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Algebraic independence and measure
by
Jan Mycielski (Wroctaw)

0. The main result.-of.this, paper (Theorem 1) extends the result
of [3] to the case where the supposition “first catégory” is replaced by
“meagure 0. This solves some problems mentioned in [3], § 4.2 and in [4].
The first of them is the following question of P. Erdos (see [1], [7]): Does
there exist a field of real numbers of the power 2% which does not confgin
any Liouville number? It was known (see e.g. [3], § 4.2) that there exists
such a field of power x;, and thus using the continuum hypothesis the
original problem was solved. Here we will give a proof without this
hypothesis using only the fact that the set of Liouville numbers is of
measure 0 and we get a field generated by a perfect set (while the argument
quoted above did not give Borel generating sets). Our result implies
also the existence of a perfect set whose set of distances is disjoint with
a given set of measure 0; a slightly stronger theorem was proved recently
in [4] and [6] (for related facts see also [3], § 4.5). Another simple corollary
of our result seems new: Given a set X of measure 0 on the plane R? there
exists a perfect set P C R such that P? ~ X CD, where D= {(z,2):
z e R},

The main results of this paper were announced in [5].

1. We assume that the notions introduced in [3] are familiar to
the reader, but this paper will be almost self-contained if we repeat the
following definition.

R = (A4, RiDier being a relational structure, a set X C A ix called
independent in R if

(@15 vy Ty} € Rz {f (1) ovy Htv)) € B
for every iel, @y, .., @y e X and every function f: X -4, where r(i)
denotes the rank of R,, je RiCA™.

From now on A denotes some fixed m,-dimensional Euclidean
space K™, For any measurable set X C 4", |X|, denotes the mon -dimen-
sional Lebesgue measure of X. p is called a melric density point of X if

ped” and
Jim 1B ~ X/l B =1,
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where BY = {g: |lp— g|l < 7}. Mu(X) denotes the set of all metrie density
points of X. M, will also be applied to sets contained in myn - dimensional
hyperplanes in A",

Perfect means: non-empty, closed and without isolated points.

In this paper A could be replaced by some more general topological
measure-space for which there is a good concept of metric density point
but we do not attempt to perform this generalization in detail referring
the reader to [8], § 11 and [2], Sec. 61 (5) for the necessary technique.

2. TeROREM 1. Let R= (A, Ry, Ry,..> be a velational structure
whose set of relations is countable and closed under identifications of variables
(i.e. R = R in the notations of [3]) and such that for every i either [ Bilogy = 0
or Ry = A™, Then there ewists a perfect set P C A which is independent in R.

Proof. We will need some auxiliary notions and propositions.

A get X C A" is called diagonal-measurable if for every equivalence
relation B C {1, ...,n}? the set

X A {(#yy .oy o) B =2y for (i,§) e B}
is measurable with respect to the m,d-dimensional measure, where m,d
iy the dimension of the hyperplane {(ai,...,#n}: @ = @y for (i,§) < B},
which means that &= card ({1, ..., n}/E).
A set FC A" is called faf if it is diagonal-measurable and for every

(@1y ..y an) € I and every equivalence relation B C{({,4): &= o} we
have

(@1 wres On) € Ma(F ~ {(@1, ..., #a): @5 = ay for (3, §) € B,
where d = card({1, ..., n}/H).
This definition clearly implies the following proposition.

(i) If PCA™ is fat, (i1, ., i) € {1, oy 0™ and (ay, ..., an) € A” are
such that

(aﬁ, veey a;m) GF,
then

(@15 vevy @n) € Ma({(@0y o) (@1, oo,y 4,) eF}) .
Letus put Dy = {(@y, ..., rp): (F(@0), oo, Fripy (@) € Ry for every function
f: {®1, -, B} —~A}} and
8= (4"\R;) v D,.

(i1) 8¢ are fat sets and, for every set X C A, X is independent in R if
and only if X™C 8 for every i.

Tpis follows from the properties of the sequence R, R,,... which
are stipulated in Theorem 1.
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(i) If @ C U C A", where @ is closed and U is fai, then there emists

. a fat set F such that Q CF and FC U. (*)

Notice first that
(%) If X, Y C A" are fat sets then X ~ ¥ is fat.

Now we prove (iii) by induction on n. For » = 1 the argument would
be an obvious simplification of the second step of our inductive proof
which is the following. Suppose that # > 1 and the result holds for n—1.
Then in each hyperplane Hy= {(2y, ..., %s): ®i= a5} (£ <j) we find
a set Fy; fat in Hy; and such that Q ~ Hy CFy and Fy;; C U ~ Hy;. Let be

Fy= UFGB\ Ls_ﬁj (Hﬂnnﬂux)u U (FaenFtu)
ag apFay

apgFEay
\ U (-HaonHmm-Hag)U U ('FanﬁFm"Fae)
ag#ayFEazFag agFoyFasFEay
\ m Hij v ﬂ Fﬂ' ’
1<i<isn I<i<i<n

where all az Tun over the set of pairs (¢, §) with 1 <14 < j < n. It follows
from (%) that each set F, ~ Hy is fat in Hy; and of course @ n Hy
CF,~Hy; and F,C U. For every natural number m let ¥, be a neigh-
bourhood of radius 1/m around F, v Q. We choose closed sets Cpn C U ~ Vi
such that Fy v @ C Cp, and for every ball B CV,, of radius 1/m we have

|B A Oplu/|B ~ Uln = 1—1[m

(the existence of such Oy, is visible). Now we put ¢ = () O and notice
m=1

that C is closed, ¢ C U and @ C Ma(0). Hence, by the construction of 0,
the set F = M, (0)\ \J H;vF, is fat and satisfies (iii).

1<i<i<n
(iv) [{(#yy ivy @n): {21, -y @} is not independent in R} = 0.
This follows from the suppositions of Theorem 1 (it helps to apply
the statement (i) <= (iv) of [3], § 2, (1)).
v) If P, C A™ (k= 1, ..., n) is a system of fat sets and @ = {g1, ..., 4s}
C A is a finite set such that QW C Py for k=1, ...,n then, for every r> 0,

lB&)nlhm,---,q') n {(.’.00, Ly ey @s): By F By and
[y By ey B} O CFy for k=1, ., n}ora > 0.

To prove this we put ¢, = ¢, and then, given & sequence Tyy ey by
(k<m, 0<iz<s), we have by supposition (gs;, .., Qi) € Fx. Hence
since Fy is fat and by (i) the set

Bg)n,...,q-) A~ {( @y Bry ooy Ba): (Bhyy ony Tiygy) ¢ P}

(*) F denotes the topological closure of F.
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is of relatively small measure in BY) . .y when t] 0. This clearly implies (v)
since the set of sequences iy, ..., i, that we have to consider is finitef
(iv) and (v) yield easily the following proposition.
(vi) Under the suppositions of (v) for every r > 0 there emists a sequence
¢, q'eBY, ..., a5 ¢ € B such that ¢} # ¢’ for i=1,..,s and

{6, ¢ s Qé;qg}r(k)ng for k=1,..,n

and the set {gi, gV, ..., ¢s, Qs } 98 independent in R.

Now applying (i), ..., (vi) we will construct by induction a system
of points ?s,..0,€Ad (bp=0,1, n=1,2,..) and a sequence of sets
Fy, F, ... such that

(1) F:C 8; and Fy are fat sets;

(2) Poy,ntio # Dby.otist aDA

19105 == Py et bisall < Dby s — Dt i3 -2°

for (by, .., be) # (Bl es BY);

(3) PACF, for k=1,..,4+1, where Py={py,. .50 (b, .., b;)
«{0,1)). “

Let py, p1e 4 be any two points such that {p,,p,} is independent
in R (the existence of such points follows from (iv)), and let 7, be a seb
satisfying (1) (its existence follows from (i) and (iii)). Suppose that
Py, Py and Fyy ..., Fy ave already constructed and satisty (1), (@)
and (3). By (vi) we get Pyy; which is independent in R and such that (2)
and (3) for k=1, ...,4 hold. Finally the existence of F,, satisfying (1)
and (3) follows from the independence of Py.4, (ii) and (iii) with @ = P
and U = 8;4;. This concludes our induetive definition of the sequences
satisfying (1), (2) and (3).

Now we finish the proof of Theorem 1. We put P — lim P;. By (2)

P is perfect. By (3), P C F; for every i. Hence, b i i
independent in R. Q.E.D. v » by (1) and (ii), P i3

8. CorOLLARY. If X is a set of measure 0 of irrational real mumbers

then th ! ;
then Xe.re exists a perfect set P such that the field generated by P is disjoint

This follows from Th - ) L
in [3], § 4.2. eorem 1 by the same argument which is given

Let us prove still a conseque: £
o the i lrove s quence of Theorem 1 of [3] closely related

THEOREM 2. Hvery perfect set P of real mumbers coniains a perfect

subsef which is algebraically independent.

icm°®
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Proof. Let us show two auxiliary propositions.

(1) If w(®y, ..., @n) 8 a polynomial in n variables and real coefficients
which vanishes on a set of the form Dy X ... X Dy, where each Dy has a limit
point, then w is the consiant 0.

The proof follows by an easy induction on % which uses only ana-
lyticity of w.

(i) If P is a perfect set of real numbers and w is a non zero polynomial
of n variables then the set

Ry==P" ~ {(1y <ery Bn): W(&y, vy Bn) = 0}

is mowhere dense in P".

This follows clearly from (i).

Now Theorem 2 follows from (ii) and Theorem 1 of [3] applied to
the relational structure (P, Ry,dwew, where W is the set of polynomials
with integral coefficients in the variables @, @,, ...
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