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' Equationally compact algebras II

by
Jan Mycielski and C. Ryll-Nardzewski (Wroctaw)

In this paper we collect miscellaneous theorems on equational com-
pactnesg of algebras and the related notions of atomic and positive-
m-compactness of relational structures (see [18], [25], [26], and [27]).
Our Theorem 1 is a slight improvement of the theorem on existence of
saturated structures (see [6], Theorem 1 repeated as Theorems 3 and 5
in [18] and [8], Corollary 2.2) from which we have removed a restr,iction
on the eardinality of the similarity type; also our proof is simpler than
the previous proofs and is similar to some constructions in [9] and [11].
Our Theorem. 2 is an eagy consequence of Theorem A.2 of [7] (see also [10],
Lemma 1 and [17], Theorems 2.4(e), 2.5(b) and 3.4 for related facts).
Theorems 3 and 4 give new characterizations of atomic compactness
and m-compactness (see [25] for related characterizations). Theorems 5
and 6 and the remarks following each of them give new examples of
equationally compact algebras. Theorem 7 generalizes for arbitrary
modules the known result (see [18] or [25] for references) that equationally
8o-compact abelian groups are equationally compact. Theorems 8 and 9
give an algebraic generalization of the topological statement that every
produet of complex projective spaces is compact. Finally, we discuss some
fundamental properties of the notions of compactness considered in the
series of papers attempting to give a certain classification of properties
of relational and algebraic structures which seems natural at the present
stage of development of the theory of models.

We follow with little changes the terminology of part I[25]. As in [18]
the prefix m- added to the word compact means that the sets of formulag
in question which should have the compactness property are of cardinality
at most m. m denotes always an infinite cardinal.

THEOREM 1. For every m and every infinite algebraic structure A
there exists an elementary extension B of W (in symbols A < B) which is
elementarily m-compact and |B| = |UA™

Let us recall the well-known theorem of Vaught (see:[7]) that if,
moreover, |U™ = m' and the cardinality of the similarity type is at
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most m, then the structure S with the above properties is unique up to
isomorphism.

To prove Theorem 1 we will give two lemmas. For every set U, every
ultrafilter F of subsets of U and every relational structure & we denote
by (€Y/F)* an isomorph of GY/F by an isomorphism f such that if g is
the natural isomorphism of € into &UJF, then frestricted to ¢ (&) equals gL
Thus & < (S8Y/F)*.

The proof of Lemma 2.2 in [25] (of 0. Ryll-Nardzewski) immediately
yields the following lemma.

Lmyva 1. Let M be a set, & an algebraic structure and X a set of for-
mulas with constants in & (1) such that | Z| < | M| and every finite subset of Xis
satisfiable in ©. Let U be the set of all finite subsets of M and F an ulirafilier
of subsets of U such that {X e U: we X} e F for every x e M. Then X is
satisfiable in (SY/F)°. ,

The proofs of Theorems 1.17 (due to Chang and Keisler) and 1.26
of [1] immediately yield the following lemma.

Levma 2. Let M, U, F and G satisfy the suppositions of Lemma 1
and | M|, || > %, Then |GU/F| = |c|"™.

Proof of Theorem 1. Let M, U and F be as in the lemmas, | M| = m
and let a be the initial ordinal of power m*. We set

G=%A and G;= UE(@,T,] [F)*  for every ordinal &> 0.
n<

Now we show that the structure B = &, satisties the conclusions of Theo-
rem 1. First, &, < &; for every 5 < £ (see [21]) and hence 9 < B. Let X
be a set of formulas with constants in B, |Z| < m and let all finite subsets
of X be satistiable in 8. By the definition of « it is a regular ordinal and
hence all the constants of X are in some &; with £ < a. Since G < B,
all finite subsets of X are satisfiable in ©;. Hence, by Lemma 1, X is
satistiable in G;.; and since Sgyy < B, it is also satistiable in B. Finally,
since |a| <" and according to Lemma 2, we have IB|= U™ Q.E.D.

An algebraic structure ¥ is called m-universal it every structure &
of the same similarity type, elementarily equivalent to % and of power
<m I8 isomorphic to some elementary substructure of A (?)

For every algebraic structure 9 we denote by (M), an enrichment
o'f A by all elements of A added as individual consta.nts, i.e. 0-ary opera-
tions. Then, of course, the following conditions are equivalent.

(*) We recall that the set of free variables is of arbitrary power, not necessarily

denumerable, and that the satisfiability of a set of formulas wi i
P .’. th
the satisfiability of all of them simultan o oo ot & o T

25 eously by a system of elements of S (see [18],
(*) See [4], [5] and the literature rel

ated to Theorem 2 i i i
for other studies related to this aotion, m 2 quoted in the introduction
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(i) A is K—m-compact;

(i) (A), is K—m-compact;

(iif) (A, is weakly K —m-compact.

An m-reduct of an algebraic structure  is any structure obtained
by removing all but m relations and all but m functions and individual
constants of A. Clearly, conditions (i), (ii) and (iii) remain equivalent if ¢9[”
or “(A).’ is replaced by “every mi-reduct of A" or “every m-reduct
of (A", respectively.

THEOREM 2. An algebraic structure U is elementarily m-compact if
and only if every m-reduct of (), 48 m-universal.

Proof. If A is elementarily m-compact, then every m-reduct of (%),
is m-universal (and even m*-universal) by Theorem A.2 (the implication
(ii) = (1)) of [7]. :

Conversely, let every m-reduct of (), be m-universal and let X be
a set of formulas with constants in 9 such that |X| < m and every finite
subset of X is satisfiable in 9. Let Z* be a modification of X obtained
by substituting every free variable #; by a new constant symbol ¢;. Let U,
be an m-reduct of ()., which contains all the relations, functions and
constants corresponding to the predicates functors and constants occuring
in X. Let @ be the complete theory of %,. Clearly, X* v O is consistent
and henece it has a model I of power m which is elementarily equivalent
to W,. Thus, A, being m-universal, there is an isomorphism f: IM—A,
such that f(IM) <W,. Therefore, ¢; denoting the elements of M inter-
preting the constants ¢, the system f(c;) (s runs over the set of indices
of the free variables of X) satisfies X in 9, and in . Q.E.D.

TeEEOREM 3. For every algebraic structure W and every m the following
conditions are equivalent:

(i) U is afomic m-compact.

(ii) Let X be any set of power < m of formulas with constanis in U

all having only one free variable x, and all of the form

ooy Hapy ... o[ g A oo A o]

where m, n are any natural numbers and a; are atomic formulas (with con-
stants in W). If every finite subset of X is satisfiable in A, then X is satisfiable
an A.

Proof. (i) = (ii). Let X, be obtained from. X by changing the bounded
variables in such a way that none occurs simultaneously in two formulag
and then removing all quantifiers. Clearly, if 2 is finitely satisfiable in I,
then X, is also. Then, by (i), 2, is satistiable and X is also.

(ii) = (i). Let @ be a set of power < m of atomic formulas with con-
stants in A with the free variables @y, %, ..., %, ... (§ < a) such that

Fundamenta Mathematicae, T. LXI 19
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eveI:y ﬁm"?e subset of @ is satisfiable in 9. Supposing (if) we will construct
py 111@(11%01:1011 & BeQUence dy, ty, ...y &, ... (§ < a) of elements of 9 satisfy-
ing & in U Tet, for some 7 < a, the sequence Qoy Oyy oey gy onn (€ <7)
be a%ready constructed such that every finite subset of 0., where 0, |
f)bt;;med fr(?m .@ by substituting each @; with £ < = by ag, is satisﬁa:bl:
21]; . We will find a, ¢ A such that ©,., has the same property. Let X he
e 'se‘t of fo‘rmul‘as with constants in % obtained from @, by formin,
all fm‘1t.e conJunctl'ons and adding at the front of each of them existentia%
quantﬁ_lgrs bounfl'mg all free variables except . Clearly, 2 fullfils the
z;pfosm‘ons of (ii) and hence some a, satisfies it in . It ig easy to see
at a. gives the required properties of @ i i i
A prop of 0.1;. This concludes the induction
comiﬁ ewz;ls1 f}ll"oved ﬁh[%] that the atomic and positive compactness
- € next theorem we give another proof is fact
alternative characterization of these notions, proot of this fact and an

ure eiﬁ%?ji 4. For every algebraic structure 9 the Jollowing conditions
() U is atomic |A[- compact;
(ii) A is atomic compact;
(iit) A is positively compact.

Proof. (i) = (ii). Tf a set of f i
- (). ormulag with constants i i
;lelechgiz va;zlabic‘a;f 18 not satistiable in 9, then it has a subsetsoifnp(g;eﬁ;ﬁ
not satisfiable in %. Hence the characterizati i

pacmz.e-;ss given in Theorem 3(ii) yields (i) = (_ﬁ)lzathIl efatomie m-con-

ii) = (iii). Let X be a set of iti :

= : bositive formulas with co i

Zzeilz tf}JlJ;Jte sufbset of which is satisfiable in A, and let X* x::aﬁlz:aieg
s m}‘;;ozf Ozf*?;?l;;m 2. Then, applying the compactness theorem
sion 3 o2t e tl}eory of (N)., we get an elementary exten-
eobetreoan which is satistiable. % being an atomic compact elementar

ructure of A* it 15 a rvetract of 9> (®). Henee X iy satisfi in 9.

(m? Ty 8 satisfiable in 9.

This concludes the proof of Theorem 4.

Theorem 4 has not been extended to
;ompactness. For the implication

or (i) = (ii) this is not i

examples. possible

E,. A complete lattice
.?Lnd rvy=1 Hotystoxa,
1s not weakly equationally |S]*+-

@?e wqak atomic or weak positive
(if) = (iii) this is still an open question.
a8 can be seen on the following two

s'uch that 2 A y=0 if 2HFEYy#LE
is weakly elementarily || -compact but
compact (nor equationally |G- compact). (¢)

(:) See [25], Lemma 2.1.
(*) The assertion in brackets was proved in [27]
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E,. A ring which is an algebraically closed field of degree of transcen-
dence m > &, i8 weakly elementarily m-compact but is not weakly equa-
tionally m*+-compact (nor equationally m-compact). (°)

Still the following question is open:

Must every structure A weakly atomic |A|+-compact be weakly atomic
compact? ‘

A family of sets F is called compact if every subfamily of F every
finite subget of which has a non-empty intersection has a non-empty
intersection.

TaROREM 5. Let A= (A, 0dyea be an algebra such that G is a group
of transformations of A onto itself such thai the family of fimed point sels,
i.e. sets of the form {m e A: g(x) = &}, where g € @, is compact. Then U is
equationally compact.

Proof. Bach equation has the form (1) g(@) = ¢ or (2) g,(v) = g:(%)
or (3) g(®) = ¢(y). Bquations of type (1) or (3) allow us to remove some
variables and hence every set of equations reduces to equations of type (2).
Then the supposition of the theorem obviously implies its conclusion.

A class of algebras considered by Marczewski and Urbanik (see [14],
[22] and [23]) alzo proves to contain only equationally compact algebras.

This clags is defined by the following property:

v. For every equation
(%) e=0,
whose free variables are @, ..., &z and which depends on @, i.e. Ho,Hay ...
o Hanlo (@) = o(@m/z)A e # o] (7), there exists a term v without the
variable &, such that () is equivalent to

o =71,

Tt is easy to check that in these algebras each formula of the form
considered in Theorem 3. (i) either iy mot satisfiable or is identically
true or is satisfiable by exactly one element. Thus equational compactness
of such algebras follows from Theorem 3. In gpite of their definition,
apparently very general, algebras with property v constitute a quite
narrow class satisfying a very concrete representation theorem proved
by Urbanik in [22]. Using his result the fact that such algebras are
equationally compact follows also from equational compactness of linear
spaces (they have property v) which is known (see [25]) and our Theorem. 5.

Tet us consider another property of algebras weaker than v.

w. For every equation
(%) e=0,
(5) The assertion in brackets was proved in [18].

(8) (wy/20) denotes the substitution of x, for .
19#*
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which is not identically true in the algebra, there exist a variable #; and
a term v without the variable @; such that (s%) implies
Ty=7T.

Examples are the locally absolutely free algebrags of Malcev [13],
i.e. algebras every finitely generated subalgebra of which is absolutely
free (these algebras can also be characterized by the first order axioms,
see [13], Theorem 1) and algebras of the form ()., where U is locally
absolutely free. Neither algebras with property w mnor even absolutely
free algebras need to be weakly equationally compact, as the example

{0,1,2, ..}, z+1)
shows. But property w implies the following one:

Every set of equations involving only finitely many variables every
finite subset of which is satisfiable is satisfiable.

TEROREM 6. If G is a group of motions of the Buclidean space R
which is generated by the group of all tramslations T (= B™) and a finite
group R, of rotations around one point, then G is equationally compact.

Proof. Let X be a set of equations with constants in @ finitely
satistiable in &, and let «, (s € S) be the system of unknowns of X. Every
motion of R" is uniquely representable in the form #r, where ¢ is a trans-
lation and 7 is a rotation. X being finitely satisfiable in @ and since the
topological power ®; is compact, there exists a system 79 cR, (8e8)
such that X together with the set of relations @, = #,#2A%, ¢ T is finitely
satisfiable. By [19] § 5, (9), this set of conditions reduces to a set of linear
equations with constants in the linear space R". Hence, linear spaces
being equationally compact (for a generalization of this fact see the
remarks following Theorem 5), X is satistiable in 6. Q.E.D.

This theorem applies e.g. to a group of motions of R® which is gener-
ated by the group of all translations and the group of rotations of the
icosahedron. Theorem 6 cannot be improved by removing the condition
that R, is finite in spite of the fact that the group of all rotations is
compact; indeed, the group of all motions of B2 is not equationally compact.
Notice the following simple example.

E,. Let & be a group which contains a subgroup isomorphic to the
group G, of linear substitutions of the form

Jer(w) = 2%w+r (% any integer, r any rational number) .
Consider the set of equations
* e P .
(%) i‘/sxsa‘l"'nﬂ’szl?/s;;.ws.ms;l =0(for) (1% 85,8,8¢8) ’

Wh?re @, and Yssy are unknowns and ¢ is an isomorphism of ®, into G.
It is eagy to. chec}: 'that each (at most denumerable) subset of this set
of equations is satisfiable in 9(®,) (if B, were the group of all linear sub-
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stitutions aw-+b (a # 0), then each subset of power < 2™ would be
satisfiable in ¢(®,)). But if [§] > |®], the whole set is not satistiable in @,
because (4%) implies @s, o &4, (7)

As in [25] by an R-module we mean an algebra M= <4, +,—, ren,
where <4, -+,—> is an abelian group and R is a ring of endomorphisms
of this group which are unary operations of IN.

TEEOREM 7. If an R-module M is equationally (|R|-+ x,)-compact,
then M is equationally compact.

Proof. The formulas a; appearing in Theorem 3 (ii) are now linear
equations of the form

Tio@o+ T Byt oo+ Tim®m = a1,

and hence the set of elements satisfying any formula of the set X of
Theorem 3 (ii) is a coset of the group <4, +,—) with respect to some
subgroup completely determined by the system #y ((=1,..,n,
j=1,..,m). Since there is |R|+8, such systems and no more such
subgroups, and the intersection of two cosets with respect to the same
subgroup is non-empty only if these cosets are equal, Theorem 7 follows.

The n-dimensional projective space P§ over a field § is the quotient
(F"N{(O0, ..., 0)})/ ~, wWhere (%4, ..., ®n)~ (Yo, .-y Ys) Means that . there
exists a 2 € such that (22, ..., 2%) = (Yo, +.., ¥u). The set of all polyno-
mials of m(n-1) variables xy (¢ =1, ..., m, j = 0,1, ..., n) homogeneous
for each ¢ with respect to the ‘“point” (24, ..., #m) and with coefficients
in § will be denoted by W, and we set Wy = Winw Wi, v ... For each
w € Wpm, let Ry, be the subset of (P§)™ defined by the equation w = 0,
and we put Pg = (PE, Budwew,. It is known that if § is a dense locally
compact topological field, then P has a natural compact topology and
all R, are closed (see [20], V § 27, Example 48) and hence the relational
structure R is atomic compact. The problem of an algebraic characteriza-
tion of fields § for which the last assertion is true is still open but we will
prove this assertion for algebraically closed fields. This result intersects
with the above-mentioned topological result since such fields as the
field of real numbers or p-adic numbers are locally eompact and dense
but not algebraically closed.

TuEOREM 8. If § is an algebraically closed field then Ry is atomic
compact.

Proof. Firgt notice the following auxiliary statements.

(i) Let X, (s e 8) be a system of sets and for any finite set # C §

let Ty be a compact T;-topology in the cartesian product PserX, such

(*) This example yields a negative solution of the problem P483 of [18]. See also [18]
for a related problem P482 concerning the group of integers, which is still open, and
and example due to A. Ehrenfeucht concerning the ring of integers.
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that each projection PyepX,s->Pser,Xs (Fo C F) is continuous and cloged
(i.e. images and reciprocal images of closed sets are closed) with respect
to Ty and Tw,. Let T be a topology in PsegX, with a basis of open sets
consisting of all cylinders over the open sets of the topologies Tp. Then T
is a compact T,-topology.

This is & simple refinement of the Tychonoff product theorem.

Finite intersections of the sets R, with w ¢ Wy, are called algberaio.
The following proposition is easy to check for any field §.

(ii) Singletons contained in (P§)™ are algebraic sets, finite unions
of algebraic sets in (Pg)™ are algebraic and cylinders of algebraic sets
of (PYH™ in (PR™* are algebraic.

A fundamental result of elimination theory (see e.g. [24] (Edition
1940), § 80 or [12], p. 45) states that

(iii) If § is algebraically closed then the projections of algebraic
sets of (PL)™F into (P})™ are algebraic.

The Hilbert basis theorem implies the following statement.

(iv) A descending sequence of algebraic sets has finitely many
different terms.

By (ii) and (iv) the algebraic sets of (P§)™ is a family of all closed
gets of a compact T;-topology, the s.c. Zariski topology.

Now we conclude the proof of Theorem 8. Let X be a set of atomic
formulas with constants in RF, which is finitely satisfiable in R§ and
let 8 be the set of indices of free variables appearing in X. Let X, = P§
for every s ¢ § and let the Ty of (i) be the Zariski topologies. By (ii), (iii)
and (iv) the all suppositions of (i) are satisfied and hence (i) yields that X
is satistiable in Rg. Q.E.D. (¢

Theorem 8 can be generalized as follows. Consider the family F of
all subsets of the Cartesian product PirPE? (1 < n(f) < w) which are
defined by means of equations w = 0, where w is any polynomial in the
variables # (t ¢ T, i = 0,1, ..., n(t)) homogeneous for each ¢ with respect
to the “point” (a0, ..., Bynp) and with coefficients in §. Of course each
(@10 <oy Bny)/ ~ 18 considered as a variable running in the axis PEY
with index .

THEOREM 9. If § is algebraically closed, then F iz a compact family
of sets.

Proof. Consider the mapping

fmt (PR">PF,
(®) We due to A Biatynicki-Birula some helpful discussions relating to this proof.
‘Note adfled in prtzof. Proposition (i) used in this proof may be interesting
for iteelf, but is not essential here. Indeed, by (iii) the sets defined by the formulas

appea.r.ing. in Theorem 3(ii) are algebraic in Pg and hence Theorem 3 and the compactness
of Zariski's topology yield Theorem 8.
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where the values of fy,

fm((“n V)~ ey (U, ’Um)/"“) = (@ very Bm)[ ~

are defined by the relation

m
T X 400) = 6 X™+ 6, X" 4 ot Gy X i -
=1
Since § is algebraically closed, f,, is onto and of course f,, is continuous
in the Zariski topologies. To prove Theorem 9 it is enough to show that
the family of sets { | Prerfai(p(8): 4 € F} is compact. But this follows
ped

of course from the case n = 1 of Theorem 8. Q.E.D.
The following example shows that Theorems 8 and 9 fail for many
fields which are not algebraically closed.

E,. If § is a proper subfield of the field of real numbers in which
every positive number is a square, then R is not atomic compact. Indeed,
every clogsed interval of the projective line Py is of the form
{#: Hy[Ry,(z, y)]}, where

wo = (amg+ bmn) Y5+ (cmo+ dy) 93 -

But P§ is not topologically compact and hence taking a descending
gequence of closed intervals of Py with an empty intersection we obtain
a set of formulas of the form

Ryn(®y Ym), m=1,2,..

each finite subset of which is satistiable in By but the whole set is not.
We conclude this paper with some statements on the invariance of
the various algebraic notions of compactness which we have considered
with respect to some natural transformations of algebraic structures.
Given any function f: XY, we put f(#y, ..., @) = (f(#); coe, J(@n))
for every @, .., € X, f(U)= {f(u): we U} for every UC (JX" and

n
f(M) = {f(U): U eM}for every M such that | JM C | JX". For any class
n

of formulas K and algebraic structure % we denote by KU the set of all
relations defined in U by the formmnlas of K. A structure ¥ is said to be
K -isomorphic to a structure B if there exists a function f: 4 B which
is one-to-one and onto and such that f(EU) = KB. In particular we get
in this way the notions of atomic, positive and elementary isomorphisms
of structures which may even differ by their similarity type. Finally, % is
said to be K-c¢-isomorphic to B if (U), is K-isomorphic to (B)e.
The following propositions are obvious. :
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(i) Atomic isomorphism (c¢-isomorphism) implies positive isomor-
phism (¢-isomorphism) and positive isomorphism (¢-isomorphism) implies
elementary isomorphism (¢-isomorphism).

(ii) Atomic, positive or elementary isomorphism implies atomie,
positive or elementary c¢-isomorphism respectively.

(iii) Weak K-m-compactness is an invariant of K -isomorphism.

(iv) Atomic (positive) [elementary] m-compactness is an invariant
of atomic (positive) [elementary] ¢-isomorphism.

Moreover, by Theorem 4, we get

(v) Atomie compactness is an invariant of positive ¢-isomorphism.

Of course, (i) is derived from the fact that each of the classes of
atomic, positive and elementary formulas is the closure of the previous
class with respect to some operations. Thus (i) could still be generalized.
The same is true for (ii) and (iv). Using Theorem 3, a part of (iv) can be
generalized in the following way:.

(vi) Atomic m-compactness is an invariant of XK, isomorphism,
where K, is the class of finite disjunctions of formulas of the form defined
in Theorem 3 (ii).

Marczewski [15] introduces general algebras in such a way that they
do not depend on the similarity type but only on the set of algebraic
operations. In this way his concept of an algebra is already a type with
respect to a certain isomorphism of classical algebras. Most of the literature
quoted by him in [16] studies invariants of a related isomorphism called
by him weak isomorphism (see especially [2] and [3]). Weak isomorphism
is a relation smaller than atomic isomorphism. )
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