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On embedding decomposition spaces of 7" in E"*
by
Steve Armentrout (Madison, Wisc.)

1. Introduction. The following question arises in the study of
upper semi-continuous decompositions of E™:

Is it true that if n is any positive integer and @ is an wupper semi-
continuous decomposition of E™ into point-like compact continua, then the
associated decomposition space can be embedded in E™'2

In [9], [10], Keldy¥ gives affirmative answers to special cases of
this question. In order to state this result due to Keldy$ and the main
result of this paper, we first introduce some notation.

If » is any positive integer and @ is a point-like decomposition of B,
let Hg denote the union of all the non-degenerate elements of & and
let P denote the projection map from H* onto the associated decom-
position space EYG.

Keldy¥ has proved the following theorem: If » is any positive integer
and G is a point-like decomposition of E™ such that P[Hg] is contained
in a compact 0-dimensional set, then E"/G can be embedded in E™*'.
In this paper, we shall extend this result by proving the following theorem:

If n is any positive integer, G is a poini-like decomposition of E",
and P[Hg] is 0-dimensional, then BYG can be embedded in H*™.

The restriction, in the theorems above, to point-like decompositions
of E" is necessary if #n > 2. In [4], Bing and Curtis gave an example
of a monotone decomposition G of E® such that @ has only nine non-
degenerate elements, each non-degenerate element of @ is a simple closed
curve, and B*/G cannot be embedded in B* Further, there is a well-known
theorem of Hurewicz [8] which states that if X is any compact metric
space, there i3 a monotone decomposition ¢ of E® such that E*/@ contains
a homeomorphic copy of X.

Curtis [6] has proved an embedding theorem for decomposition
spaces of certain monotone decompositions of E™; his result is applicable
to some point-like decompositions of E".

The embedding theorem that we prove in this paper shows that
the embedding of EY@ into E*** may be realized as the final stage of
a pseudo-isotopy @ from E"** x [0, 1] into B™™* such that ¢, is the identity
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map. Theorems 1 and 2 of [4] are analogous results for a restricted class
of monotone decompositions of E°.

The main result of this paper is proved in section 6. Sections 3, i,
and 5 contain lemmas to be used in the proof of the main result. In
section 4, we apply the lemmas of section 3 to establish some results
concerning the existence of homeomorphisms and isotopies having certain
properties useful in the study of monotone decompositions of ™ In
addition to their use in establishing the main result, the results of section 4
are of independent interest as well.

2. Notation and terminology. Suppose that ¢ is an upper
semni-continuous decomposition of a topological space X. Then X/¢
denotes the associated decomposition space, P denotes the projection
map from X onto X/H, and Hg denotes the union of all the non-
degenerate elements of G.

If X is a metric space, the statement that ¢ is a monotone decom-
position of X means that @ is an upper semi-continuous decomposition
of X such that each element of @ is a compact continuum.

If # is a positive integer and M is a subset of B", the statement that M
is a point-like subset of H"” means that M is a compact continuum such
that for any point p of E®, B*—M is homeomorphic to E"— {p}. The
statement that G is a poini-like decomposition of Z™ means that G is an
upper semi-continuous decomposition of E" into point-like subsets of K™

If » is a positive integer and M i3 a subset of E”, the statement
that M is cellulor in E" means that there exists a sequence C, C,, ...
of n-celly in E" such that (1) if ¢ is any positive integer, Oy CIntC;

and (2) M Or= M. It is known that if M is any subset of B", then M
1=1

is point-like in " if and only if M is cellular in B"; see [13] for n = 3.

We use Bd and Cl to denote topological boundary and closure,
respectively. The usual metric for E" is denoted by d, and if M C ",
diam M denotes the diameter of M. If M CE" and ¢ is any positive
number, then V(M,:) denotes the open e-neighborhood of M. If K is
an n-cell, then IntK denotes the interior of K.

Throughout this paper, n denotes some definite positive integer.

3. Preliminary lemmas.

Lemua 1. Suppose that @ is a monotone decomposition of " such
that P[Hg] is 0-dimensiongl, and W 43 an open covering in T" of Heg such
t.ha,t each set of U is bounded and i3 a union of elements of G. Then there
s an open covering U in E" of Hy such that

(1) the sets of U are mutually disjoint,

(2) each set of U lies in some set of W, and

(3) if VeV, BAV and Hg are disjoint.

* ©
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Proof. If U ¢ WU, P[U]is open in B"/@. Since P[Hg] is 0-dimensional,
then if # ¢ P[Hg], there is a set W, open in B"/@ and such that (1) @ ¢ Wy,
(2) there is a set U of U, such that W, C P[U], and (3) Bd W, and P[Hg]
are digjoint. Now {W,: % ¢ P[Hg]} covers P[Hg] and there is a countable
subset {Wy, Wy, ...} of {W,: ze P[Hg]} that covers P[Hg]. For each
positive integer 4, let ¥; denote P [W].

Now {¥;, Y,, ...} is a countable covering of Hg by sets open in E"
such that for each positive integer 4, (1) ¥ lies in some set of U and (2)
BdY: and Hg are disjoint.

To see that (2) holds, suppose for some positive integer ¢, Bd ¥,
intersects some non-degenerate element g of @. Since Y; is a union of
elements of &, g and ¥; are disjoint. Then g contains a limit point of ¥;,.
Hence the point g of E"/G is a limit point in B*/G of W;, and is therefore
a boundary point of W;. Since g ¢ P[Hg], this is a contradiction, and
therefore (2) holds. '

Let V, denote ¥Y,, and let ¥V, denote

Y,— 1y, .

Suppose that k is a positive integer and that Vi, V,, ..., Vy are defined.
Let Viy1 denote

Yen—OILJ 4.
Then for each positive integer m, V,, is defined, and let U denote the
collection {Vy, V,, ...}. ' )

‘We shall show now that if 7 is any positive integer, BAV; C O BdY;.
Clearly BdV, C BdY,. Suppose that i is any positive integer 7a—,rlxd it is
true that if m is any positive integer less than or equal to 4, BdV,, C L"j BdY;.
Since ) =

Vi = Ten— QLY Vi,
it follows that )
BdVip CBd Yiis u [iq BAV.

By the inductive hypothesis, then,
i+l
BdV., CUBA4,.
=1

Hence the desired result follows by induction.

Suppose now that ¢ is any positive integer. It is clear that V:C Y;
and hence V; lies in some set of W, Further, since for each positive integer 7,
BdY; and Hg are disjoint, it follows from the results of the preceding
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paragraph that BdV; and Hg are disjoint. Further, Vi, Vay ... are mutually
disjoint open subsets of B" by construction.

To see that U covers Hg, suppose that ¢ is a non-degenerate element
of G Now g is contained in some one of Yy, ¥y, ..., and let ¢ be the least
positive integer j such that g C ¥y. It is clear th t g C V¢, and hence U
covers Hg. Hence Lemma 1 is proved.

LEmma 2. Suppose that the hypothesis of Lemma 1 holds. Then there
is a covering D of Hg by sets open in " such that

(1) each set of D lies in some set of Us,

(2) the sets of D are mutually disjoint,

(3) if De®D, BAD and Hg are disjoint, and

(4) if D €D, there is a set g of G such that g C D and D C V (g, diamg).

Proof. Let {Vi,V,,..} denote an open covering of Hg satisfying
the conclusion of Lemma 1. Suppose that ¢ is some positive integer such
that V, exists. Vs is compact, and BdV; and Hg are disjoint.

Let My be the union of all the sets of @ lying in V; and having
diameter greater than or equal to 1. By upper semi-continuity of G, M, is
compact. If g € & and g C My, there is an open set T, in " such that (1)
gC Tyand T, CVy, (2) BT, and Hg are disjoint, and (3) T, CV (g, diamg).
Since My is compact and {T';: g ¢ & and ¢ C My} covers My, there exist
finitely many distinet sets gi, giay «ry g1m, 0Ff G lying in My such that
{Toys Topys ooy Loy cOVErs My, If j=1,2,..,m, lot Ty denote Loy

The sets 1y Gizy vov s G1m, ATO mutually dlsjoint compact sets. There
exist mutually disjoint open sets Ly, Lyg, «.. y Lym, sch thatif j=1,2, ..., m,,
91 C Lngy Ly C Ty, and Bd.Ly; and Hg are digjoint. Define sots Xu, Xm,
and X, as follows:

Xy = Ty (m[@ L)),

Cl[ULu}]uLn,

Xlz= {(Tm Oan

.................................................

my~1
= (Tym,— OL[ 101 X]) © L, .

The sets Xy, X, ooy Xum, have the following properties:
() Xy Xyay ey Xim, are mutually disjoint open sets.

@ Ifi=1,2,..
@) Ifj=1,2,..
(4) {Xu, Xy, ...

» My, BAXy; and Hg are disjoint.
y Xim,} covers My .

s My Xy C Ty, g1y C Xy amd Xy, C V (g1, diam g,5).

icm°®

EBmbedding decomposition spaces of B" in B™ 5

Properties (1) and (2) are easily established, using the definitions
of Xy, Xipy oory and Xy,
Proof of (3). Since

Bd.Xy, C (Bd Ty) v (E"JleLu) ,
L

it follows that Bd Xy, and Hg are disjoint. If j=1,2, ..., m—1,

7 m,
BdXs41 C (BATyp40) v (U BAXy) © (U BaLy),
r= =7 .

and an inductive proof shows that if j=1,2, ..
are disjoint.

Proof of (4). Suppose that g ¢ & and g C My;. Let j be the integer
such that g C Ty;. Now if k-— 1,2,..,j—1, BdTy; and g are disjoint,

y My, BdX,; and Hg

and hence g is disjoint from U T

Suppose that g is not contamed in any one of Ly, Ly,, ..., Lym, - Then
by an argument similar to one used in the preceding paragraph, g is

disjoint from @le. Nowif k=1,2,..,j—1, C1X,;; C 01Ty, and hence
k=1

9 C Ty— (O X~ (0 () Zul).
K=1 K=j41

But this implies that g C X;;.
Clearly if k=1,2,..,m and g C Ly, then g C Xy;.
Suppose now that j = 1. It is necessary to consider only the case

m;
where g and Ulle are disjoint. In that case,
k=1

g C Ty—(CY lglzmn;

it follows that g C X,,. This establishes property (4).
my m;
Now kU Xy is open, and Bd(uxlk) and Hg are disjoint. Let Vi
=1 k=1
denote
my
Vi— G Xkl -
k=1
Then V, is open, lies in Vy, and has the property that BdV and Hg

are disjoint. In addition if g ¢ & and ¢ CV,, (diamg) < 1.
Let M denote

U{g=9¢6G,9CVy, and (diamg) > 1/2}.
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There exist mutually disjoint open sets Xy, Xy, ..., Xom, having proper-
ties, relative to M and Vi, analogous to properties (1), (2), (3), and (4)
stated above for Xy, Xip, ooy Ximy-

Let this process be continued; either it terminates after finitely
many steps or it continues idenfinitely. Let D; denote the countable

collection
oy Xomay oo}

Dy is & collection of mutually disjoint open subsets of B” covering Vi ~ Hyg
and such that ’

(1) each set of Dy lies in ¥y,

(2) it DeD;BAD and Hg are disjoint, and

(8) if D € Dy, there is a set g of @ such that ¢ C D and D C V (g, diamyg).

{Xlll 'X127 e le:? Xﬁl)’ XBZ? .

Let D denote @ D;. It ma.j be shown that D satisfies the conclusion
=1

of Lemma 2.

Suppose that £ is a collection of subsets of a metric space. The state-
ment that 4 is a null collection means that if ¢ iy any positive number,
there exist at most finitely many sets of £ having diameters greater
than .

Lemua 3. Suppose that the hypothesis of Lemma 1 holds and tha,
in addition, if B is any bounded subset of I",

U{U: UeW and U indersects B}

18 bounded. Then the collection D constructed in the proof of Lemma 2 has
the following property: If B is any bounded subset of T",

{D: DeD and D intersects B}

i8 a null collection.
Proof. Suppose that there is a bounded subset B of B™ guch that

{D: DeD and D intersecis B}

is not a null collection. Then there is some positive number ¢ and. & se-
quence Dy, D,, ... of distinct sets of D such that for each positive integer 1,
diam Dy > &. Since

UAT: UeU and U intersects B}
is bounded, p D; is bounded.
=1

For each po§itive integer ¢, there is a set gy of @ such that g1 C Dy
and D; CV (g, diamgs). By [12], Chapter I, Theorem 59, the sequence
915 02, - has a convergent subsequence Iney Gngy --.. For each positive

icm°®

Embedding decomposition spaces of E" in B 7

integer 4, (diamgy,) > ¢/4. This may be proved since for each positive
integer ¢, (diam Dy) > ¢ and Dy, C V (g, diamg,,).

It follows, by upper semi-continuity of @, that g,,, Gnay --» COLVErgeS
to a-subset of a non-degenerate element g, of G. Since g, is non-degenerate,
there is a'set D, of D such that g, C D,. Since there is at most one positive
integer % such that D,= Dy, it follows that D, contains at most one
of the sets gn,, gn,y ... This is contrary to the fact that Onyy Gngy - COM-
verges to g,. This contradiction establishes Lemma 3.

4. Results on homeomorphisms and isotopies. In this
section we shall use the results of section 3 to construct homeomorphisms
and isotopies having certain properties. We shall establish, in Theorems 1
and 2, the equivalence of certain pairs of conditions that are useful in
the study of decompositions. )

LeMmA 4. Suppose that {Vy, V,, ...} is a countable collection of mutually
disjoint bounded open sets in B such that if B is any bounded subset of ",
{Vi: i is a positive integer and V; intersects B} is a null collection. Suppose
that hy is a homeomorphism from E™ into B and for each positive integer 7,
hi is a homeomorphism from Vi into ho[V] such that hBdV; = hy{BA V.
Let f be the function with domain E™ and such that

() ifaog @ Vi, f(@) = holo), and

(2) if © is a positive integer and x € Vi, then f(w) = hi(z).

Then | is a homeomorphism from H" into E™ If hy is onto E" and for
each positive integer i, hy is onto h[V.], then f is onto E™

Proof. It is clear that f is well-defined, from E* into B", and one-
to-one. We shall show now that f is continuous. Let V, denote #"— (C1 G V).

=1
Suppose that z « B*. If there is a non-negative integer i such that
@ € Vs, then since f [V = |V, it is clear that f is continuous at #. Suppose
o0
then that #¢Cl | )BdV. and that #,,,,.. is a sequence of points of
i=0

B"— {w} converging to . If there exists a finite subset {V,, Vi, ..., Vi)
of {Vy, V1, Vs, ...} such that for each positive integer §, #; belongs to one

—_ — —_— m
of Vi, Viyy ooy Vi, then it is easy to see that ze() BdVi and that
k=1

f@), f(#,), ... converges to f(z). Now suppose that there exist infinitely
many distinet sets Vs, Vy,, ... and a subsequence zy,, @,, ... of @, a,, ...
such that for each positive integer k, w;, ¢ Vs,. Suppose that U is any
bounded neighborhood of f(x).

Now {Vi: @ is a positive integer and V; intersects h™'[UJ} is a null
collection. Since #;, @, ... converges to #, then all but finitely many of
Vi, Viyy ... intersect h™'[Ul, and hence {Vi, Vi, ...} is a null collection.
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Tt follows that all but finitely many of h[Vs], kolVe], ... e in U. It is
easy now to show that 7(z,), f(®,), ... converges to f(x). Hence f is con-
tinuous ab @.

For each non-negative integer j, hs[V;] is an open subset of E"
Further, if B is any bounded subset of B", {h:[Vi]: 4 is a positive i.ntofgm"
and hi[Vi] intersects B} is a null collection. Hence an argument similar
to that used to show that f is continuous may be used to show that f*
is continuous. Therefore f is a homeomorphism. It i clear thatb if h, is
onto E™ and for each positive integer 4, hy is onto he[V1], then f is onto B",

We shall now apply Lemmas 3 and 4 to establish the equivalence,
for a certain class of decompositions, of two conditions which insure the
exigtence of homeomorphisms that shrink certain sets to small size.

TarorEM 1. Suppose that @ is a monotone decomposition of ™ such
that P[Hg] is 0-dimensional. Then the following two statements are equiv-
alent:

(1) If U is any open set containing Hg and ¢ is any positive number,
there exisis a homeomorphism h from H" onto B* such that

(a) if e B"— U, hiz) =, and

(b) if g6, (diamh[g]) < e.

(2) If U is any open set containing Ha, ¢ is any positive number, and f
i8 amy homeomorphism from B" onto B", then there ewists & homeomorphism h
from B* onto E™ such that

(a) if ®e B"= U, hiz)= f(»), and

(b) if g €@, (diamh[g]} < e.

Proof. It is clear that (2) implies (1). To show that (1) implies (2),
let U be an open set containing Hg, let & be a positive number, and let f
be a homeomorphism from E" onto E*.

If g € @, let 7, be min{1, diamg}. If g ¢ G, there is an open subset W,
of B* such that W, is a union of sets of &, yC W,, W,C U, and W, C
V(g, vo)- Let W be {W,: ge @) It is clear that W is an open covering
in B* of Hg such that (1) each set of W is bounded and is a union of sets
of G, and (2) (I {W: WeW})C U. We shall show that if B is any bounded
subset of H",

. U{W: WeW and W intersects B}
i8 bounded.

Suppose that B is a bounded subset of E", Let B’ denote V(B,2).
It follows from the way in which the setg of W are constructed that if
g« & and W, intersects B, then ¢ intersects B’. Now

U {g: g intersects CLB'}
is a compact set ([12], Chapter V, Theorem 2). It follows that
U{W: WeW and W intersects BYCJ{W,: ge@ and g intersects B'};

@ ©
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further,
(U{Wy: g e G and g intersects B'}) C
V(U {g: g« Gand g intersects B'}], 1).

Hence |J{W: W e W and W intersects B} is bounded.

By Lemma 3, there is a covering D of Hg by bounded open subsets
of " such that

(1) each set of D lies in some set of W,

(2) the sets of D are mutually disjoint,

(3) if B is any bounded subset of E", then

{D: DeD and D intersects B)

is a null collection, and
(4) if DeD, BAD and Hg are disjoint.

Let Dy, D, ... denote the distinct sets of D and let 7 denote || D;.
T=1

Suppose that ¢ is a positive integer. Since f is a homeomorphism
and D is bounded, then f|D; is uniformly continuous. Thus there exists
& positive number &; such that if X is any subset of D; such that
diam X < ¢, then diamf[X]< e By hypothesis, there exists a home-
omorphism %; from E" onto E™ such that

(1) if © e B"—V, then ki(z) = &, and

(2) if g € G, then (diamk;[g]) < &.

Let h; denote (f o k;)|.D;.

For each positive integer 4, ks is & homeomorphism from D; onto f[.D;]
such that hi|Bd.D;= f|BdD;. Let h be the function with domain E®
and such that

(1) if 2 B"—V, h(x) = f(z), and

(2) if ¢ is a positive integer and z ¢ Dy , then h(z) = hi(z).

By Lemma 4,  is a homeomorphism from E* onto E”. Since V C U,
it is clear that if ® ¢ B"— U, h(#) = f(#). Now suppose that g is any non-
degenerate element of @. By construction, there is a positive integer i
such that gC.D;. Then (diam#¥[g]) <& and hence (diambi[g]) < e.
Therefore (diamh[g]) < e. Henece (1) implies (2), and Theorem 1 is proved.

It is known that if @ is a point-like decomposition of E® such that
P[Hg] is either a countable set or a compact 0-dimensional set, then
E°J@ is homeomorphic to B® if and only if condition (1) of Theorem 1
is satisfied ([1], [2]).

Suppose that H is a homotopy from E" x [0, 1] into B™. If ¢ {0, 1],
then H; denotes the function from E" into E" such that if x ¢ E*, Hyz) =
H(z,1). The statement that ¢ is an isofopy from E™ x [0, 1] into E” means
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that ¢ is a homotopy from E" x [0, 1] into B such that if ¢ ¢ [0, 1], ¢, iy
a homeomorphism.
By using methods similar to those used in the proofs of Lemma 4
and Theorem 1, the lemma and theorem below may be proved.
Lenma 5. Suppose that {Vy, Vs, ...} is a countable collection of mutually
disjoint bounded open seis in B" such that if B is any bounded subset of B,
{Vi: i is a positive integer and V; intersects B}

is o null collection. Suppose thai L is a homeomorphism from B" into H",
and for each positive integer i, h* is am isolopy from Vix [0, 1] into KV
such that if te[0,1], hz|BdVi=h|BdV:. Suppose that ¢ is the function
with domain B" x[0,1] and such that

(1) if @ e B"— (Vs and te[0,1], ¢(z,1) = h(w), and
=1

(2) if © 48 @ positive integer, ® ¢ Vi, and ¢ € [0, 1], then ¢(a, t) = B} ().

Then @ is an isolopy from E" x[0,1] into B". If h iz onto E™ and for
each positive integer i and each number t of [0,1], ki is onto RV, then
for each number ¢ of [0, 1], ¢, is onto E™ '

TEROREM 2. Suppose that @ is a monotone decomposition of ™ such
ﬂZMtP[HG] 18 O-dimensional. Then the following two statements are oquiv-
alent:

(1) If U is any open set containing Hg and & is any positive number,
there is an isofopy @ from E" x[0,1] into B® such that

(a) o @5 the identity from E" onto H",

(b) if te[0,1], @ is onto B",

(¢) if e E"~U and t [0, 1), go) = o, and

(d) if 9@, (damg[g]) <.

. (2) If U is any open set containing Hg, ¢ is any positive number, and
18 any homeomorphism from E" onto E*, there ewists am isotopy @ from
B"x[0,1] into B™ such that

(a) =1,

(b) if t€[0,1], ¢ is onto B",

(¢) if e B~ T and t [0, 1], gy() = f(w), and

(d) if g €@, (damep[g]) < s.

5. Construction of isotoples. This section is devoted to the
construction of isotopies to be used in establishing the embedding theorem
of section 6. We first introduce some additional notation.

ﬂihlroughout theremainder of this baper, we shall regard E" as a subset
of B™ If % and y are two distinct points of some Huclidean space, {wyd
denotes the closed straight segment from # to y. If I i any subsetyof hog

* ©
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and p is a point of F"*'—E", then C(p, M) denotes the cone from p

over M; hence
Olp, M) = U {<pw)>: w e M} .

We shall use B4+ to denote the set of all points of B whose (n +1)st
coordinates are positive, and E”™ to denote the set of all points of E***
whose (n--1)st coordinates are negative.

In the construction of isotopies to be used in section 6, we first
construet isotopies on bounded open sets whose boundaries are disjoint
from Hg and which shrink the non-degenerate elements of @ to small size.

Lemma 6. Suppose that @ is a monotone decomposition of E™ such
that P[Hg] is 0-dimensional, V is a bounded open subset of ™ such that
BAY and Hg are disjoint, p e By, g e B*™, and 6 is a positive number.
Then there ewists an isotopy ¢ from E"T %[0, 1] into B™* such that

(1) @, s the identity,

(2) if te[0,1], ¢ is onto E™,

(3) if te[0,1] and » e B""'—[C(p, V) v Clg, V)], then pfx) = x, and

(4) if g G and gCV, then (diame,[g]) < 6.

Proof. Let K denote

U{g: 9¢@, gCV, and (diamg) = d/4}.

K is compact since G is upper semi-continuous, ¥V is bounded, and BdV
and Hg are disjoint.

Now we shall show that there is a sequence U,, U,, ... of open subsets
of V such that

(1) £KC Uy, and

(2) it ¢ is any positive integer, U;C U;y,, and BdU; and Hg are
disjoint.

Since BdV and Hg are disjoint, P[V] is open in E"/@. Further, P[K]
is a closed set contained in P[V]. Since P[Hg] is 0-dimensional, there
exists, by [9], p. 15, an open set W, in E™/@ such that P[K]C W,
W, C P[V], and the boundary in B/G of W, is disjoint from P[He). Let U,
denote PT[W,]; U, is an open subset of V such that K C U;, U, CV,
and BdU, and Hg are disjoint.

By an analogous argument, it may be shown that there is an open
subset U, of V such that U, C U,, U,CV, and Bd U, and Hg are disjoint.
By a continuation of this process, there can be constructed a sequence
Uy, U,, ... of open subsets of V having the properties stated previously.

Let 7 be a point of ¥ such that if weV, d(wx,p)< d(r, p). There
is a finite set

{nﬂl Ty TCay -'-7,75m}

of n-hyperplanes of B""') each parallel to E™, such that
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(1) p e gy om = E” and if ¢=1,2,...,m, m 18 below m;_,,

(2) (diam[C(p, V) ~n m]) <0, and

(8) if when ¢=0,1,2,..,M, 7 is the point common to {pr> and 7,
then if =1, 2, ..., m, (diam {F_17d) < 8/4.

¥i=1,2,..,m,let 8 denote the set of all points of B"** that are
either on =y, on m;_;, Or between m;—y and .

There exists a homeomorphlsm f from ¥ into O(p, ¥) such that

1) if z ¢V, f(x) is an interior point of {pw),

iti=1,2,..,m, [[BAU]JCa,
ifi=2,3,..,m

f[Ui— U:ia]C8in Clp, V),
and () if © e V—Up, then f(z) ==

Such a homeomorphism may be constructed using a coordinate
system for C(p, V)— {p} which we ghall deseribe now. Suppose that if
meE”“, its usual coordinates are denoted DY (%, %oy «ovy Ty Bpor). If
ze0(p, V)—{p}, let (41, Yay - Yny Yns1) denote coordinates for o obtained
as follows Let 2’ denote the point of V such that @ e (pa’>. Then lot
Y1, Yuy oory Yn D& @1, 5, ..., T, Tespectively, and let ¢pii be piy.

To construct f, first define ]‘ on BdV, U,, V—U,, and each of
BdU,,BdUs,...,Bd U, so that (1), (2), (3), (4), and (6) above are
satisfied. By using the coordinate system described above and Urysohn’s
lemma, it is easy to define f on the remaining part of ¥V so that (1) and (5)
above are satisfied.

Now it is easy to construct an isotopy ¢ satisfying the conditions
of the conclusion of Lemma 6. We define ¢ so that the following con-
ditions hold:

(1) @, is the identity.

@) I @ e B"M—[0(p, V) © Olg, V)] and te[0, 1), pa) = w.

(3) X @ eV, gu(2) = f(a).

(4) If eV and te[0,1], then

(@) if y € {p@), @dy) € <py>, and
(b) it y e <gmd, puy) € (g@wd> v <wf (@)

(B) It weV and y e {pwd, gu(y) € <pf(@)).

It is clear that conditions (1), (2), and (3) of the conclusion of Liemma 6
hold. Now suppose that g e @ and gCV. If g CU,, then since ¢,[ U;]C 7 and

(diam[m ~ O(p, 7)) < 8,
it follows that (diame,[g]) < 8.

Embedding decomposition spaces of B* in B! 13

Suppose that ¢ = 2,3, ..., m, and g C (U;— U;_). Then (diamg) < §/4
by definition of K, Uy, U,, .... Suppose that # and y are any two points
of g. Let o’ and y' be the points of m;—; ~ {pad> and n;_, ~ {py), respectively.
It is clear that

a@,y') <d(z,y).

Now gy(#) and ¢,(y) lie in 8¢, and it follows from the construction of the
hyperplanes 7o, 7y, ..., Ty that

dla  pu@) < 8/4 and Ay, @(y)) < 5/4.
Hence d(py(@), ¢.(y)) < 35/4, and it follows that

(diamg[g]) < 0.

If gCV—,U, then (diamg) < 6/4, p,lg is the identity, and hence
(diame[g]) < 6.

By construction of Uy, Uy, ey Unm, if g€ @ and gCV, then either
gC U, gCV—U,, or there is an integer ¢ such that ¢=2,3,..,m
and g C (Us—U;-1). Hence if g ¢ G and ¢ CV, (diame,[g]) < 6. Therefore
condition (4) of the conclusion of Lemma 6 holds, and Lemma 6 is proved

LeMMA 7. Suppose that G is a monotone decomposition of E", U is
a bounded open subset of E™, V is an open subset of E" such that VC U
and BdV and Hg arve disjoint, and K is an n-cell lying in U and such that
V CIntE. If 6 is o positive number, there exist an isotopy ¢ from B™' x
% [0,1] into "' and a compact set S such that

(1 @ 18 the tdentity,

2) if te[0,1], ¢ is onto E**,

( Y8CU, S~AE*'=7V, and if z < BV~ 8 and t<[0,1], p(w) = #,
and

4) if ge G and gC7V, then

(diame,[g]) < 6.

Proof. There is an n-cell M such that M CIntK, V CInt M, and
Bd M is bi-collared (or, has a cartesian product neighborhood). By [5],
there is & homeomorphism & from E" onto B such that h[M] is B, where

= {m: v < E" and d(x,0) <1}.

Let & be the extension of & to ™ defined as follows: If z ¢ F" and s ¢ B,
then k(z, s) = (h(@), s).

Now k[ U] is open in E"*' and B is a compact subset of k[ U). There
is a positive number b such that (B x [—b, b]) C k[ U]. Note that B x [—b, b]
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is a convex (n--1)-cell B’ containing E[V]. Let p and ¢ be points of
B A (IntBY) and E™ ~ (IntB’), respectively. Then

[0(p, K[V]) © O(q, KVD] C B’ .

Since k is a homeomorphism, there is a positive number & such that
if X is any subset of B’ of diameter less than e, then (diam ™[ X]) < 9.
By Lemma 6, there is an isotopy y from E™™ %[0, 1] into "™ such that

(1) ¥, is the identity,

(2) i t€[0,1], » is onto B,

(3) if t [0, 1] and @ e B*"*—[0(p, K[V O(g, k[V])], then. yy(w) -= @,
and

(4) if ge @ and ¢C7V, then

(Qiam y[B[gT]} < & .

Define a function ¢ from E™* x [0, 1] into B as follows: It t € [0, 1],
let ¢ be k™ y.k. It is clear that ¢ is an isotopy from B"** x [0, 1] into A"
satisfying conditions (1) and (2) of the conclusion of Lemma 7.

Let 8 denote &7'[C(p, k(7)) v O(g, K[V])]. It is casy to sec that
condition (3) of the conclusion of Lemma 7 holds.

Suppose that ge@ and ¢gCV. Then by construction of ¥,
(diamy,k[g]) < & and hence (diamk y,k[g]) < 6. Hence (diameg]) < 4,
condition (4) of the conclusion of Lemma 7 holds, and Lemma 7 is proved.

Each of the preceding lemmas and theorems is valid for monotone
decompositions of E". In the following lemma, we restrict our attention
to poini-like decompositions.

Lemua 8. Suppose that G is a point-like decomposition of E"™ such
that P[Hg] is 0-dimensional. Suppose that V is a bounded open subset
of B" such that BAV and Hg are disjoint. Suppose that ¢ and b are positive
numbers. Then there is an isotopy ¢ from E"* x[0, 1] inte B such that

(1) @, is the identity,

(2) of te[0,1], @ is onto B,

(8) i @ e B[V (—b,b)] and ¢ €[0, 1], pia) = @, and

(4) if ge@ and gCV, then (diamepg]) < e.

~Proof. If for each set g of ¢ contained in V, (diamg) < & then
define ¢ so that if t [0, 1], ¢ is the identity from B"™ onto I"™. Suppose
now that there is a set g of ¢ such that g C V and (diamg) > e Let K be

Ulg: 9@, gCV, and (diamg) > &);
K is a compact subset of V.

Suppose g « & and g C V. Since @ is a point-like decomposition of B,
there is an n-cell M, such that g C Int M, and M, CV. Since G is upper

1 ©
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gemi-continuous and P[Hg] is 0-dimensional, there is an open subset W,
of B" such that g C W,, W,CInt M,, and Bd W, and Hg are disjoint.
Then {W,: geG and gC K} covers K and hence there exist finitely
many sets gi, goy --vy gm of G contained in K such that {W,,, Wy, ..., W, }
covers K. If i = 1, 2, ..., m,let M;and W, denote M, and W,,, respectively.
Let R, denote Wy, let R, denote W,— E,, and if 1= 2,3, ..., m—1,

1

let Ry denote Wi—|J Ri. It is clear that {B,, Ry, .., Rn} i3 a set
7=1

of mutually disjoint open subsets of E" covering K such thatifi=1,2, ..
..., m, B CInt M;, and BAR; and Hg are disjoint.

Let U denote ¥V x (—b, b).

By Lemma 7, there exist an isotopy ¢* from B"™ x[0, 1] into ™"
and a compact subset §; of E"™ such that

(1) gp is the identity,

(2) if te[0,1], ¢i is onto E",

(3) 8,C U, 8, ~nE"= Ry, and if # e B"™— 8, and ¢ [0, 1], ¢i (2) = =,
and

(4) if g € @ and g C By, then

(diameilg]) < &.

Since &, is compact, there is a positive number &, such that if X is
any subset of E™™' of diameter less than 4, then

(diam@i[X]) < e.

Observe that if £¢[0,1], ¢i|[(E"—R,) is the identity on B"—R;.

There exist an isotopy ¢* from E™' x [0, 1] into E"™ and a compact
subset 8, of B*™ such that

(1) ¢¢ is the identity,

(2) if t€[0,1], ¢ is into B,

3) 8,C U, 8 ~ B" = By, and if & e B""'— 8, and ¢ [0, 1], ¢i(z) = 2,
and

(4) if g€ @ and g C R,, then

(diam gig]) < 8, .

There i a positive number 8, such that if X is any subset of B*
and (diamX) < 6,, then (diamgi[X])< d,. Observe that if ?e[0,1],
#E|(B"—R,) is the identity on EF"—R,.

Continue this process; there exist isotopies 9%, ¢*, ..., g™, each from
B %[0, 1] into E"", compact subsets S, S, -, Sm, and positive num-
bers d,, 65, ...y Om sSuch thatb
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(1) if i=3,4, ..., m,
(a) g is the identity,
(b) if t€[0,1], ¢ is onto B,
(¢) 8:CU, SinE"=Ri and it e B8 and ¢[0,1],
oi(#) = @, and
(d) it g e ¢ and g C R4, then
(diamgi[g]) < d¢

and (2) if i=3,4,..,m—1 and X is any subset of E™* such that
(diam X) < 8i41, then (diameX7]) < &.
Observe that if i = 3, 4, ..., m, and ¢ € [0, 1], gi| 0" — Ry is the identity
on E"—R;,.
Define a homotopy ¢ in the following way: Let
O=f<h<bh<.. <lpa<ip=1

be a partition of [0, 1] into m subintervals of equal length. Then define ¢
ag follows:

by, @@= ‘Pm("v7 m(t"“to)) .
by @@= ‘anl(‘pﬁ;n(m)y m (f— tl)) .

Hh<ti<tyr, @@ 1)=¢" (@I P Lol @), m(t—t)) .

Bt <t<tm, @@,1)=0¢ (@1 o' gl'(®), m(l—lm_1)) .

It is clear that ¢ is well-defined and is an isotopy from B™*x[0,1]
into B**'. Clearly conditions (1) and (2) of the conclugion of Lemma 8
are satisfied, and since each of Sy, S,, ..., 8, lies in U, condition (3) also
holds.

Suppose that g « @ and g CV. If g does not lie in any one of R, Ry, ...
wry B, then (diamg) < & and ¢[g] ='g, and hence (diame[g]) < e.

Suppose now that there is a positive integer j such that j == 1, 2, ..., m
and g C R;. Then

m-—1

AR R

It i=j+1,j+2,..,m, and ¢ [0, 1], then ¢f|g is the identity on g, and
hence
Plg] = pigl...¢lg] .

Now (diamg¢{[g]) < 87, and hence
(diame]~*plg]) < &, .

Embedding d position spaces of B" in E™* 17
Similarly ,

(diam ¢! el " ¢llg]) < 8;-s

(damgigi...¢lg]) < &y,
and hence

(diampigf...¢llg]) < e .

Therefore (diame,[g]) < e. Hence condition, (4) of the conclusion of
Lemma 8 helds, and the proof of Lemma 8 is completed.

We are now ready to prove the main result of this section. In Lemma 9,
Wwe construet an isotopy by pasting together isotopies of the sort con-
structed in the proof of Lemma 8.

Lemma 9. If @ is o point-like decomposition of E* such that P[Hg]
is 0-dimensional, U is an open subset of B"™ contwining Hg, and ¢ is a posi-
tive number, there is an isotopy ¢ from BT x[0,1] into B such that

(1) @, is the identity,

(2) if t€[0,1], @ is onto E™, .

(3) if 2« B""'— U and te[0,1], p(a) = 2, and

(4) if g €@, then (diameg]) < e.

Proof. By an argument similar to one used in the proof of Theorem 1,
it may be proved that there is a sequence Vi, V2 Vs, ... of mutually
disjoint bounded open subsets of B"™ such that

(1) {V., 7y, ...} covers Hg,
()it i=1,2,.., ViCU, and BaV; and Hg are disjoint, and
(3) if B is any bounded subset of ",
*{Vi: @ is a positive integer and Vi intersects B)
is a null collection.
There is a sequence by, by, ... of positive numbers, converging to 0,
and such that if ¢=1,2,...,
(Vi X (— by, bf)) cU.
If 7 is ahy positive integer, let U; denote Vi x (— b; , bi).
It is easy to see that (1) if ¢ and § are distinct positive integers,
U: and U; are disjoint and (2) if B’ is any bounded subset of B,
{Us: i is a positive integer and U, intersects B’}

is a null collection.

If 4 is any positive integer, there i, by Lemma 8, an isotopy ¢! from
B" x[0,1] into B™" such that

(1) ¢} is the identity,
(2) if te[0,1], ¢ is onto B,

Fundamenta Mathematicae, T. LXT 2
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(3) if @ e B"'— U; and ¢ [0, 1], ¢i(#) = @, and
(4) if g €@ and gCV;, then

(diamgi[g]) < &.
Let ¢ be the homotopy defined as follows:
. e
LW Ie eE““—iU U; and t€[0,1], then g) = .
=1

(2) I i=1,2,.., e Uy, and t [0, 1], then g @)= ¢i(x).

By Lemma 5, ¢ is an isotopy from E"** x [0, 1] into B It is easily
seen that conditions (1), (2), and (3) of the econclusion of Lemma 9 hold.
If g is a non-degenerate element of @, there is a positive integer ¢ snch
that ¢ C Vs, and hence

(dlameig]) < e.
Since ¢,|Vi = ¢¥|V;, it follows that
’ (diamey[g]) < e .

Hence condition (4) of the conclusion of Lemma 9 holds, and Lemma 9
is proved.

6. An embedding theorem. In the embedding theorem that
we prove, the embedding is realized as the final stage of a pseudo-isotopy
from E™* x[0,1] into E™ that starts at the identity. The statement
that ¢ is a pseudo-isotopy from’ B"** x[0, 1] into B means that ¢ is
a homotopy from B"** x [0, 1] into B™** such that if t [0, 1), ¢y is a home-
omorphism.

We statie without proof a result due to Bing. In [3], Bing points out
that his argament for Theorem 1 of [3] may, in certain cases, be modified
to show the existence of a pseudo-isotopy with certain properties. By
using Theorem 2 and a construction patterned after Bing’s proof of
Theorer 1 of [3], the following theorem can be proved.

THEOREM 3. Suppose that @ is a monotone decomposition of H" such
that P[Hyg] is 0-dimensional. Suppose that if U is any open subset of "
containing Hg and & is any positive number, there is an isotopy u from
B %[0, 1] into B such that

(1) p, is the identity,

(2) if te[0,1], p is onto E",

(3) if e B"—U and t<[0, 1], w(x) =, and

(4) if g €@, (diamp[g]) < e.

Thenif W is any open set in B containing Hg, there is a pseudo-isotopy ¢
from B" x[0,1] into B such that

Embedding decomposition spaces of E® in E" 19

(1) @, is the identity,

(2) if te[0,1], ¢ is onto B",

() if te[0,1] and z ¢ B"—W, gfz) = a,

4) 6= {p1'[9]: y ¢ E"}, and

(8) @u[(B"—Hg) is a homeomorphism from E'— Hg onto B"— q[Hgl.

We are ready now to prove the main result of this paper.

TEBOREM 4. Suppose that @ is a point-like decomposition of E™ such
that P[Hg] is 0-dimensional. If W is any open set in B™ containing Hg,
there is a pseudo-isotopy @ from BT x[0,1] into E™* such that

(1) @, %8 the identity,

(2) if t€[0,1], @ is onto B™,

3) if @ B"'—W and t [0, 1], pilo) = =,

(4) 6= {pi"[y]: y e p[ "]}, and

(8) ¢u/(B"— Hg) is a homeomorphism from E"—H, onto ¢[E"— Hg).

Proof. Let F be the decomposition of E"** guch that feF if and
only if either f e & or for some point p of B*'—F", { = {p}. Then F is
a monotone decomposition of B"*! and Hp = Hg.

If U is any open subset of B™ containing Hy and & is any positive
number, then by Lemma 9, there is an isotopy u from E*** x [0, 1] into E***
such that

(1) po is the identity,

(2) if t€[0,1], w4 is onto E™*,

(3) if w e B"™— U and t [0, 1], wa) =, and

(4) if g e @, (diam gfg]) < e

Then the existence of a pseudo-isotopy ¢ satisfying the conclusion
of Theorem 4 follows from Theorem 3.

CororLARY 1. If @ is a point-like decomposition of B and P[Hg]
is 0-dimensional, then B"|G can be embedded in E™,

Proof. By an argument similar to one used in the proof of Theorem 1,
it may be shown that there is a covering {V;, V,,...} of He by mutually
disjoint bounded open subsets of ™' such that if B is any bounded
subget of B,

U {Vi: © is a positive integer and Vi infersects B}
is bounded. Let U denote | ) Vs.

=1
By Theorem 4, there is a pseudo-isotopy ¢ from E*™ x [0, 1] into B™**
such that
(1) @, i8 the identity,
(2) if t [0, 1], ¢ is onto B,
2%
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8) if @ e BT~ U and ¢ ¢[0,1], @(2) = 2,

(&) 6= {pr"¥]: y e p[E"]}, and

(3) @.(E"—W) is a homeomorphism from (B"—W) onto ¢[H"— Hg).

Tet f denote ¢;|E" and let & denote the function Pt from E"|G
onto @:[E"].

Tt is well known ([7], D. 136) that % is one-to-one and continuous.
Tn order to show that % is a homeomorphism, it is sufficient to show that f
is o compact map (i.e., if 4 is a compact subset of f[H"], then j"‘[A] is
compact).

Suppose that A is a compact subset of f[E"). Then 4 is a compact
et in E™™ and thus

U {Vi: i s a positive integer and Vi intersects A}

is bounded. Now if ¢ is any positive integer @[Vi]= ¥y and hence

@[A ~ Vi C V. Tt follows that
A},
from B“/G

e[AIC UV iis a positive integer amd Vi intersecis

Hence f[A4] is compact. Therefore h i3 a homeomorphism
into B™*, and Corollary 1 is proved.

COROLLARY 2. If @ is a poini-like decomposition of B such that G
has only countably many non-degenerate elements, then E"|G can be em-
bedded in E™M.

COROTLARY 3. Suppose that G is a monotone decomposition of H"*'
such that

(1) P[Hg] is 0-dimensional, and

(2) each non-degenerate element of G lies in E" and is a poini-like
subset of B".

Then E""@ is homeomorphic to B
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