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A representation theorem for idempotent medial algebras
by
J. Plonka (Wroctaw)

1. An algebra M = (X; f(@,, ..., o)) is called a medial algebra if
it satisfies the following two conditions:

1) f(f(mn, eey Bin)y ooy By oovy Tm))

= f(f(wﬁh) wery Bigin) y ooy F(@inyy oo ‘vinin))

holds for every permutation {(i,f1), (i, Ja)s ey voes (ny Jne1)y (in, Ju)} of
the set {(1,1), (1, 2), ..., (n, n—1), (n, n)} such that (i,,j,) = (r, r) holds
for r=1,2,..,n.

(2) f(f(w17 weey @)y Yoy ony f‘/ﬂ) =f(m1,f(m2, Yoy Ty woey Bn)y Yay eony ?/1!)
= . zf(“’n Yay -3 Yn—iy [ (B -oes Tny ?In)) .

Condition (1) in the case » =2 coincides with the condition of
mediality, considered by S. K. Stein in [7] for quasigroups. Condition (2)
is-a generalization of associativity to which it reduces in the case of n = 2.

In this note we ghall give a constructive description of all medial
algebras which are idempotent, i.e. which satisfy in addition to (1) and (2)
the condition
(3) L f@y @y, ) =2

We shall need the notion of the sum of a direct system of algebras,
an defined in [4], [5]: if # = (I, {Adier; {Pirdi<isifel is a direct system
with Lu.b. of similar algebras without fundamental nuilary operations,
then §(#), the sum of the system #, is an algebra whose carrier is equal
t0 the sum of carriers of %'s (the algebras %; should be treated as digjoint)
and the fundamental operations F; are defined by

Fy(ay; ooy n) = Ft(¢ixi(aﬂ)7 ey ‘Pfui(“ﬂ))
where ¢ = 1u.b.(i;, ..., is) and a; belongs to the carrier 9f €A,
We recall two results from [5] which we shall use in sequel:

(i) (See [4], theorem I.) If # is not a trivial irect system of algebras
(i.e. if it consists of at least two algebras), then in the algebra 8(#) all
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regular equations satisfied in oll algebras of # are satisfied, whereas no
other equation is satisfied in S().

(An equation f = g, where f and g are terms of an algebra, is called
regular if the set of free variables occurring in f coincides with the set
of free variables occurring in g.)

(i) (See[4], theorem I1I1.) Let A be an algebra belonging to an equational
class K whose defining equations are all regular. Let g(w,y) be a term of N
and let K* be the equational class defined by the equations of the class K to
which the equation g(x,y) = o has been added. Then the term g(x, y) induces
a P-function for A if and only if W is representable as a sum of a direct
system of algebras from the class K*. (For the definition of a P-function
see [4], [5].)

Our description of idempotent medial algebras will use the following
algebras: m-dimensional diagonal algebras (see [2], [3] for properties
and representation theorem), i.e. algebras (X; d(wy, .., %)) such that
(@, @, ..o @) =z and (@@, ey B1n)s vy @[ @1y ooy ) = A(Bry, oovy Tan)
and 7, -algebras (see [4], 2.4) which can be described in the following way:
take an abelian group such that (n—1)a = 0 holds identically, and define
f(@yy eeoy @) = @1+ ...+ @,. The carrier of the group with f as the funda-
mental operation is a 7,-algebra. The class of r,-algebras can also be
described by using equations and this was done in [4], 2.4.

The results of this note were announced without proof in [5].

2. The following theorem gives a complete description of idempotent
medial algebras:

THEOREM. An algebra U= (X; f(s,, ..., &) 45 an idempotent medial
algebra if -and only if A is the sum of a direct system of algebras, each of
them being o product of an n-dimensional diagonal algebra and an
T -algebra. -

Proof. The “if” part of the theorem follows immediately from the
fact that diagonal algebras and r,-algebras are medial and idempotent
and that the class of medial algebras can be defined by using regular

eqlgtions only, whence an application of (i) leads us to the desired
result.

To prove the “only if”” part, let us assume that % ig an idempotent

medial algebra, and that f(z,, ..., ) is the fundamental operation of 2.
We shall need some lemmas.

Lmmva 1. In A the following equalities are true:
.f(f(f(mll vy B}y Yoy ouny ?/1!)) By weny 2‘“)

=f(f(f(w19 Yag ooy Yn)y Loy oeny .’I)ﬂ) s Ray eeny z,,) y
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and
f(zu ey zk—l)f(yu woes Y1 [ (@15 ooy Tn)y Yrotry oony ?/'n): Zr+1y 751')
= f(zly ey zk—-l?f(wls eeey mk'-l’f(yu weey Yr—19 Thy Ykt1y ooey ?ln), [T PR wn)

Brpry s 2a) (L<E <)

Proof. We prove only the first equality, the proof of the second
being similar. We have

f(f(f(wn vy @n)y Yy oeny Z/n)y By ey zﬂ)
=f(f(mla vy @)y S(Yay %2y Yas ooy Yn)s B2y e zn)
=f(f(w1’ Yoy ooy y’ﬂ);f(wzy Zyy Byy cory Bn)y Bay ones zﬂ)
= f(f(f(a’u Yoy veey Yn)y Loy eeey mﬂ) PR TR zﬂ) .
as asserted.
Now we introduce a binary operation by the formula oy = f(, ¥, ..., y)-
LeMMA 2. The following equalities are true:

=10, DYU = TUYD .

(zy)z = @(y2)
Proof. We shall prove this lemma, and also the next few lemms,
only for the case of n =3, the proof for the general case being identical
in principle but involving complicated notation. In the case of »= 3
we shall -write_for, shortness [wyz] instead of.f(w,¥, 2).
" We have

(@y)z = [[oyy]ee] = [[wyylelees]] = [alyay)(eee]] = [wlyeellyze]] = 2(y2) ,
which proves the first equality. The second is evident, and the third

is a congequence of lemma 1. )
Now leb us define another binary operation by means of the formula

‘”“y:f(f(w"‘./a"-’?/);“'y"-aa")- o

TmMMA 3. The operation x oy defines & P - function in UA.

Proof. According to the definition of P-functions we must check
the following equalities: .

(4) (@oy)oz=wo(yo2),

(5) Box =2,

(6) wo(yor)=ao(2oy),

(7 f(mu---’w")"’!/:f(wl“'.‘/:'--7-'7711"?/),

(8) Y of @y ey n) =Y o F(Y o D1y s § 0 Ta)s

(9) F(@yy ooy @) 0 @ = F@15 ey o) (k=1,2y..,1),
(10) yof(y, - ¥)=9.
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We consider only the case of n = 3. Hqualities (5) and (10) are evident.
Since clearly oy = zyw, lemma 2 implies (6). Now (¥ y) o 2 = symenys
= Fyaw = FY2YL = x o (y o 2) giving (4).

To prove (7) consider the following chain of equalities, in which
lemma 1 is used:

[yz] o w = [ [[oy2]uu] [myz][myz]] = [[[a'uu] v2] [wyz][myz]]
= [[[wuu] @] [yyy] [zzz]] = [[[anm] )] yz] = [[[wwm] w] yz]
= [[ouulys] = [[m[uuu}[uuu]]yz] = [[[wuu]u[uuu]]yz]
= [[a:uu] [uy [uuu]]z] = [[muu][[u] [uyulu) z] = [[wuw][uyu] [wuz]|
= [[[mm]uu] [ulyyylu][uu [zzz]]] = [[[muu] aow) [yluyuly] [z [uuz]]]
= [[owu][uluyu]u] ] =[(@ow)(you)(eou)].
We have also
[oye] - & = [ [[ay=]aa] [ay2][ayz]]

= [wwx] yz] [2yz] [myz]] = [[wyz] [wyz) [myz]] = [aye];
moreover,

[2y2] » y = [[[2yelyy]loye] oys]] = [[[ayelae] lyyy]Laye]]
= [[toyelae]yloye)] = [[ayel(ovelloye]] = [oye]
and similarly
[@y] o 2 = [wye] ,

thus proving (9).
Finally, to prove (8) observe that

uo[oys] = [[u{-’vyz] [a?yz]]uu] = [[[uuu] [wyz][wy2]] [wwu] [mm]]

= [[[u;w][dyy] [uze]|[uww] [uuu]] = [[[;um] wu) [[uyy] wu] [[uze]uw]]
=[wen)(uoy)(uo2).
The lemma is thus proved.

. T.his lemma together with (ii) implies that our algebra 9 is the sum
of a dlre.ct_ system of algebras which satisfy the conditions (1), (2) and (3)
and additionally the condition # o Yy =m, ie.

(11) f(f(w7y1 "':y);w7~-;$)=$.

Let P = (7; ‘e
Our theorem (wijllflgtl ,I)ro,vz:i)) oo gebra catisying (1) (2), (3) and (1)

° : if we can show that P is the product of
an n-dimensional diagonal algebra and an r,-algebra. ?
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Observe at first that the operation zy = f(»,y,...,y) is diagonal,
i.e. satisfies formulas (4), (5) and oyz = @2. Indeed, lemma 1 implies that xy
is associative, and (11) shows that syz = », whence the diagonality follows
from a result given in [1], p. 108. Now let us define in B a binary operation
by the formula sxy = f(f(z, ..., 2, 9), 3, ..., 7).

LemmA 4. The operation * is diagonal in P, d.e. it satisfies (4),‘ (5)
(where o should be replaced by %) and the formula mryse = xx2.

Proof. Bquality (5) is evident. Let us consider the case of n =3
only, since the proof for arbitrary » can be carried out along the same
lines. We have

() x2 = [[[[amy] ) |[wwy] 2] z] [y o] [[wmy] mw]]

= [[[[woy1Laay)a] [enn)s] [[ooy]olooy] [oaa]]
= [[[[[my][wm]w] wz] [mmy}[wmy]]mm] = [[[[-’”?I?I]m]m]m]

= [[[mm&] 2] mm] = [[wez]aw] = @
Moreover,

wx(yse) = [[ao(lyyelyy]Jae] = [[[eylzye]] oy ea]
= [[slyyyle]lyas]e] = [[ayellyaala]
= [[fvmz] lyayle] = | [[zoz]yy] ao] = [[zaslen] = oxs .

The lemma is thus proved.
Now we define two relations in 9. We put 2R,y if and only if 2y = =,
and xR,y if and only if sy =y.
LEMMA 5. The relations R, and R, are both congruences in P.
Proof. We shall prove this for B, and, as before, restrict ourselves

to n—=3. Lemma 4 implies that R, is an equivalence. If z; By for
k=1,2,3, then
[[[‘”1 03] [, %305 (Y1 Ya Yo (1 2 0] (2,5 w,,]]
= [[[9& @, 11 (22 0395) [ @ Ys]| [#1 22 26] [ mzzs]]
= [[[m1m1?/1]m1w1] [[ﬁzms?lz]wzmzl [[%ws%]%%]] = [@:%:25] ,

which shows that
EX AV AR AR
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LemMA 6. The algebra P|R, is an r,-algebra.
Proof. Observe first that [o;®,2,] R[22, 2,). Indeed, we have

[ ([ 231 (1 01 0 0121 [ 2000 [ ms]]
= [ [[m1 2] (@, 0 0] [0, 2,051 [0, 2] [0 23, | = [y,)
a8 needed. Moreover, [2,%,%,) R[#,2,2,] because
[ [ 051 [, 2y 0 [ 20011 [ 2 2] [0, o]
= [ [y 2] 33 02,1 [0, 2 23]) (2305 05) [, 2y, |
= [ [, 2] (s 012 (0, 25 05]] [,y 0] (0,231 | = [, 2,,] .

Finally, «R,[zyy] because

[[.m [ayy])] wm] = [[m[myy] a] m] - [[w[yym] ] wm]
= [[m[yyw]] mm] = [[[myy]ww] m] = [(waw)as] = o .

It fo]loyvs that in' the algebra PB/R, the fundamental operation
{1&? 5 By ;vs) 1s symmetric and satisfies f(z,y,y) = f(z) = x, and con-
ions (1) and (2) whi in P i i i i
g 1J_me:( ) (2) which hold in § imply that in /R, the following equality
f(f(“?u @y, By) 5 Ty i"'s) =f(m17f(”za Pgy By), “'5)

=f(‘”15 B3y J (3, @4, w)) .
As shown in [5],
ru-algebra, '
The proof for the general case is similar,
LevyA 7. The algebra PR, is a diagonal algebra.

Proof. In view of (2) and (3), b i i
; by using theorem IT of [6] it is enough
to show that [[m,wzma]wlw,]lzzml holds in P. But we have[ ] b

2.4, these conditions impl%r that P/R, is an

[[9}1 ‘1;1][3313’:‘2 NN $1] ]@'1(01] = [[mlwl[a;l [, Ty .1:1]]] x, ml]
= [[["”1501 AR XN -’vl] = [[ml o[ @@y 0] 2y 0,
= ['[[m"‘z ]2 wl] & w‘] = [[wl @y W] @, .'L‘1] ’

a8 needed.

0. [C:g; If)m;sl% 1;1]1:3 p.roof of the theorem it ig sufficient to observe (see
el ef’m ed in) that in the axlgebra. (¥; %), in which the relations R, and R,
€ same way as it was done above, every class modR,
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intersects every class mod R, at exactly one point, which shows that P
is the product of factor algebras PB/R; and P/R,, which by lemmas 6 and 7
are diagonal, or resp. are r,-algebras. The theorem is thus proved.

CoROLLARY 1. For n = 2 every algebra of the direct system considered
above is diagonal, since 7,-algebras can have only one clement, which is
easy to prove.

Note that in this case this was proved by Yamada and Kimura
in [8], theorem 6,8.

COROLLARY 2. An tdempolent medial algebra with the fundamenial
operation f(#,, ..., %) 18 the sum of a direct system of diagonal algebras
if and only if the condition

f(f(wly very D)y Doy oey wﬂ) = f(®y, .., ¥n)

8 satisfied.

In fact, the necessity is obvious, since the condition is satisfied in
diagonal algebras and (i) implies that it is also satisfied in their
sum.

To prove the sufficiency it is enough to check that the congruence R,
is trivial in our case, and this results from the following chains of equal-
ities (again we write it down only for n = 3):

[(zwy)aw) = [[[aayloy]as] = [[eoyllaayla] = [[owz](yay]e]
= [[(wzzlyy]os] = .

COROLLARY 3. A medial idempotent algebra with the fundamental
operation f(@y, ..., %a) i3 the sum of a direct sysiem of algebras, each of which
is equal to the product of an rn-algebra and a trivial algebra (i.e. one in which
J(@1y oy @n) =@y is the only fundamental operation) if and only if the
equality

J(@ry ooy @a) = f(#1, Biy 5 ey Tin)
holds for every permutation (i, ..., %) of the set (2,3, ..., 1).
The necessity is obvious again and the sufficiency follows from the

easy observation that our condition implies the equality f(, ---, ) = &,
in that factor of any algebra of the direct system given by our theorem

which must be diagonal.
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On the Grothendieck group of compact polyhedra

by
P. J. Hilton (Ziirich)

1. Introduction. In an earlier note [3] we constructed a set of
examples of the following phenomenon: X; and X, are compact connected
polyhedra with isomorphic homology and homotopy groups but of dif-
ferent homotopy types. The demonstration fell into two parts. First it
was shown that it is possible to construct polyhedra X,, X, of different
stable homotopy types such that X;+8~X,+4 8, where 8 is a suitable
sphere and -+ denotes the disjoint union with base points identified.
Secondly it was shown that if X;+ A4 ~X,4+ A4 for a suitable compact
connected polyhedron A, then the suspensions of X; and X, have iso-
morphic homotopy groups, mi XX, o m ZX,.

In this paper we make a more systematic study of both parts of
the argument and considerably strengthen the relevant statements. In
gection 2 we deal with the second part of the argument. We find it un-
necessary t0 pass to the suspensions of X, and X, provided X, X,, 4
are themselves already suspensions of connected polyhedra. This effects
considerable improvement when it comes to finding examples. We also
show that the homotopy groups kill the torsion in the Grothendieck
group of suspensions of connected polyhedra. That is to say we may
interpret the statement

m Xy = mX,

a8 saying that m; may be regarded as being defined on those elements
of the Grothendieck group G(Z9%) of homotopy classes of suspensions
of compact connected polyhedra which are represented by polyhedra;
call this subset GV(Z9"). Then we actually prove the statement

if X, +A~X,+A4

m X, = m X, it tX,+A4~1X,+A for some integer { > 0;

that is, if X, and X, represent the same element of G(X91) modulo its
torsion subgroup. Although this improvement is, at this stage, purely
theoretical, it fits better into the general algebraic picture. For z; maps
ST t0 olby, interpreted as the collection of isomorphism classes of finitely
generated abelian groups. If we form the Grothendieck group of «fb,
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