condition for a certain type of upper semi-continuous
decomposition of #* (Euclidean 3-space) to have a decomposition
space homeomorphic to E°.

The type of upper semi-continuous decomposition we wish to consider
is the following. For each positive integer 4, let T'; be a compact 3-manifold-
with-boundary in E® such that each component of 7y is a solid polyhedral
torus, Tipy CIntT,;, and Ty, is inessentially embedded in T;. Let G be
the upper semi-continuous decomposition of E* obtained from components

of T)= ﬁ Ty and points of E?—1T,. Decompositions of E® that can be
i=1

defined in this manner will be called toroidal decompositions, and {T'}
will be referred to as the defining sequence of the decomposition. We
let E3/@ denote the decomposition space with assoeiated projection map P.

In [5] Bing showed that there is a toroidal decomposition of E® such
that there are points in the decomposition space without small neighbor-
‘hoods bounded by 2-spheres; hence the decomposition space of Bing’s
example is not homeomorphie to EP. We show that a sufficient condition
for a toroidal decomposition of E® to yield E® is that each point of EP/G
have arbitrarily small neighborhoods ‘bounded by 2-spheres. Decom-
positions satisfying this sufficient condition will be referred to as locally
spherical decompositions. Note that the 2-sphere boundaries in a locally
spherical decomposition are not assumed to miss the image of the non-deg-
enerate elements.

Tt follows from Theorem 1 of [8] that if @ is a toroidal decomposition
which is locally spherical and if, in addition, these 2-sphere boundaries
in B®G can be chosen to miss P(T,), then E°/G is homeomorphic to E®.
However, the toroidal decomposition obtained in [2] is such ‘that B®/G
is homeomorphic to E* but the image of the non-degenerate elements,
P(T,), is a wild Cantor set; then by [4] it follows that at least ome
point of P(T,) has no small neighborhood whose boundary is a sphere which
misses P(T,). In Section 6 there are some questions and observations
concerning these locally spherical decomposition spaces.
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2. Statement of main theorem and outline of proof.
We wish to establish the following theorem. in this paper.

THEOREM A. Let G be a toroidal decomposition of EP. For MG io
be homeomorphic to EP it is necessary and sufficient that for each point »
of B3G and each neighborhood U of  there is a neighborhood U’ of & such
that U’ C U and BAT’ 4s a 2-sphere.

The necessity of the condition is obvious. By Theorems 3 and 6
of [1] the sufficiency of the condition will follow if we can show that
for any ¢ >0 and any positive integer n there is a homeomorphism %
of E? onto PP such that (1) if & e B°—1,, then h(z) = » and (2) if g ¢ G,
then diamh(g) < e. Sections 3, 4, and 5 of this paper will be devoted to
ghowing the existence of 7.

3. Preliminaries. We assume then that we have a toroidal
decomposition @ of E® which has a locally spherical decomposition space,
that 7' is some member from the defining sequence {7}, and that ¢ is

some positive number. Reecall that T,= " T.
i=l

The following lemma shows the existence of a subsequent defining
stage T, m >mn, with certain properties which will be important in
constructing the homeomorphism % of Section 2.

Lemya 1. There is a subséquent defiming stage Ty in T, and a finite
collection Uy, U,, ..., U, of open sets such that

(1) each C1U;CIntT,,

(2) for each i, each element of G that intersects Uy is contained in U,
(3) each BAP(Uy) is a 2-sphere, ‘
(4) each component of Ty, is contained in some Uy, and

(8) each P~ (BAP(U,))—T, is locally polyhedral and in general position
relative to BAT,,.

Proof. Let be a point of P(T,). Then # has an open neighborhood U,
such that C1U, CP(IntT,) and Bd U, is a 2-gphere. Following the pro-
cedure of [5], page 439, we may use Theorem 7 of [3] and Theorem VI,
10 of [9] to adjust P~(Bd U,)—1T, slightly so that we may assume it is
locally polyhedral. Since {Uz| # ¢ P(T,)} forms an open cover of the
compact set; P(T,), it follows that some finite subcollection U3, U}, ..., UL
covers P(T,). Let m, m >n, be chosen large enough that the image
under P ‘of each: component of T, is contained in some U}, Let
U; = P(U}). Since P(BAP(U.)—T, is locally polyhedral, we may,
by afurther slight adjustment of P~}(BAP(Uy)) T, assumeitis in general
position relative to B Ty. Hence Uy, U,, ..., U, form a finite collection
of open sets satisfying the five requirements in Lemma 1.
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The components of T, are now separated into two disjoint sets as
follows. I e

A= {Y!: Y is.a component of Ty, and for each ¢ (1 < i < a) there is no
meridional simple closed curve of BAY in BdY ~ P“‘(BdP(Ui))} ,
B = {Y| Y is a component of T, and Y ¢ A4}. :

Note that 4 and B are finite collections of disjoint solid polyhedral tori
in B® and that the union of these tori is 7.,.

In Section 4 we will show that for the positive number ¢ of Section 2
there is a homeomorphism %, of B3 onto E® such that (1) if e BB—T,,
then ky(z) = # and (2) for each Y e 4, diam#,(¥) < e. Then in Section 5
we will show that for any & > 0 and any element Y of B there is a homeo-
morphism hy of E° onto E* such that (1) if @« B*— Y, then hy{z) =2
and (2) if g« @ and g C Y, then diamhy(g) < &,. Let h, ZYIYB}LY. Since &,

is uniformly continuous, choose & so that if M is any closed subset of E*
with diam M < &, then diamh,(M) < e. Then k = h,h, will be the homeo-
morphism promised at the end of Section 2.

4. Construction of the homeomorphism #,. To show the
existence of a homeomorphism h, satisfying the requirements stated in
Section 3, we need to establish four lemmas.

LemmA 2. Let 8 be a polyhedral 2-sphere and T a solid polyhedral
torus such that 8 4s in general position relative to BAT. Then each simple
closed curve in 8 ~ BA T either bounds a disk on BA T, or circles BAT once
meridionally and no times longitudinally, or circles BAT once longitudinally
and no times meridionally.

Proof. This lemma follows from Theorem 1 of [5].

We continue to -use the defining stage Ty, m >n, obtained in
Section 3. In Lemma 4 we find that for each U; we can construct a poly-
hedral 2-sphere § in E® such that P~ (BaP(U)) ~ BdTw =8 ~ BdTp.
It then follows by Lemma 2 that for any component 7T of T,,, each simple
closed curve in P7'(BdP(Ui)) ~ BAT either bounds a disk on BT or
circles BAT once meridionally and no times longitudinally, or circles
BAT once longitudinally and no times meridionally. For the remainder
of this paper, a meridional (longitudinal) simple closed curve of the
boundary of a solid torus will be one that does not also go around the
boundary of the torus longitudinally (meridionally).

Lemva 3. In E?, let C be a continuum, T a solid polyhedral torus,
and 8 a polyhedral 2-sphere such that

1) CAT=8a,
(2) ¢ CInts,

(3) 8 is in gemeral position relative to BAT, and
gx*


GUEST


124 H. W. Lambert

(4) each simple closed curve of BAT ~ § either bounds a disk on BaT
or is a longitudinal simple closed curve of BdT.

Then for each 6 > 0 there is & polyhedral 2-sphere 8’ such that

(1) 0CInts,

(2) 8 ~AT=0, and

() every point of 8’ is either a point of 8 or is within o distance & of
BdT.

Proof. It follows from condition (4) of the hypothesis that there is
a longitudingl simple closed-curve J. of BAT such that J ~ § = @. Let U
be a d-neighborhood of 7' such that 0 C B®*— U, and let ¥ be a tubular
neighborhood of J such that #C U and B ~ § = @. There ig a homeo-
morphism H of E* onto B such that (1) if z e B*— U, then H(#)=a
and (2) H(E)= T. Then 8’ = H(S) is the required 2-sphere of Lemma 3.

LevmA 4. For each Y, Y ¢ A, there 48 a polyhedral 2-sphere 8 such that

(1) SCIntT,,

(2) Y CIntS8, and

(8) 8 does mot intersect any element of A.

Proof. By Lemma 1, Y is contained in some Uj, 1 <4 = @, where
BAP(Uy) is a 2-sphere and ClU; C IntT,. Note that P(T,) is compact

and 0-dimensional. Let P(7T,) ~ BAP(U;) = ﬁ D; where each Dj; is the
g=1

union of a finite collection of disjoint disks on Bd.P(U;) and Dy C Int.D;.

There is a positive integer r such that P~(D,) C IntT,,. Let R be
an unbounded polyhedral ray starting at a point of Bd Y, and, except
for the initial point of B, B is contained in B —T,,. Since P—I(BdP(Ui) -
—IntD,) is a disk-with-holes and is the only portion of Bd U, that R
intersects, we may assume that R intersects P“(BdP(Ut)—IntDr) in
an odd number of points and pierces it at each of thesge points.

There is a positive integer s such that 7', ~ (P“I(Bdl’( U,)——IntD,))
= @ and each component of /T, intersects at most one component of P~Y(D,).
There is a positive integer « such that P™D,) CIntTepy. From. our
definition of a toroidal decomposition it follows that each -component
of Ty4; can be. shrunk to a point in the component of 7'y containing it.
Hence each boundary component of P"I(BdP( U) ——IntDu) can be shrunk
to a point in the component of T, containing it.

B Then for each component B of D, there ig a singular disk &' in
P7(B) v Int T, such that B has no singularities in some mneighborhood
.of its boundary and BdE = P7YBAdE). By Dehn’s Lemma, [11], there
18 a non-singular polyhedral disk B in P™(H) U Int 7, such that BdHE"
= BAE'. By construction, no two of these non-singular polyhedral digks
intersect, the boundary of each such digk is also one of the boundary

Toroidal decompositions of E® 125

components of P“‘(BdP(U;)——IntD,), and each boundary component
of P‘l(BdP(Uf)—IntD,) is the boundary of exactly one such disk. Henece
P_I(Bd.P( U;)—Int Dy) together with these polyhedral disks form a poly-
hedral 2-sphere §'. Also, by construction, 8’ has the following three
properties.

(1) ¥ CIntd, since R intersects (and pierces) &’ in an odd number
of points.

(2) 8 CInt Ty, since P (BAP(Uy) v T, CIntT,.

(3) 8’ is in general position relative to Bd Ty, since there is a neighbor-
hood U’ of BAT,, such that P‘I(Bdl?(m)) AT =8AT.

Suppose that 8§’ intersects an element ¥’ of A. By condition (3)
above and the definition of the set A4, it follows that each component
of 8’ ~BAY’ is a simple closed curve which either bounds a disk on
BA Y’ or circles BAY’ longitudinally. By Lemma 3, we may replace S’
by a polyhedral 2-sphere 8" such that (1) ¥ CInt8”, (2) 8" ~ ¥’ = @,
and (3) every point of 8" is either a point of 8§’ or near Bd ¥’. (Choosc
the 6 of Lemma 3 so that the é-neighborhood U of ¥’ is contained in
IntT» and disjoint from T,,—Y’.) Repetition of the argument of this
paragraph a finite number of times yields & polyhedral 2-sphere § satisfying
the three requirements in Lemma 4.

Relative to the set A defined in Section 3, we now have the following
lemma which establishes the existence of h,.

LevMA 5. There is a homeomorphism h, of E* onto dtself which is
the identity on FP—T, and takes each elément of A into a set of diameter
less than e.

Proof. By Lemma 4, each element of 4 is contained in the interior
of a polyhedral 2-sphere § such that 8 is contained in Int7T, and § does
not intersect any element of 4. It follows from Theorem 2.3 of [4] that
there are mutually exclusive polyhedral 2-spheres X, K,, ..., K, in Int T,

such that each element of A is contained in OID.tK{. It then follows
=1

that there is a homeomorphism %, of B into E® such that (1) if & ¢ B — T,
then ky(z) = » and (2) for each 4, diamh (K v Int Ky) < &. Then h, is the
required homeomorphism of Lemma 5.

5. Construction of the homeomorphism }%,. In this section
we establish the existence, relative to ¢ >0, of the homeomorphism
hy=[] hy mentioned in Section 3. As mentioned at the end of Section 3,

FYeB

the proof of Theorem. A will be complete upon showing the existence
of each hy . In what follows assume that all meridional disks are polyhedral.
Lemmas 6 and 7 give conditions which imply the existence of hy.
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Lemmas 8 and 9 are then used to establish that ¥ satisfies the hypothesis
of Lemma 7. ‘

LeMuMA 6. If for any positive integer u there are w disjoint meridional
disks (polyhedral) By, By, ..., By of Y such that no element of G in Y inter-
sects more than one of these disks, then there is a homeomorphism hy of E®
onto B® which is the identity on B2 — Y and takes each element of G in Y into
a set of diameter less than e .

Proof. For large enough u, let By, B, ..., B, be digjoint meridional
disks of ¥ with the following property. There is a solid torus ¢ contained
in ¥ and concentric to ¥ such that the closure of each component of
Y— Luj E; (the closure of each component of ¥ — [Lj Ejis a cube) inter-

i=1 i==l
sects € in a cube of diameter less than /2. Since for each neighbor-
hood U of Bd Y there is a homeomorphism H of ¥ onto Y such that H
is fixed on ¥—U and for each ¢ (1L <i< w), H(BdE;) = B4dFE; (the
disks B, B,, ..., By may have to be reordered to obtain H), we may
assume that BdE; = B4 E;.

There is & homeomorphism H; of ¥ onto ¥ guch that H, is fixed on
Bd Y and for each 4, Hy(H;) = E}. Since if g ¢ G and g C ¥, then g inter-
sects at most one of the disks Hy, it follows that ¢ is contained in the

closure of two adjacent components of ¥ — LuJEQ, and hence H,(g) is

=1

contained in the closure of two adjacent components of ¥ — CJ E;. There

=1
is a homeomorphism H, of ¥ onto ¥ such that H, is fixed on Bd Y,
Hy(E;) = Bi, and if g ¢ G and g C ¥, then H,H,(g) is contained in both ¢

and the closure of two adjacent components of ¥ — Luj Ej. Then for each
4=l

geG and gCY, it follows that diamH,H,(g) < &/2+ 6,2 = &,. BExtend
H,H, to BE* by choosing H,H,(x) = o for @ ¢ B8 — Y. Then hy = H,H,
is the homeomorphism required in the conclusion of Lemma 6.

The following special terminology is needed for Lemma 7. Let Cyq
be a component from a defining stage 7; of @. For each positive integer &,
1<k<r leb Oyy= Ciyoy ~ Tizy, where i < i(k) < i(k+1). For s> 2,
let D be the union of s disjoint meridional disks (polyhedral) Dy, Dyy vy Dy
<.)f Ciwy- We say that D is a canonical outting of Cug of size s and depth r
1f. for each % and each component T of Ciw it follows that (1) D ~ T is
either empty or a finite collection of disjoint meridional disks of T and (2)
no component of Oy intersects more than one component of D ~ Ci-1y-

Let J be a simple closed curve on the boundary of a solid torus 7.

Then bs-r a collar for J on BAT we mean an annulus on Bd 7 such that
one of its two boundary components is .

icm
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Lemva 7. Let D be a canonical cutling of Cyo of size s and depth r,
Let W1, Vs, ..., ¥s be disjoint collars on Bd Cyy for BA Dy, Bd Dy, ..., BAD,,
respectively. In each ¥y, 1L < j < s,let Jn (=BAD;), 2, .., I jp(=BA¥; —J )
be r disjoint meridional simple closed curves of Bd Cyqy. Then there are s-r
disjoint meridional disks Dy, of Cyey such that BAd Dy, = Jj and no com-
ponent of Cyyy intersects more than one Dy, where 1 <j<sand L <k < r.
(Hence no element of @ in Cyq) intersects more than one Dy.)

Proof. We prove Lemma 7 by induction on r with arbitrary s, s > 2.
We see that the requirements of the conclusion are fulfilled for » =1
and all s by choosing Dj; = Dy, 1 <j < s. Assume that the theorem is
true for some integer » = ¢ and all s and that we have a canonical cutting
D= ) D; of CGio of size s and depth t-+1.

j=1

We first fix our attention on D,; the considerations for D, through D,
will be essentially the same. Since the following construction can be
performed independently on each component of Cyy) that intersects D,
we assume for simplicity that D, intersects just one component T of Cyy,.
It follows from the definition of canomical cutting that 4, = D,—IntT
is a disk-with-holes. Let BdD; = Jy, Ky, Kny ...y K be the boundary
components of 4, ordered so that if we start at a point of K;; and go
around Bd T longitudinally in some fixed direction Q we pass from Kj
t0 Kjp11 (L < j < u—1). (See Figure 1.) Slightly to one side of 4, we may,
by geometric methods, construet ¢ mutually disjoint copies 4y, 43, ..., e
of A, such that for each %k, 1 <k <141, (1) J;x CBd4y and Int 4,
C (Int Oy — Ciny), (2) the boundary components of Ay are Jipy g, .oy Kuxy
and there are disjoint collars I'y, Iy, ..., I on BAT of Ky, Ky, .oy Ky,
respectively, such that for each 4, andeach I'; (1 <j < u)y [y~ 4y = Ky,
and (3) there are annuli @,, ®,, ..., P, on BAT such that for p even and

2 < p < u we have &) n (Q]}) = Ky v Kpt1z (where p+1=11if p = u)
=

u
and for ¢ 0dd and 1 < ¢ < u—1 we have &g n (1U Iy)= Kgt1v Kgir453-
=1

{See Figure 1 for the case t+1=3 and u = 4.)
Let F; be the subdisk of D, bounded by Kj;. Since D, is a component

u
of a canonical cutting of Oy of size s and depth 41, | F; forms a canon-
j=1

ical cutting of T of size % and depth {. For p even we may assume BdF,
= Kps1 by adding I'p to F, and pushing I'p— Ky slightly to IntT

(preserving the property that Lujli‘, is 2 canonical cutting of size w and
=1

depth t). By the hypothesis of the induction, there are w-i disjoint me-
ridional disks By of T, where either j is even and 2 <k <t+1 or jis
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odd and 1<k <t, such that (1) BdBy = Ky and (2) no component
of Q1) intersects more than one Hp. For p even, 2 <p < u, let Ey,
be a meridional disk of T obtained by adding @, t0 Hpiy,1 (Where p-+1 =

it p = w) and pushing @, — K, slightly to Int 7. For ¢ odd, 1 < ¢ << u—1,

4 4y 43
- f+1=3
T VR i) :

¢2/K11 L | Ky %3 Gl
T l'_ ‘ O 7 -

@ Ky i3 | Ko Kas | 8

) ] I A

K:«p_[ﬂ; Kayf | Kz
AT (Y 1

Fig. 1

let Eji4q be a meridional disk of 7' obtained by adding @, to Hjpip4
and pushing @, — K,y slightly to IntZ. We now fill in the holes of 4,

by setting Dy = Ay v (LuJ Bp).
J=1

Then Dyy and Dyyy, ave singular disks and Dy, Dy, ..., Dy are non-
singular ‘polyhedral disks. By our construction no component of Cyyiqy
intersects more than one Dy;. By Dehn’s Lemma [11] or by direct geometric
methods since the singularities are of an elementary nature, we may
assume that Dy, and Dy 14 ave non-singular polyhedral disks. (See Figure 2.)
Thus Dy, Dy, ..., Dygyr ave disjoint meridional disks of Cyq and no
component of Cyg.q) intersects two of them. Repeating a similar procedure
on each of the disks D, Dy, ..., D, yields the requived s(t--1) disks, and
the proof of Lemma 7 is complete.

Tn the following two lemmas we complete the proot of Theorem A
by showing that for each ¥, ¥ ¢ B, and each positive integer r there is
a canonical cutting of ¥ of size 2 and depth r. Recall from Section 3
that ¥ is a solid polyhedral torus contained in Ty and there is an open
set Us such that (1) BA.P (Us) is a 2-sphere, (2) BA Y and P~ (BA.P(U,) —T,
are in general position, and (3) BAY ~ [P~*(BaP(T)| contains a meri-
dional simple closed curve of Bd Y.

1EMua 8. Let r be a positive integer. Then there are two disjoint meri-
dional disks B, and B, of ¥ and r defining stages Cmatys Omezyy vy Omiry
such that for each &, where 1 <k < and m < m (k) < m(k-+1), we have
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1) Cnay= Y ~ Tmmyy
(2) By v B, is in general position relative to Bd Cn,,
(3) mo component of Omqy intersects both B, and E,, and

(4) no component of Cmpiyy intersects more tham one component of
By w B, —Bd Cpy .-

Fig. 2

Proof. There is a positive integer m(1), m(l) > m, such that no
component of Cpgy, Where Cpuy = ¥ ~ Tpqy, intersects more than one
component of P~ (B4dP(Uy))—BdY. We may adjust P (BAP(T:)—1T,
slightly so as to assume P~*(BAP(U,))|—T, is in general position relative
t0 Bd Oy - Repetition of this argument yields integers m (2), m(3), ..., m(r)
such that (1) m(l) <m(2) <..<m(r), (2) for each %k, 1<k,
P“l(BdP(Ui)) is in general position relative to Bd Cp,and (3) for each k,
1< k< r—1, no component of Cptyn intersects more than one com-
ponent of P~ BAP(U;))—Bd Oy -

As in Lemma 4, let P(T,) ~ BAP(U;) = () D;, where each D; is
=1

the union of a finite number of disjoint disks on Bd.P(U;) and Djy, CInt D;.
There is a positive integer u such that P~ (D) C Int Twy. A8 in the
proof of Lemma 4, we may fill in the holes of P (BAP(U:)—IntDy)
with polyhedral disks contained in Int 7', to obtain a polyhedral sphere S
such that § is in general position relative to each Bd Cnpy and no compo-
nent of Cmetyy intersects more than one component of §—Bdom®.
Since BAY ~ § contains a meridional simple closed curve of Bd Y,
there are two disjoint disks B, and B, on 8 such that (1) BAE, and Bd K,
are meridional simple closed curves on Bd ¥ and (2) each of IntE, ~ BAY
and Int B, ~ B4 Y is the sum of a finite collection of simple closed curves
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which bound disks on Bd Y. By cutting E, and B, off on Bd Y (this ig
a geometric procedure which was used in Theorem 1 of [5]), we may
assume that Int B, and Int #, are contained in Int Y. The resulting digks B,
and F, are the disks required in the conclusion of Lemma 8. i
For Lemmma 9 we continue to use F, By, and Cnmy (1 < k<) of
Lemma 8. o

Lewnca 9. There are two disjoint meridional disks Dy and D, of Y such
that Dy v D, forms a cononical cutting of ¥ of size 2 and depth r (relative
to the defining stages Opgy of Lemma 8).

Proof. By the geometric procedure used in the proof of [5], The-
rem 1, we may eliminate the simple closed curves in (H, v B,) ~ ('Lj Bd Crgy)
y k=1

which bound disks on | ) BA Oy -
k=1

Suppose that there is a component T of some Cpyy such that either
E,~ABAT or B, ~BAT, say E, ~ BAT, contains a longitudinal simple
closed curve of BdT. Using the technique in the proof of Lemma 3, we
may push &, off T (choose the § of Lemma 3 so that the d-neighborhood U
of T'is contained in IntCmy-1y and disjoint from Cpgy—T). Hence, for
each component 7' of each Oy, We may assume each component of
(Ey v B;) ~BAT is a meridional simple closed curve of Bd 7.

Assume T ~ B, # @, where T is a component of Upuy. Let U be
a neighborhood of 7' such that U CIntY and U ~ (Coniy —T) = @. Let 6
be the component of B, —Int T which contains BAdE,, and let Jy, Jy, ..., Js
be the boundary components of § other than B4, . For each 4, let K;
be the subdisk of #,-bounded by J;. Since each J; is a meridional simple
closed curve of BAT, in each K; there is a meridional disk 4 i of T'. For
each 4, let N; be an annulus on Bd T with, boundary components Bd K;

and Bd4;. (If K; = 4j, then let N; = BAdK;.) Let 6" = § v (};(N’ o 43).

Then ¢ is a singular disk, and if we push each N:i—Bdd4j into U—T,
we may assume that the singularities of 6" are contained in U— T and
that 6’ ~ T = | ] 45.
i=1 ‘
In U, let U’ be a neighborhood of the singularities of 6. By Dehn’s
Lemma [11] or by direct geometric methods since the singularitiés can. be
made to be of an elementary nature, we may replace 6’ by a non-singular
polyhedral disk F. such that BiCO0 v U and BAE, = Bd = B4 E,.
Then Bj ~ 1‘ is the union of a finite number of disjoint meridional disks
of T. Applying the above argument to each component of Oy, then to
each component of (e, and so on up t0 Cpyy, We obtain disjoint meri-

dional disks D, and D, of ¥ such that (1) for each component T of each Conieyy
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(Dy v Dy) ~ T is either empty or the sum of a finite number of disjoint
meridional disks of T and (2) no component of Cp+1y intersects more
than one component of (D, v D,) ~ Cppy. Then D, v D, forms a canonieal
cutting of T of size 2 and depth 7, and the proof of Lemma 9 is complete.

It follows from Lemmas 7 and 9 that for & > 0 there is a homeo-
morphism hy of E® onto E® such that (1) if # e B3— Y, then hy(s) =2
and (2) if ge @ and ¢ C Y, then diamhy(g) < & . As mentioned at the
beginning of Section 5, the existence of hy completes the proof of Theorem A.

6. Questions and examples. In the definition of a toroidal
decomposition we required that T';,; be inessentially embedded in IntT;.
Can Theorem A be proved without this restriction? Note that, even
with the restriction that T, be inessentially embedded in IntT;, the
elements of a toroidal decomposition may not be point-like. On the other
hand, without this restriction some of the elements of @ may have non-
trivial Cech cohomology, and hence, if this happens, B?/@ is not homeo-
morphic to E? (see Theorem 3, Corollary 2 of [10]). It is interesting to
note that there is an example [7] of a continuum € in B* with trivial Gech
cohomology, but all of its embeddings in F® fail to be point-like.

The following example, motivated by Bing’s example ([6], p. 7),
shows that there is a locally spherical decomposition of E° such that
B3|G # B

ExampLE. Let A be the Cantor set obtained by removing middle
thirds of the interval [0,1].

For each @ ¢ A there is a figure eight (or circle) F, in E® obtained
by adding the circle in the zy-plane with center at the origin and radius
to the circle in the zz-plane with center (—1, 0, 0) and radius 1—a. We
obtain a decomposition G of E* by using the F,’s as the non-degenerate
elements. Note that the non-degenerate elements are the intersection of
a sequence {M;} of 3-manifolds-with-boundary such that for each i, each
component of M; is a cube with two handles and M;.; CInt M;. Again,
by Theorem 3, Corollary 2 of [10], B?/@ is not E?, but E®/G has the property
that for each @ « B%/G and each neighborhood U of # there is a neighbor-
hood U’ of » contained in U whose boundary is a 2-sphere. To obtain T’
for a given neighborhood U of the point P(F.) in E3/@, we select a tubular
neighborhood M of F, such that P(M)C U and Bd M contains exactly
two figure eights F, and Fjs (or exactly one figure eight F, if a =0 or
a=1) so that P(Bd M) is a 2-sphere. Then P (M) is the required neighbor-
hood U'.

QUESTION. Let G be a point-like upper semi-continuous decomposition
of E® such that the closure of the image of the mon-degenerate elements is
compact and 0-dimensional. Is E8|G homeomorphic to I® if each point of
B3G has arbitrarily small neighborhoods bounded by 2-spheres?
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A connected topology for the unit interval

by
S. K. Hildebrand (Lubbock, Tex.)

1. Intrbductilon. This paper presents a solution to a problem
proposed by J. Stallings in his paper entitled Fived point theorems for
conmnectivity maps which appeared in Fundamenta Mathematicae 47
(1959), pages 249-263. A. knowledge of connected topological spaces and
the fundamental theorems pertaining to them is assumed. The following
notation and definitions are preliminary to proceeding to the statement
of Stallings’ problem.

For convenience the closed unit interval [0, 1] will be denoted by I
and 7, will denote the usual topology on I. Also in notation the term
‘interval’ shall indicate the usual open interval of (I, z,) of the form (a, )
where a < b.

1.1. DEFINTTION. A family of sets, 8, is a subbase for a topology t
if and only if each open set of v is the union of finite intersections of
members of §. Such a subbase shall be referred to as a =-subbase.

1.2. DEFINITION. Given a space (X, z) and an element & ¢ X, then &N
is a T-neighborhood of & if and only if NV is an open set of (X, 7) and z e V.

StarrINgs’ PrOBLEM. If 7 is a topology on I = [0, 1], let 7z be the
topology whose subbase consists of the open sets of v and of the left-
cloged intervals [a, b); let T be the topology whose subbase consists of
the open sets of 7 and of the right-closed intervals (a, b]. Suppose that =
is a connected topology for I and that ¢ is finer than the usual topology
for I. Let I and R be subsets of I, LuR= 1, 0 L, 1 ¢ R, L open in 7z,
and R open in 7g. Is it necessarily true that L ~ R # O?

2. Considering the usual topology on I. One theorem
pertaining to the usual topology on I is stated here due to its relationship
to Stallings’ problem. Its proof, being rather obvious, is omitted.

2.1. TuroreM. If the v of Stallings’ problem is resiricted o =y, then
Stallings’ question has an affirmative answer, that is, L~ R # @.

8. Characterization of the properties of the required
topology. The following four results serve to characterize the properties
which must be possessed by a topology on I in order that it satisfy the
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