

Algebraic independence and measure

b

Jan Mycielski (Wrocław)

0. The main result of this, paper (Theorem 1) extends the result of [3] to the case where the supposition "first category" is replaced by "measure 0". This solves some problems mentioned in [3], § 4.2 and in [4]. The first of them is the following question of P. Erdös (see [1], [7]): Does there exist a field of real numbers of the power 2 which does not contain any Liouville number? It was known (see e.g. [3], § 4.2) that there exists such a field of power s_1 , and thus using the continuum hypothesis the original problem was solved. Here we will give a proof without this hypothesis using only the fact that the set of Liouville numbers is of measure 0 and we get a field generated by a perfect set (while the argument quoted above did not give Borel generating sets). Our result implies also the existence of a perfect set whose set of distances is disjoint with a given set of measure 0; a slightly stronger theorem was proved recently in [4] and [6] (for related facts see also [3], § 4.5). Another simple corollary of our result seems new: Given a set X of measure 0 on the plane \mathcal{R}^2 , there exists a perfect set $P \subset \mathcal{R}$ such that $P^2 \cap X \subseteq D$, where $D = \{(x, x):$ $x \in \mathcal{R}$.

The main results of this paper were announced in [5].

1. We assume that the notions introduced in [3] are familiar to the reader, but this paper will be almost self-contained if we repeat the following definition.

 $\mathfrak{R}=\langle A\,,\,R_i\rangle_{i\in I}$ being a relational structure, a set $X\subseteq A$ is called independent in $\mathfrak R$ if

$$(x_1, \ldots, x_{r(i)}) \in R_i \Rightarrow (f(x_1), \ldots, f(x_{r(i)})) \in R_i$$

for every $i \in I$, $x_1, \ldots, x_{r(i)} \in X$ and every function $f: X \to A$, where r(i) denotes the rank of R_i ,i.e. $R_i \subseteq A^{r(i)}$.

From now on A denotes some fixed m_0 -dimensional Euclidean space \mathcal{R}^{m_0} . For any measurable set $X \subseteq A^n$, $|X|_n$ denotes the m_0n -dimensional Lebesgue measure of X. p is called a *metric density point* of X if $p \in A^n$ and

 $\lim_{r\to 0+} |B_p^{(r)} \cap X|_n / |B_p^{(r)}|_n = 1 ,$

where $B_p^{(r)} = \{q: ||p-q|| \le r\}$. $M_n(X)$ denotes the set of all metric density points of X. M_n will also be applied to sets contained in $m_0 n$ -dimensional hyperplanes in A^{n+k} .

Perfect means: non-empty, closed and without isolated points.

In this paper A could be replaced by some more general topological measure-space for which there is a good concept of metric density point but we do not attempt to perform this generalization in detail referring the reader to [8], § 11 and [2], Sec. 61 (5) for the necessary technique.

2. THEOREM 1. Let $\Re = \langle A, R_1, R_2, ... \rangle$ be a relational structure whose set of relations is countable and closed under identifications of variables (i.e. $\overline{\Re} = \Re$ in the notations of [3]) and such that for every i either $|\mathcal{R}_i|_{r(i)} = 0$ or $R_i = A^{r(i)}$. Then there exists a perfect set $P \subseteq A$ which is independent in \Re .

Proof. We will need some auxiliary notions and propositions.

A set $X \subseteq A^n$ is called *diagonal-measurable* if for every equivalence relation $E \subseteq \{1, ..., n\}^2$ the set

$$X \cap \{(x_1, \ldots, x_n): x_i = x_j \text{ for } (i, j) \in E\}$$

is measurable with respect to the m_0d -dimensional measure, where m_0d is the dimension of the hyperplane $\{(x_1, \ldots, x_n\}: x_i = x_j \text{ for } (i, j) \in E\}$, which means that $d = \operatorname{card}(\{1, \ldots, n\}/E)$.

A set $F \subseteq A^n$ is called *fat* if it is diagonal-measurable and for every $(a_1, ..., a_n) \in F$ and every equivalence relation $E \subseteq \{(i, j): a_i = a_j\}$ we have

$$(a_1, ..., a_n) \in M_d(F \cap \{(x_1, ..., x_n): x_i = x_j \text{ for } (i, j) \in E\})$$

where $d = \operatorname{card}(\{1, ..., n\}/E)$.

This definition clearly implies the following proposition.

(i) If $F \subseteq A^m$ is fat, $(i_1, \ldots, i_m) \in \{1, \ldots, n\}^m$ and $(a_1, \ldots, a_n) \in A^n$ are such that

$$(a_{i_1},\ldots,a_{i_m}) \in F$$
,

then

$$(a_1, \ldots, a_n) \in M_n(\{(x_1, \ldots x_n): (x_{i_1}, \ldots, x_{i_m}) \in F\})$$

Let us put $D_i = \{(x_1, \ldots, x_{r(i)}): (f(x_1), \ldots, f_{r(i)}(x)) \in R_i \text{ for every function } f: \{x_1, \ldots, x_{r(i)}\} \rightarrow A\}$ and

$$S_i = (A^{r(i)} \backslash R_i) \cup D_i$$
.

(ii) S_i are fat sets and, for every set $X \subseteq A$, X is independent in \Re if and only if $X^{r(i)} \subseteq S_i$ for every i.

This follows from the properties of the sequence $R_1, R_2, ...$ which are stipulated in Theorem 1.

(iii) If $Q \subseteq U \subseteq A^n$, where Q is closed and U is fat, then there exists a fat set F such that $Q \subseteq F$ and $\overline{F} \subseteq U$. (1)

Notice first that

(*) If $X, Y \subseteq A^k$ are fat sets then $X \cap Y$ is fat.

Now we prove (iii) by induction on n. For n=1 the argument would be an obvious simplification of the second step of our inductive proof which is the following. Suppose that n>1 and the result holds for n-1. Then in each hyperplane $H_{ij}=\{(x_1,\ldots,x_n)\colon x_i=x_j\}$ (i< j) we find a set F_{ij} fat in H_{ij} and such that $Q \cap H_{ij} \subseteq F_{ij}$ and $\overline{F}_{ij} \subseteq U \cap H_{ij}$. Let be

$$F_0 = \bigcup_{a_0} F_{a_0} \backslash \bigcup_{a_0 \neq a_1} (H_{a_0} \cap H_{a_1}) \cup \bigcup_{a_0 \neq a_1} (F_{a_0} \cap F_{a_1}) \\ \backslash \bigcup_{a_0 \neq a_1 \neq a_2 \neq a_2} (H_{a_0} \cap H_{a_1} \cap H_{a_2}) \cup \bigcup_{a_0 \neq a_1 \neq a_2 \neq a_0} (F_{a_0} \cap F_{a_1} \cap F_{a_2}) \\ \cdot \ddots \\ \backslash \bigcap_{1 \leqslant i < j \leqslant n} H_{ij} \cup \bigcap_{1 \leqslant i < j \leqslant n} F_{ij} ,$$

where all a_k run over the set of pairs (i,j) with $1 \le i < j \le n$. It follows from (*) that each set $F_0 \cap H_{ij}$ is fat in H_{ij} and of course $Q \cap H_{ij} \subseteq F_0 \cap H_{ij}$ and $\overline{F}_0 \subseteq U$. For every natural number m let V_m be a neighbourhood of radius 1/m around $\overline{F}_0 \cup Q$. We choose closed sets $C_m \subseteq U \cap V_m$ such that $\overline{F}_0 \cup Q \subseteq C_m$, and for every ball $B \subseteq V_m$ of radius 1/m we have

$$|B \cap C_m|_n/|B \cap U|_n \geqslant 1-1/m$$

(the existence of such C_m is visible). Now we put $C = \bigcup_{m=1}^{\infty} C_m$ and notice that C is closed, $C \subseteq U$ and $Q \subseteq M_n(C)$. Hence, by the construction of C, the set $F = M_n(C) \setminus \bigcup_{1 \le i < j \le n} H_{ij} \cup F_0$ is fat and satisfies (iii).

(iv) $|\{(x_1, ..., x_n): \{x_1, ..., x_n\} \text{ is not independent in } \Re\}|_n = 0.$

This follows from the suppositions of Theorem 1 (it helps to apply the statement (i) \iff (iv) of [3], § 2, (1)).

(v) If $F_k \subseteq A^{r(k)}$ (k=1,...,n) is a system of fat sets and $Q = \{q_1,...,q_s\}$ $\subset A$ is a finite set such that $Q^{r(k)} \subseteq F_k$ for k=1,...,n then, for every r > 0,

$$|B_{(a_1,a_1,a_2,...,a_s)}^{(r)} \cap \{(x_0,x_1,...,x_s)\colon x_0 \neq x_1 \text{ and } \{x_0,x_1,...,x_s\}^{r(k)} \subseteq F_k \text{ for } k=1,...,n\}|_{s+1} > 0.$$

To prove this we put $q_0=q_1$ and then, given a sequence $i_1,\ldots,i_{r(k)}$ $(k\leqslant n,\ 0\leqslant i_k\leqslant s)$, we have by supposition $(q_{i_1},\ldots,q_{i_{r(k)}})\in F_k$. Hence since F_k is fat and by (i) the set

$$B_{(q_0,\ldots,q_s)}^{(l)} \cap \{(x_0,x_1,\ldots,x_s): (x_{i_1},\ldots,x_{i_{r(k)}}) \notin F_k\}$$

⁽¹⁾ \overline{F} denotes the topological closure of F.

is of relatively small measure in $B_{(q_0,...,q_s)}^{(i)}$ when $t\downarrow 0$. This clearly implies (v), since the set of sequences $i_1,...,i_{r(k)}$ that we have to consider is finite.

(iv) and (v) yield easily the following proposition.

(vi) Under the suppositions of (v) for every r > 0 there exists a sequence $q'_1, q''_1 \in B^{(r)}_{q_1}, \dots, q'_s, q''_s \in B^{(r)}_{q_s}$ such that $q'_i \neq q''_i$ for $i = 1, \dots, s$ and

$$\{q_1', q_1'', ..., q_s', q_s''\}^{r(k)} \subseteq F_k \quad \text{for} \quad k = 1, ..., n$$

and the set $\{q'_1, q''_1, ..., q'_s, q''_s\}$ is independent in \Re .

Now applying (i), ..., (vi) we will construct by induction a system of points $p_{b_1,...,b_n} \in A$ $(b_k = 0, 1, n = 1, 2, ...)$ and a sequence of sets $F_1, F_2, ...$ such that

- (1) $\overline{F}_i \subseteq S_i$ and F_i are fat sets;
- (2) $p_{b_1,...,b_i,0} \neq p_{b_1,...,b_i,1}$ and

$$||p_{b_1,...,b_i}-p_{b_1,...,b_i,b_{i+1}}|| \leq ||p_{b_1,...,b_i}-p_{b_1',...,b_i'}||/3 \cdot 2^i$$
,

for $(b_1, ..., b_i) \neq (b'_1, ..., b'_i);$

(3) $P_{i+1}^{r(k)} \subseteq F_k$ for k = 1, ..., i+1, where $P_i = \{p_{b_1, ..., b_j}: (b_1, ..., b_j) \in \{0, 1\}^j\}$.

Let $p_0, p_1 \in A$ be any two points such that $\{p_0, p_1\}$ is independent in \Re (the existence of such points follows from (iv)), and let F_1 be a set satisfying (1) (its existence follows from (ii) and (iii)). Suppose that P_1, \ldots, P_i and F_1, \ldots, F_i are already constructed and satisfy (1), (2) and (3). By (vi) we get P_{i+1} which is independent in \Re and such that (2) and (3) for $k = 1, \ldots, i$ hold. Finally the existence of F_{i+1} satisfying (1) and (3) follows from the independence of P_{i+1} , (ii) and (iii) with $Q = P_{i+1}^{r(i+1)}$ and $U = S_{i+1}$. This concludes our inductive definition of the sequences satisfying (1), (2) and (3).

Now we finish the proof of Theorem 1. We put $P = \lim_{i \to \infty} P_i$. By (2) P is perfect. By (3), $P^{r(i)} \subseteq \overline{F}_i$ for every i. Hence, by (1) and (ii), P is independent in \Re . Q.E.D.

3. COROLLARY. If X is a set of measure 0 of irrational real numbers then there exists a perfect set P such that the field generated by P is disjoint with X.

This follows from Theorem 1 by the same argument which is given in [3], § 4.2.

Let us prove still a consequence of Theorem 1 of [3] closely related to the above result.

THEOREM 2. Every perfect set P of real numbers contains a perfect subset which is algebraically independent.

Proof. Let us show two auxiliary propositions.

(i) If $w(x_1, ..., x_n)$ is a polynomial in n variables and real coefficients which vanishes on a set of the form $D_1 \times ... \times D_n$, where each D_i has a limit point, then w is the constant 0.

The proof follows by an easy induction on n which uses only analyticity of w.

(ii) If P is a perfect set of real numbers and w is a non zero polynomial of n variables then the set

$$R_w = P^n \cap \{(x_1, ..., x_n): w(x_1, ..., x_n) = 0\}$$

is nowhere dense in Pⁿ.

This follows clearly from (i).

Now Theorem 2 follows from (ii) and Theorem 1 of [3] applied to the relational structure $\langle P, R_w \rangle_{w \in W}$, where W is the set of polynomials with integral coefficients in the variables $x_1, x_2, ...$

References

[1] P. Erdös, Some remarks on number theory, Riveon Lematematika 9 (1955), pp. 45-48.

[2] P. R. Halmos, Measure theory, New York 1950.

[3] Jan Mycielski, Independent sets in topological algebras, Fund. Math. 55 (1964), pp. 139-147.

[4] — Complete subgraphs and measure, Théorie des graphes, journées internationales d'étude, Rome, juillet 1966, pp. 255-256.

[5] — Independent sets and measure, Notices Amer. Math. Soc. 13(1966), p. 858.
 [6] B. Sodnomov, On a property of sets of positive measure, Fund. Math. 60 (1967),

pp. 187-190.
[7] E. G. Straus, Review of [1], Math. Rev. 17 (1956), p. 460.

[8] Г. Е. Шилов, Б. Л. Гуревич, Интеграл, мера и производная, Издат. Наука, Москва 1964.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCE

Reçu par la Rédaction le 14. 9. 1966

169