icm[©]

References

- [1] R. D. Anderson, The Hilbert cube as a product of dendrons, Notices of Amer. Math. Soc. 11 (1964), p. 522.
 - [2] P. Alexandroff and H. Hopf, Topologie, Berlin, 1935.
- [3] T. Ganea, On the homogeneity of infinite products of manifolds, Proc. Amer. Math. Soc. 17 (1966), pp. 1128-1130.
- [4] R. J. Koch and L. F. McAuley, Semigroups on continua ruled by arcs, Fund. Math. 56 (1964), pp. 1-8.
 - [5] P. Hilton, Introduction to homotopy theory, Cambridge, 1953.

Reçu par la Rédaction le 11. 2. 1967

A counter-example in dimension theory

by

T. H. Walton (Swansea)

In proving results involving the strong inductive dimension 'Ind' of a topological space one frequently uses the following

LEMMA. Let A be a subset of the hereditarily normal space X. If $\dim A \leq 0$ then for any pair of a closed set F and an open set G with $F \subseteq G$ there exists an open set V such that

$$F \subset V \subset G$$
, $b(V) \cap A = \emptyset$

where $b(V) = \overline{V} \setminus V$ is the boundary of V (see, e.g. Morita [1], Hurewicz and Wallman [2], Nagata [3]).

That this is not true for every normal space is shown by the construction which follows.

Let ω_0 be the first infinite ordinal and let ω_1 be the first uncountable ordinal and provide each of the sets

$$N = \{k: k \text{ and ordinal, } 0 \le k \le \omega_0\},$$

 $P = \{\alpha: \alpha \text{ an ordinal, } 0 \le \alpha \le \omega_1\}$

with the order topology.

Let the set $I = \{t: t \text{ real, } 0 \le t \le 1\}$ be provided with the usual topology. Form the topological product

$$Z = P \times I \times N$$
.

Then since P, I, N are all compact Hausdorff spaces, so is their product Z. Finally, form the quotient space X by identifying all points of Z with the same t-coordinate for $a = \omega_1$, that is, define a decomposition $\mathfrak D$ of Z whose members are:

the singletons
$$\{z\} = \{(\alpha, t, k)\}\$$
if $\alpha \neq \omega_1$, the sets $E_t = \{(\alpha, t, k): \alpha = \omega_1, 0 \leqslant k \leqslant \omega_0\}$

and provide the family $\mathfrak D$ of equivalence classes with the quotient topology thereby obtaining the quotient space X in which a subset U is open if and only if $\pi^{-1}[U]$ is open in Z, where $\pi\colon Z\to\to X$ is the projection of Z onto X.

The topological space \boldsymbol{X} will be referred to as the 'book-space' and the subspace

 $B = \bigcup_{t \in I} E_t$

as the 'spine' of the book-space.

Note that there exists a homeomorphism $f\colon \mathfrak{G}>\to B$ between the unit interval I and the spine B defined by

$$f(t) = \pi((\omega_1, t, k)), \quad \text{any } k \in N.$$

Next, let $r_0 = 0$, $r_1 = 1$, r_2 , r_3 , ... be an enumeration of the rational numbers in I = [0, 1]. Let

$$A_k = \{(\alpha, r_k, k): \alpha \in P, \alpha < \omega_1\}.$$

Then

$$A_k \subseteq X$$
, $k \in N$.

Let C= that subset of X for which $a=\omega_1$ and t= an irrational number 0< t<1.

$$A = (\bigcup_{k=0}^{\infty} A_k) \cup C.$$

Clearly, $A \subset X$.

Finally, let

H =that subset of X for which t = 0,

K =that subset of X for which t = 1.

Then H, K are disjoint closed subsets of X. We assert that

- (1) X is normal;
- (2) X is not hereditarily normal;
- (3) $\dim A = 0$;
- (4) if $G = X \setminus K$, then G is open and the closed set $H \subseteq G$; for every open set W such that

$$H \subset W \subset \overline{W} \subset G$$
, $b(W) \cap A \neq \emptyset$.

We shall establish (4) in the equivalent symmetric form:

(4') for any two open subsets U, V of X such that $H \subseteq U$, $K \subseteq V$, $U \cap V = \emptyset$

$$(X\setminus (U\cup V))\cap A\neq\emptyset$$
.

Proof. (1) Since Z is compact, the quotient space X is compact. It suffices to show that X is Hausdorff or, equivalently, to observe that the decomposition $\mathfrak D$ is upper semi-continuous. (Let Z be a space and let $C = \{U_a\}$ be a collection of disjoint compact sets whose union is Z. The collection C is said to be *upper semi-continuous* provided that for each C_a of C and each open set C containing C_a there is an open set C with $C_a \subseteq V \subseteq C$ such that every element C_b of C that intersects C lies in C. (See Hocking and Young [4].)

The collection $\mathfrak D$ clearly satisfies the requirements for being upper semi-continuous. Hence X is a compact Hausdorff space and is therefore normal.

- (2) The space X contains homeomorphs of $P \times I$ in which $P \times N$, the "Tychonov plank", can be imbedded. Since the "Tychonov plank" is not hereditarily normal (see Kelley [5]), the space X is not hereditarily normal.
- (3) Let $A = \bigcup_{i=1}^m A \cap U_i$, where $U_1, U_2, ..., U_m$ are open in X. Then, since C is zero-dimensional, there exist J_i (i = 1, 2, ..., m) open in I, J_i disjoint, such that

$$f(J_i) \subset U_i$$
, $\bigcup f(J_i) \supset C$.

Since I has a countable base and the number of 'leaves' of the book-space X is countable, we can choose β_i so large that

$$V_i = \pi[\{(\alpha, t, k): \ \beta_2 < \alpha \leqslant \omega_1 \ , \ t \in J_i \ , \ 0 \leqslant k \leqslant \omega_0\}] \subset U_i \ .$$

Now $\bigcup V_i$ is open and $A \setminus \bigcup V_i$, the part of A not covered by the sets V_i , is the union of a family of disjoint zero-dimensional open subsets of A. Hence $\dim A = 0$.

(4') Let U,V be any two open subsets of X such that $H \subseteq U, K \subseteq V$ and $U \cap V = \emptyset$. Put $Q = X \setminus (U \cup V)$. It remains to show that $Q \cap A \neq \emptyset$. Since B is connected, $Q \cap B \neq \emptyset$. If $Q \cap B$ has any point with irrational t-coordinate, then $Q \cap A \neq \emptyset$; if it does not, there is some $t_0 \in I$ such that $f(t_0)$ is an accumulation point of both U and V. Then t_0 is rational and all (α, t_0, k) with $\omega_1 > \alpha >$ some ξ are accumulation points of both U and V; hence all such points are in Q. Hence $A \cap Q \neq \emptyset$.

The above construction thus shows that we cannot relax the condition 'hereditarily normal' to 'normal' in the above lemma.

In conclusion I wish to express my appreciation to Professor C. H. Dowker for drawing my attention to this problem and for valuable discussions.

References

- [1] K. Morita, Dimension theory for metric spaces, Math. Annalen 128 (1954), pp. 350-362.
 - [2] W. Hurewicz and H. Wallman, Dimension theory, Princeton 1952.
 - [3] J. Nagata, Modern dimension theory, North Holland 1965.
 - [4] J. G. Hocking and G. S. Young, Topology, Addison-Wesley 1961.
 - [5] J. L. Kelley, General topology, Van Nostrand 1955.

UNIVERSITY COLLEGE, Swansea