

Translation properties of finite partitions of the positive integers

bv

Ralph A. Raimi (Rochester, N. Y.)

1. Introduction. Let N be the set of natural numbers $\{1, 2, ...\}$, βN the Stone-Čech compactification of N, and $N' = \beta N - N$ (the settheoretic difference). If $A \subset N$, and if \overline{A} is its closure in βN , A' denotes $\overline{A} \cap N'$; A' is open and closed in N'. All open-closed subsets of N' are obtained in this way, and they form a basis for the topology of N', which is a compact Hausdorff space. We shall call A an antecedent of A'. If A and B are each antecedents of A', then A - B and B - A are each finite sets. Let $t: N \to N$ be defined by t(n) = n+1; then t, by continuous extension to \overline{N} , induces a homeomorphism of N' onto N'. This homeomorphism will still be denoted by t. We denote by T the family $\{t^k: k=0,1,2,...\}$, where t^0 indicates the identity mapping. If $A \subset N$ and $t^k \in T$, $t^k(A') = (t^k A)'$.

A subset $K \subset N'$ is called t-invariant if tK = K. T is then a family of homeomorphisms of K onto K. We shall call T equicontinuous on K if: Given any covering of K by open sets $\{W_{\alpha}: \alpha \in A\}$, there exists another covering $\{V_{\beta}: \beta \in B\}$ such that each translate t^kV_{β} is contained in some set W_{α} , α depending on k and β .

Theorem 1. If K is a closed t-invariant subset of N', then T is not equicontinuous on K.

The proof of Theorem 1 is given in [1] Sec. 3.2, and will not be reproduced here. It is based on a theorem of W. Rudin ([2], Theorem 6).

The purpose of the present paper is to re-interpret Theorem 1 in strictly set-theoretic terms about N.

2. Restatement of the theorem. Non-equicontinuity of T on K means there exists a certain open covering $\mathfrak{W} = \{W_a\}$ of K such that if $\mathfrak{V} = \{V_\beta\}$ is any other such covering of K, t^pV_β will lie in no member of \mathfrak{W} , provided p and β are suitably chosen. Since the open-closed sets are a basis for the topology of K, \mathfrak{W} may be replaced by a finer covering \mathfrak{U} , whose members are open-closed, and t^pV_β will lie in no member of \mathfrak{U} . Since K is compact, a finite subfamily of \mathfrak{U} will still cover K, and have

the same property. If $\{U_1, U_2, ..., U_n\}$ is this subfamily, we may put $W_1 = U_1, W_2 = U_2 - U_1, ..., W_n = U_n - \bigcup_{i=1}^{n-1} U_i$. Then $\{W_i : i = 1, 2, ..., n\}$ is a partition of K into open-closed subsets, and this partition may be used in place of the original covering \mathfrak{W} to give the same conclusion.

used in place of the original covering \mathfrak{W} to give the same conclusion. Furthermore, $W_i = N_i' \cap K$ for a suitable choice of N_i' open-closed in N'. If we put $M_1' = N_1' \cup \{N' - \bigcup_{i=1}^{n} N_1'\}$, $M_2' = N_2' - N_1'$, ..., $M_n' = N_n' - \bigcup_{i=1}^{n-1} N_i'$, we arrive at a partition of N' into open-closed sets $\{M_i'\}$ such that $\{M_i' \cap K: i = 1, 2, ..., n\}$ is as good as the original covering \mathfrak{W} . And if the covering \mathfrak{W} of the theorem also happens to be derived from a partition of N' into open-closed subsets, the conclusion still follows.

THEOREM 2. Let K be a closed t-invariant subset of N'. Then there exists a partition $\mathfrak{M} = \{M'_i: i=1,2,...,n\}$ of N' into open-closed subsets such that if $\mathfrak{B} = \{V'_i: i=1,2,...,k\}$ is another such partition of N', there exist values of p and p such that $t^p(V'_i \cap K)$ is contained in no member of \mathfrak{M} .

- 3. t-ideals and t-filters. If $\mathfrak A$ is a family of subsets of N, we shall call $\mathfrak A$ a t-ideal if it satisfies the following conditions:
 - (a) $A \in \mathfrak{A}$, $B \in \mathfrak{A}$ implies $A \cup B \in \mathfrak{A}$.
 - (b) $A \in \mathfrak{A}$, $B \subset A$ implies $B \in \mathfrak{A}$.
 - (c) N ∉ A.

Thus we have proved

(d) $A \in \mathfrak{A}$, $t^k \in T$ implies $t^k A \in \mathfrak{A}$, and conversely, $t^k A \in \mathfrak{A}$ implies $A \in \mathfrak{A}$.

Properties (a)-(c) define $\mathfrak A$ as a proper ideal in the Boolean algebra of all subsets of N; (d) is an extra requirement for present purposes. The simplest and smallest non-zero t-ideal is the class $\mathfrak F$ of all finite subsets of N.

Corresponding to each t-ideal $\mathfrak A$ is its dual, the t-filter $\mathfrak A^c = \{N-A: A \in \mathfrak A\}$. $\mathfrak A^c$ is a filter and is translation-invariant, i.e. $\mathfrak A^c$ also satisfies (d).

If we put $K = \bigcap \{B' \colon B \in \mathfrak{A}^c\}$ and $Z = \bigcup \{A' \colon A \in \mathfrak{A}\}$, then it is easily verified that K is closed in N', Z is open in N', $K \cap Z = \emptyset$, $K \cup Z = N'$, and that K and Z are each t-invariant subsets of N'. We shall call K the support of \mathfrak{A} (or of \mathfrak{A}^c) and Z the null set of \mathfrak{A} (or of \mathfrak{A}^c).

This terminology derives from a popular measure-theoretic interpretation of certain t-ideals. If m is a Banach mean, i.e. a finitely additive, positive, t-invariant set-function on all the subsets of N, with m(N) = 1, then $\mathfrak{A} = \{A \subset N \colon m(A) = 0\}$ is a t-ideal. On the other hand, m induces a countable additive t-invariant probability measure on N', for which K turns out to be exactly the support set.

Dually, we may begin with any closed t-invariant non-empty subset $K \subset N'$, and define $\mathfrak{A}^c = \{B \subset N \colon B' \supset K\}$. Then the dual family \mathfrak{A} is

a t-ideal and K is its support. It is, however, worth observing that since not every such K is the support of a Banach measure (N') itself, for example, not all t-ideals are obtained from Banach means.

4. The non-equicontinuity theorem on N. Let $\mathfrak A$ be any t-ideal, and let $\mathfrak M=\{M_t\}$ and $\mathfrak B=\{V_t\}$ each be a finite family of pairwise disjoint subsets of N. We say that $\mathfrak A$ is an $\mathfrak A$ -refinement of $\mathfrak M$ if each member of $\mathfrak B$ is contained, except for a set in $\mathfrak A$, in some member of $\mathfrak M$. Thus $\mathfrak A$ is an $\mathfrak A$ -refinement of $\mathfrak M$ if, given $V_t \in \mathfrak B$, there exists a set $M_f \in \mathfrak M$ and a set $A \in \mathfrak A$ such that $V_t \subset M_f \cup A$. If $\mathfrak A$ is as above, and $t^k \in T$, $t^k \mathfrak A$ will denote the (pairwise disjoint) family $\{t^k V_t \colon V_t \in \mathfrak A\}$.

THEOREM 3. Let $\mathfrak A$ be any t-ideal on N. Then there exists a finite partition $\mathfrak M$ of N such that if $\mathfrak B$ is any other finite partition, some translate of $\mathfrak B$, $t^k\mathfrak B$, is not an $\mathfrak A$ -refinement of $\mathfrak M$.

Proof. Let K be the support of \mathfrak{A} , and let \mathfrak{M}' be the partition of N' which by Theorem 2 corresponds to K, say $\mathfrak{M}' = \{M'_i : i = 1, 2, ..., n\}$. Let $\mathfrak{M} = \{M_i : i = 1, 2, ..., n\}$ be a set of antecedents to the sets M'_i , so chosen as to constitute a partition of N'; then \mathfrak{M} has the required property. Indeed, suppose that $\mathfrak{B} = \{V_i : i = 1, 2, ..., k\}$ is any partition of N. Then $\{V'_i : i = 1, 2, ..., k\}$ partitions N', and by Theorem 2 there exist p, j such that $t^p(V'_i \cap K)$ is contained in no member of \mathfrak{M}' . Then it will follow that $t^pV_j \subset M_r \cup A$ for some $A \in \mathfrak{A}$ and some $M_r \in \mathfrak{M}$ is impossible, by the following reasoning:

If $t^pV_j \subset M_r \cup A$, then

$$t^p(V_j') \subset M_r' \cup A'$$
, and $t^p(V_j') \cap K \subset (M_r' \cup A') \cap K$.

But A' is in the null set Z, i.e. $A' \cap K = \emptyset$, so we have

$$t^p(V_j') \cap K \subseteq M_r' \cap K$$
.

Since $t^p K = K$,

$$t^p(V_i) \cap K = t^p(V_i) \cap t^pK = t^p(V_i) \cap K$$

and we end with

$$t^p(V_j' \cap K) \subset M_r' \cap K$$
.

This last set is a subset of a member of \mathfrak{M}' , which contradicts Theorem 2.

COROLLARY. There exists a finite partition \mathfrak{M} of N such that if \mathfrak{B} is another finite partition of N, some translate t^pV of one of the members V of \mathfrak{B} intersects at least two members of \mathfrak{M} in an infinite set.

Proof. This is merely Theorem 3 for the case where $\mathfrak A$ is the ideal $\mathfrak F$ of all finite subsets of N. The support K, in this case, is N' itself.

5. Generalizations. The translation mapping $t: n \rightarrow n+1$ is not the only mapping of N into N for which the entire discussion given above is true *verbatim*. Rudin's theorem, on which Theorem 1 is based, requires

only that t be a 1:1 mapping with the property that the induced homeomorphism on N' have no periodic points on the support set K in question. It is not even necessary that this homeomorphism of K be onto. A sufficient condition for t to have no finite orbits (i.e. no periodic points) in N' is that t have no finite orbits in N, but this is far from necessary. [1] contains a discussion of this question.

References

- [1] R. A. Raimi, Homeomorphisms and invariant measures for $\beta N-N$, Duke Math. Journ. 33 (1966), pp. 1-12.
- [2] W. Rudin, Averages of continuous functions on compact spaces, ibid. 25 (1958), pp. 197-204.

Reçu par la Rédaction le 1. 7. 1966

Remark on Raimi's theorem on translations

D,

C. Ryll-Nardzewski (Wrocław)

The present note gives an alternative proof of Theorem 3 from Ralph A. Raimi's paper Translation properties of finite partitions of the positive integers [1] in a changed and refined form. All notations and terminology are preserved. Only, for the sake of simplicity, the set of natural numbers is replaced by the set N of all integers. The author claims that this modifications is completely irrelevant. To make this note self-contained all definitions of the notions used below are reproduced here.

Let t denote the transformation t(x) = x+1 in the set N. Let $\mathfrak A$ be an arbitrary proper ideal of subsets of N which is t-invariant (i.e. $E \in \mathfrak A$ iff $tE \in \mathfrak A$ for all $E \subset N$). A partition $\mathfrak A$ of the set N is an $\mathfrak A$ -refinement of a partition $\mathfrak A$ iff each member of $\mathfrak A$ is contained mod $\mathfrak A$ in some member of $\mathfrak A$. A set $E \subset N$ is called *strongly aperiodic* (s.a.) iff for every integer $k \neq 0$ we have

$$\bigcup_{j=0}^m t^j(E \wedge t^k E) = N$$

for some m. $(X \triangle Y = X \cup Y \setminus X \cap Y)$

THEOREM. If a set $E \subset N$ is s.a., then for any finite partition $\mathfrak B$ of N there is a translate $t^k \mathfrak B$ which is not an $\mathfrak A$ -refinement of the partition $\mathfrak M = \{E, N \backslash E\}$.

Proof. Suppose to the contrary that all $t^k\mathfrak{V}$ (k=1,2,...) for some finite $\mathfrak{V}=\{V_i\}_{i\in I}$ are \mathfrak{V} -refinements of \mathfrak{V} . Since the set I is finite, there is a partition $I=I_0 \cup (I \setminus I_0)$ and two translations t^p and t^q $(p \neq q)$ such that

$$\begin{split} t^p V_i \backslash E \in \mathfrak{A} &\quad \text{and} \quad t^q V_i \backslash E \in \mathfrak{A} \quad \text{ for } \quad i \in I_0 \;, \\ t^p V_i \backslash (N \backslash E) \in \mathfrak{A} &\quad \text{and} \quad t^q V_i \backslash (N \backslash E) \in \mathfrak{A} \quad \text{ for } \quad i \in I \backslash I_0 \;. \end{split}$$

Consequently, for k=p-q, the set E is t^k -invariant mod $\mathfrak A$ (i.e. $E \triangle t^k E \in \mathfrak A$). Hence in view of strong aperiodicity of E we get a contradiction with our assumption $N \notin \mathfrak A$.

The next lemma shows the existence of s.a. sets.

LEMMA. The set $E = \{n \in N : \cos n > 0\}$ is s.a.