

only that t be a 1:1 mapping with the property that the induced homeomorphism on N' have no periodic points on the support set K in question. It is not even necessary that this homeomorphism of K be onto. A sufficient condition for t to have no finite orbits (i.e. no periodic points) in N' is that t have no finite orbits in N, but this is far from necessary. [1] contains a discussion of this question.

References

- [1] R. A. Raimi, Homeomorphisms and invariant measures for $\beta N-N$, Duke Math. Journ. 33 (1966), pp. 1-12.
- [2] W. Rudin, Averages of continuous functions on compact spaces, ibid. 25 (1958), pp. 197-204.

Reçu par la Rédaction le 1. 7. 1966

Remark on Raimi's theorem on translations

D,

C. Ryll-Nardzewski (Wrocław)

The present note gives an alternative proof of Theorem 3 from Ralph A. Raimi's paper Translation properties of finite partitions of the positive integers [1] in a changed and refined form. All notations and terminology are preserved. Only, for the sake of simplicity, the set of natural numbers is replaced by the set N of all integers. The author claims that this modifications is completely irrelevant. To make this note self-contained all definitions of the notions used below are reproduced here.

Let t denote the transformation t(x) = x+1 in the set N. Let $\mathfrak A$ be an arbitrary proper ideal of subsets of N which is t-invariant (i.e. $E \in \mathfrak A$ iff $tE \in \mathfrak A$ for all $E \subset N$). A partition $\mathfrak A$ of the set N is an $\mathfrak A$ -refinement of a partition $\mathfrak A$ iff each member of $\mathfrak A$ is contained mod $\mathfrak A$ in some member of $\mathfrak A$. A set $E \subset N$ is called *strongly aperiodic* (s.a.) iff for every integer $k \neq 0$ we have

$$\bigcup_{j=0}^m t^j(E \wedge t^k E) = N$$

for some m. $(X \triangle Y = X \cup Y \setminus X \cap Y)$

THEOREM. If a set $E \subset N$ is s.a., then for any finite partition $\mathfrak B$ of N there is a translate $t^k \mathfrak B$ which is not an $\mathfrak A$ -refinement of the partition $\mathfrak M = \{E, N \backslash E\}$.

Proof. Suppose to the contrary that all $t^k\mathfrak{V}$ (k=1,2,...) for some finite $\mathfrak{V}=\{V_i\}_{i\in I}$ are \mathfrak{V} -refinements of \mathfrak{V} . Since the set I is finite, there is a partition $I=I_0 \cup (I \setminus I_0)$ and two translations t^p and t^q $(p \neq q)$ such that

$$\begin{split} t^p V_i \backslash E \in \mathfrak{A} &\quad \text{and} \quad t^q V_i \backslash E \in \mathfrak{A} \quad \text{ for } \quad i \in I_0 \;, \\ t^p V_i \backslash (N \backslash E) \in \mathfrak{A} &\quad \text{and} \quad t^q V_i \backslash (N \backslash E) \in \mathfrak{A} \quad \text{ for } \quad i \in I \backslash I_0 \;. \end{split}$$

Consequently, for k=p-q, the set E is t^k -invariant mod $\mathfrak A$ (i.e. $E \triangle t^k E \in \mathfrak A$). Hence in view of strong aperiodicity of E we get a contradiction with our assumption $N \notin \mathfrak A$.

The next lemma shows the existence of s.a. sets.

LEMMA. The set $E = \{n \in N : \cos n > 0\}$ is s.a.

Proof. Let k be a fixed integer different from 0. We have

(1)
$$E \triangle t^k E = \{ n \in \mathbb{N} : \cos n \cdot \cos (n-k) < 0 \}.$$

Moreover, the sequence $a_n = \cos n \cdot \cos(n-k)$ is almost periodic (in the sense of H. Bohr) and for some n takes a negative value. The last properties of $\{a_n\}$ and (1) easily imply that E is a s.a. set.

Let us observe finally that a reasoning analogous to the proof of Theorem gives the following:

Proposition. Let X be a totally disconnected, compact, Hausdorff space and let t be a homeomorphism of X onto itself. Let A be the Boolean algebra of all clopen subsets of X. The the following conditions are equivalent:

- (i) The set of all positive iterations of t is equicontinuous.
- (ii) The same for negative iterations.
- (iii) For every clopen set $E \subset X$ there is a $k \neq 0$ such that $t^k E = E$.
- (iv) The algebra A is a union of a family of t-invariant and finite subalgebras of A.

Reference

[1] R. A. Raimi, Translation properties of finite partitions of the positive integers, Fund. Math., this volume, pp. 253-256.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 1. 7. 1966

Metrically generated probabilistic metric spaces *

by

R. Stevens (Missoula, Montana)

1. Introduction. A. Špaček [10] has introduced the concept of a random metric consisting of a set S together with a probability measure μ on the set of all mappings of $S \times S$ into the reals and such that $\mu(M) = 1$, M being the set of all ordinary metrics for S. In [5], Menger, Schweizer and Sklar clarified the relationship between this concept and that of a probabilistic (statistical) metric ([3], [4], [6], [7]) and showed that the condition $\mu(M) = 1$ is extremely restrictive.

In this paper we continue the study of this relationship by investigating the probabilistic metric spaces which are generated (in the sense of definition 1) by a random metric and show that they are indeed of a very special type (Theorems 2 and 4). In part 3, we obtain a representation theorem giving sufficient conditions for a given probabilistic metric space to be generated in this way. We conclude by showing that our representation theorem is a best possible result in this direction.

For explicit definitions the reader is referred either to the paper [7] by Schweizer and Sklar or the paper [11] by Thorp. Also, following a previously established convention, we shall abbreviate "probabilistic metric space" to "PM space".

- 2. Metrically generated PM spaces. Let S be a set, let $\mathfrak D$ be a collection of ordinary metrics for S, and let μ be a measure for $\mathfrak D$ (i.e., a non-negative, countably additive set function defined on a σ -algebra of subsets of $\mathfrak D$, called μ -measurable sets) such that
- (A) for any pair p,q of points in S and any real number x, the set $\{d \in \mathfrak{D}; \ d(p,q) < x\}$ is μ -measurable, and
 - (B) $\mu(\mathfrak{D}) = 1$.

From the μ -measurability of the sets in (A), it follows that for each pair p,q of points in S, d(p,q) is a numerically valued random variable on $\mathfrak D$ whose distribution function F_{pq} is given by

(1)
$$F_{pq}(x) = \mu \{ d \in \mathfrak{D}; d(p,q) < x \}.$$

^{*} This research was partially supported by NSF grant GP-2555 and constitutes a portion of the author's doctoral dissertation, written at the University of Arizona under the direction of Professor Berthold Schweizer.