icm

On convex metric spaces IV
by
A. Lelek and Jan Mycielski (Wroctaw)

§ 1. Introduction. The classical Bolzano-Weierstrass theorem
says that every bounded closed subset of the Euclidean space is compact;
in the present paper we prove and extend the following generalization:

Ewery bounded closed subset of a convex complete locally compact metric
space 8 compact.

This form of the generalized Bolzano-Weierstrass theorem has been
announced in [3]. We adopt the notation from [1]. Suppose that (X, o)
is a complete locally compact metric space. Some purely metrie conditions
are necessary in order that the Bolzano-Weierstrass theorem hold for
(X, 0). Indeed, the real line with the metric Min{l, |z—y|} constitutes
an example of a bounded complete locally compact metric space which
is neither compact nor convex. A theorem below (see § 2) relaxes the
condition of convexity, which is replaced by the concept of almost star-like
metrization. Our considerations have arisen from a paper by C. Ryll-
Nardzewski [4] and are related to some ideas which he has expressed;
this is needed for a generalization of certain results of [2] and [4].

As a consequence of the Bolzano-Weierstrass theorem for almost
star-like metric spaces we obtain (see § 3) the existence of metrie segments
joining an arbitrary point with a point in the space. During a seminar
discussion Dr. Nitka observed that if a metric space (X, ¢) satisfies the
latter condition, then in order to have the Bolzano-Weierstrass theorem
for (X, p) it is enough to assume that (X, o) is complete and peripherally
compact, i.e. that there exists an open basis congisting of sets whose
boundaries are compact. However, we do not know whether the Bolzano-
Weierstrass theorem is true for every almost star-like complete peri-
pherally compact metric space.

At the end of the paper (see § 4) we give a rather paradoxical example
of a metric space in connection with the concept of convexity.

§ 2. The generalized Bolzano-Welerstrass theorem: A metric
space (X, o) is called star-like at a point ¢ € X if for each ¢ ¢ X, and each 6
satisfying 0 < 6 < o(o, ¢), there exists p ¢ X such that

0(0,7)= 0= 0(0,)— o, q) -
12%
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A metric space (X, g) is called almost star-like at a point o ¢ X if
for each g e X, and each 6 satisfying 0 <60 < ¢(o, ¢), and each &> 0,
there exists 9 € X such that

elo,p)—e< < (0,9)—0(®@,9) +¢-

We denote by B(#) the ball {: ¢(0, ) < t}, and by ¥, the supremum
of real numbers ¢ such that the ball B(t) is totally bounded (0 < ¢, < o).

2.1. If a metric space (X, g) 48 almost star-like at 0 € X, and t, <co,
then each infinite set ¥ C B(f)+1/n) contains an infinite subset Z with
a diameter 6(Z) < T/n.

Proof. In the case {,= 0 we put Z = ¥. Assuming ¥, > 0 we choose
positive real numbers t’, ¢’ such that

h—1ln <t <t’'<{,.
The ball B(t') is totally bounded. If infinitely many points of ¥
are in B(t'), we easily find a suitable set Z because ¥ must then contain
a Cauchy sequence. If that is not so, let us take different points ¢; ¢ ¥\B(t)

where ¢ =1,2, ... Since the space is almost star-like at o, we get points
ps e X such that

0(0, ) —(t"—1) <V < 0(0, g0 —e(ps, @)+ (1" —1')
for i = 1’ 2, ... Thus D EB(t”) and

e(Pe, @) < 00, g+t — 2 S tyt1jn+1"— 2 < 3jn

for i=1,2,... But B(¢") is also totally bounded. Consequently, there
exists an infinite set I of positive integers such that o(p1, ps) < 1/n for
i, jeI. We define Z = {g;: i eI}, '

2.2. THROREM. If & complete locally compact metric space (X, g) is
almost star-like, then each bounded subset in (X, o) is totally bounded.

Proof. We have to prove that %o = co. Buppose on the contrary
that % < co. There exist numbers ¢, > 0 and infinite sets Yu C B(t,+1/n)
such that o(p,q) > & for p, ge ¥, and p#q(n=1,2,..) By 2.1,
there exist infinite sets Z, C ¥, such that 8(Zn) < Tn. Let 2, € Zy. It
follows from 2.1 that the sequence 2,2, ... must contain a Cauchy
sequence. The latter converges to a point z e X. Bach neighbourhood
of z contains one of the sets Z,, which is impossible. because X ig locally
compact.

The following examples refute some modifications of 2.2 which
could -be conjectured. T

2.3. There efm'st bounded convew metric spaces (X, o) and (X", 0")
such that (i) (X', o) is locally compact but meither complete mor totally

I;;ozgz, and (ii) (X", o) is complete but neither locally compact nor totally
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Proof. Take plane sets

X' = {(@,0): 0 <o <1y J{(1i,9): 0<y <1},

L]

X' = J{(z,xft): 0<w <1}

i=1

with distances o'(p, q), o”'(p, ¢) defined as the lengths of the ares which
join p and ¢ in X', X", respectively. Then conditions (i) and (i) are
satisfied. .

§ 3. Connectedness of almost star-like spaces. The space
of rational numbers with the ordinary metric is almost star-like at each
point. Thus non-degenerate non-complete almost star-like spaces may
even be zero-dimensional. Moreover, it will be shown in the next paragraph
that there exists a non-degenerate zero-dimensional separable metric

space which is star-like at each point.

3.1. If a complete metric space (X, o) is almost star-like at 0 e AC X,
then for each q e X\A, and each 7 >0, there ewists p ¢ FrA such that

e(0,p)+e(p, 9 <elo, 9+ .

Proof. In the case g(q, 4) = 0 we put p = ¢. Assuming g(g, 4) >0
we inductively define points p,, p;,... such that o(pa,4)>0 for
n=20,1,.. Let p,=gq. If >0 and p,, is defined, then the positive
numbers

0= 0(0, Pr)—%0(Pn1, 4),

satisfy the inequality 0 < 60—¢ < (0, Pn-1), and the gpace (X, ¢) being
almost star-like at o, we get a point p, such that

&= {Min {6, 5/2", 0(Pn-1, 4)}

@(O;Z’n)—s < 6_5 < Q(oypn—l)_g(pn7pn-—1)+8 .
This yields
) e{0, pn) < 0(0; Pr-1)— 1 0(Pn—1, 4)
and
0Py Pn-a) < 000, Pr1)— 0+ 26 < ¢(Pn-1, 4) ,

whence ¢(pn, 4) >0 and

(2) (0, Pn)+ e(Pny Pn) < 0(0, Pn—1)+7[2" .

It follows from (1) that

n—1

00, pa) < 0l0, 9)—3 >, o(ps, A)

=0
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and from (2) that
”»
(0, pa)+e(pn, @) < 0(0, @1)+2 72" < el0, @)+ -
i=1

Consequently, we obtain

2 0(pi; Pi1) < 2 o(pi, 4) < 20(0, g) < o0,
i=1 =0

which means that py, p1, ... is & Canchy sequence; let p be its limit. Since
pneX\A and g(ps, 4) converges to zero as ¢ tends to infinity, the
point p satisfies the conclusion of 3.1.

3.2. Almost star-like complete metric spaces are connected.

The following theorem gives more information than 3.2 for the class
of locally compact spaces.

3.3. If a complete locally compact metric space (X, o) s almost star-like
at o e X, then each point g € X\{o} can be joined with o by a metric segment og.

Proof. Let P, be the finite set constructed as follows (n =1,2,...).

Put ph = ¢ and take a point

pn e FrB[(n—m)e(0, g)/n]
such that

e(o, )+ e(on, o) < olo, P ™) +1yn’

according to 3.1 (m =1, ...,n). Let Pn={p, ..., p"}.
Clearly all sets P, are contained in the ball B[p(o, g)-1], which is
compact by 2.2. Thus the sequence Py, P,, ... has a convergent subsequence.

Without loss of generality we can assume that the sequence Py, P, ...
itself converges, and write

P =Lim P,.
N-ro0

) It turns 01.113 that P is a segment og. Indeed, let us first notice that
if p, p' are points of P,, then

le(o, p)—o(o, ") < e(p,p) < |Q(0yp)“‘9(01pl)|+1/'"‘

(n=1,2,..). Hence P meets the boundary of each ball B(t), where
0t g(o,q),. at exactly one point, i.e. we have FrB(t) n P = {p}.
fu;t?;m;;);e, 1f t;)<t<7; <efo,¢) and &> 0, there exist an integer
& points p, p’ e Py such that of < &fb and ' Dy .

This gives the inequalities ¢, / ep’s pe) < lf

0(p; ) —2¢/5 < o(pr, p) < 0(p, )+ 26/5 ,
[E—t1—2¢/5 < lo(0, p)—e(0, ') < [t—1'|+ 2[5 ,
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because |o(0, p))—e(0, pr)| = [t—1'|. Consequently, we obtain
1=t~ < o(ps, pe) < [t—¥'|+¢,

which implies g(p;, p¢) = [t—1'|. The set P is thus isometric with a segment
of the real line, and so P =0q. !

§ 4. An example of metric space. We start with a construction
of a set on the plane H?. We denote by L the collection of all straight
lines {(#,¥): #= a} and {(z,y): ¥y = a}, and by M the collection of all
straight lines {(z,¥): ¥ = «+a} and {(#,y): y = —2+a}, where a is an
arbitrary real number.

4.1. There ewists a set X C E? such that L ~ X contains one point or
is empty, and M ~ X is dense in M, for every L e L and M e M.

Proof. Denote by y the minimum ordinal of eardinality continuum.
Lot {J.: @<y} be the collection of all intervals of lines from M. We
define points p, eJ, inductively. et p, be a point of J,, and suppose
that points p, are defined for a < f where § < y. The set @ of points at
which the lines I ¢ L passing through p, (a < f) intersect J4 is of cardinality
less than the continuum. Thus there exists a point pseJ\Q. We take
X = {p.: a<y} .

4.2, If a set X C BP is dense in B?, and L ~ X contains one point or
is empty for every LeL, then X is zero-dimensional.

Proof. Given an arbitrary point (%, %,) ¢ X and &> 0, the open
seb {(@, ¥): B < T < Bo+&, |y —Yo| > ¢} contains a point (a,b) of X.
Then the segnient {(w,y): &= a, |y—y,| < ¢} is disjoint with X. It follows
that (@, Y,) has arbitrarily small rectangular neighbourhoods whose
boundaries lie outside X.

4.3. There ewists am uncountable zero-dimensional separable metric
space which is star-like at each point.

Proof. Let X be the set from 4.1 with the metric defined by the
formula

ol(®y, ¥1) s (@2, Ya)] = @ — @]+ 41—l 5

which does not change the natural topology. Thus (X, 0) is a zero-
dimensional separable metric space, aceording to 4.2. Suppose that o, ¢ are
two points of X. Since no line L ¢ L passing through ¢ contains ¢, we
have a rectangle R whose sides are segments of L e L, and whose opposite
vertices are o and ¢. Let S be the union of two sides of R, joining ¢ and g¢.
Observe that (o, g) is the length of 8. Now, if 0 <0< e{o, q), let us
consider a point p’ ¢ § such that the part of 8 from o to p’ has the length 6.
The arc § is divided by p’ into two ares, and at least one of them is a straight
line segment 8’ C § with the end point p'. Let R' C R be a rectangle such
that § is a side of R’. Since p’ is a vertex of R’, there exists exactly one
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line M ¢ M which passes through p’ and intersects the interior of R'.
We find an interior point p of B’ such that p ¢ M ~ X. It is not difficuls
to check that g(o,p)= 6 and g(0, q)= 0-+o(P, @)

Remark. In view of 3.1, a metric space satisfying 4.3 cannot be
complete. However, we do not know whether there exists a non-degenerate
zero-dimensional separable metric space which is star-like at each point,
and which is topologically complete, i.e. homeomorphic with a complete
metric space. Such a space would exist if one could construct a &; on
the plane such that all conditions from 4.1 are fulfilled.
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Connectivity retracts
of finitely coherent Peano continua

by

J. L. Cornette and J. E. Girolo (Ames, Iowa)

The principle result of this paper is

THEOREM 1. Every connectivity retract of a k-coherent Peano con-
tinuum 4s an m-coherent Peano continuum, where m < k.

An auxiliary result essential to the proof of Theorem 1 is

Levma 1. If X is a k-coherent Peano continwum and H C X is totally
disconmected, then each quasicomponent of X —H 4s connected.

In [8], it is shown that every connectivity retract of a continuum
is a continuum, and there is described a Peano continuum (locally con-
nected, metric) which has a connectivity retract that is not a Peano
continuum. From Theorem 1, such a continuum must have infinite
coherence. In [1], the special case of Theorem 1 for unicoherent eontinua
(k= 0) was established. Lemma 1 is the key to the generalization of
that argument and should be useful in other results on connectivity
functions. One may readily construct examples which show that nejther
the condition that X be locally connected nor the condition that X be
finitely coherent nor the condition that H be totally disconnected may
be omitted from the hypothesis of Lemma 1.

In view of Theorem 1 and the fact that for finite polyhedra, the
fixed point property is preserved by connectivity retraction (3], Th. 3.13),
we raise the

QuesTION. Is there a J-coherent Peano continuum that has a con-
nectivity retract that i8 mot a continuous retract? E
1. Preliminaries. Let X and Y denote topological spaces and

fi XY a transformation. Then f is & connectivity function if for each

connected O C X, {(v,f(2)): ¢ C} is connected in the product space
XxY. Tf YCX and f is a connectivity function and for each oe Y,
f(@)= @, then Y is a conmectivity retract of X.
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