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Note on metric-dependent dimension functions
by
Richard E. Hodel * (Durham, N.C.)

1. Introduction. Let (X, o) be a metric space, let dimX be the
covering dimension of X, and let udim(X, o) be the metric dimension
of X. Let d,, d;, and d, denote the dimension functions for metric spaces
introduced by Nagami and Roberts in [5]. A summary of the relation
among these various dimension functions for (X, o) is as follows.

(X, 0) < dy(X, 0) < pdim (X, 0) < dy(X, ¢) = dim X < 2udim(X, o) .

In this paper we continue the study of dimension functions for metric
spaces which by their definition appear to depend upon the particular
metrie. In § 2 we introduce a new dimension function d; and show that
for any metric space (X, g), ds(X, 0) < d5(X, 0) < pdim (X, o) and if X
is separable dy(X, o) = pdim(X, ¢). In §4 we prove the relation dimX
< 2dy(X, p). This result sharpens the inequality dimX < 2xdim(X, o)
first obtained by Katétov in [2] and, gives a partial solution to Problem 1
in [5]. Finally, in § 5 we give several characterizations of covering dimension
for metric spaces.

2. The dimension function d;. The reader is referred to Nagami
and Roberts’ paper [5] for definitions of the dimension functions xdim,
dy, dy, and d,. The dimension function d;, a “uniform” d, function, is
defined as follows.

DrrFINITION 2.1. Let (X, 0) be a metric space. If X =@, then
d5(X, o) = —1. Otherwise, d(X, g) <= if (X, o) satisfies this condition:
given any countable number of pairs of closed sets Oy, 0i; O,, Cs;... such
that for all 4, o(Ci, 0f) = 6 > 0, there exist open sets W,, Wy, ... such that

(1) C:C Wy C W;C (X— (%), for all i.

(2) oxd{Wi—Wy: i=1,2,.}<n.

If dy(X, 0) < m is true and (X, o) < n—1 is false, then dy(X, g) = n.
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Tt is clear that for any metric space (X, p), &(X, 0) < dy(X, o).
Furthermore, the proof in [5] that dy(X, ¢) < pdim (X, ¢) can be easily
modified to show that dy(X, ¢) < pdim (X, ¢). We thus have the following
theorem.

TaEoREM 2.1. Let (X, o) be a metric space. Then dy(X, 0) < dy(X, o)
< pudim (X, o).

In [5] Nagami and Roberts prove that if (X, ) is a metric space
with ¢ a totally bounded metric then dy(X, ) = udim (X, ¢). We use
a similar technique to prove that for separable metric spaces ds and pdim
are equivalent. A major unsolved problem in the theory of metric-depen-
dent dimension functions iy the following. Is dy(X, ¢) = pdim (X, o) for
(separable) metric spaces?

Lemyma 2.2. Let (X, o) be a separable metric space and let &> 0 be
given. Then there ewist open collections Uy amd Vi, i= 1,2, ..., satisfying
these conditions.

1) Ty i=1,2,.., covers X.

(2) Vi, 1=1,2, ..., is locally finite.

(3) o(Us, X—V3) = %e, for all q.

(4) mesh{Vi: i=1,2,.}<e.

Proof. Let @, i=1, 2, ..., be a dense subset of X. For ¢=1,2, ... let

A= {p: o(p,m) < 4¢/8}, Ci={p: o(p,m) < 6¢/8},
Bi={p: o(p, =) < Bef8}, Dy = {p: o(p, @) < Te/8} .
Finally, for i =1, 2, ..., let Vi= D;— | J 4; and U;= 0;— |J B;. Clearly
i<t J<i
each U; and Vi is open and mesh{Vy: i=1,2,..} <& It remains to
prove these assertions.
ASSERTION 1. The collection Uy, i=1,2, ..., covers X.
Proof. Let p be a point in X. Let ¢ be smallest integer such thab
o(p, &) < 3¢/4. Then p is in C; and p is not in B, for § < ¢. Hence p is in Us.
ASSERTION 2. The collection Vi, i=1,2, ..., is locally finite.

Proof. Let p be a point in X, and let ¢ be such that p is in 4. Then A4
is an open neighborhood of p and for j>i 4~ V;=@

ASSERTION 3. For all i, o(Us, X—V;) > ¢f8.

Proof. Suppose that for some i o(T;, X—V) < ¢/8. Let p and ¢
})e points of Uy and (X—V) respectively such that o(p, q) < ¢/8. Now U;
is contained in €y, and so p is in C;. Since (0%, X— D) = ¢/8, it follows
that q‘is 00t in X~ Dy. Thus the point ¢ is in D; but not in V. Therefore
there is a j < i such that ¢ is in 4. Since o(p, g) < ¢/8, p is in By, which
18 a contradiction since p is in U,.
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TeworEM 2.3. If (X, 0) is a separable metric space, then dy(X, o)
= pdim (X, g).

Proof. It suffices to show that pdim (X, o)< dy(X, ). So let
d(X,0)<n and let ¢>0 be given. We shall construct an open
cover £ of X such that meshf < & and ordf <s-1. It then follows
that pdim (X, g) < n.

For ¢>0 let U; and Vy, ¢=1,2,.., be collections of open sets
satisfying the conditions in Lemma 2.2. Since o(U;, X—Vi) > ¢8> 0
for all ¢, and since di(X, o) < n, there exist open sets Wy, i=1,2,...,
such that

(1) T:CWiC W, CVy, for all i.

(@) oxd{W—W i=1,2,..}<n.

Now (Wi—W;) is contained in Vi, for all 4, and Vi, i=1,2,...,
is locally finite so by a Theorem of Morita ([4], p. 17) there exist open
sets Hyy t=1,2, ..., such that

(1) (Wi—W:) C H; CVy, for all 4.

(2) oxrd{H¢: i=1,2,..}<n.

Fori=1,2,.., let Ki= W¢~jL<J_ W;; note that each K is an open
get and for ¢ #1, K; ~ K;= @. Finally, let

L= {Hy: i=1,2,. }vi{f¢ i=1,2,..}.
Then £ is an open cover of X such that meshf < ¢ and ordf <n-+1.

8. An important lemma. The following lemma plays an im-
portant role in the proofs of Theorem 4.1 and Theorem 5.1.

LevmA 3.1. Let (X, o) be a metric space, and let G = {Gl,!f.., G}
be a finite open cover of X. Then there ewist open collections

W= {0 i=1,..,m; j=1,2,..} and

VW= {Vii=1,..,m; j=1,2,..}
satisfying these conditions.

(1) W covers X.

(2) VU is locally finite and refines S.

(3) (T, X—Vi) = 1/2"", for all i,j.

(4) Let §=1,2,.., k>j+1, 1<i<m, and 1<l<m. Then
ViaVEi=@.

Proof. For i=1,..,m, j=1,2,.., let

Oi={p: o(p, X—G)> 112"}, Di={p: olp,X—6)>32""}.
Put

U= o) Dy

k=1

VieD¥— (0¥ (Dit=0i'=9).

k=1

and
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Fmally,put‘ll:——« (Uli=1,.,mj=1,2,.}and VU= ihi=1,
j=1,2,..}. It is clear that ‘1L and U are open collections and Lham ‘U
refines G. Moreover, condition (4) implies that U is a star finite collection,
and so U is certainly locally finite. The proof is complete if we prove
the following assertions.
AsserrION 1. U covers X.
Proof. Let p be a point in X. Pick 4, 1<<i<m, such that
(p,x._G,)>@(p,X——Gk) % = . Since ¢ covers X, o(p, X—@G)> 0,
Pick the smallest integer § such that p is in oF, 1t 9 = 1, then p is in U}
and we are finished. If j > 1, then p is not in 07* and 50 o(p, X—@)
<1/2%"%, We now show that p is in U}. Since ¥~ is contained in ¢}'~?,
pis not in D§~*. Suppose, however, thatfor some & # ¢ p is in D%, Then
olp, X—6p) > 3/2”" ,and 50 o(p, X— @) > o(p, X— G4), a contradiction
of the choice of 7. Hence we conclude that p is in Ui,

ASSERTION 2. For i=1,.,m, j=1,2, .., o(T], X—V}) > 1/2%+,

Proof. Suppose that for some i, § we have o(T}, X—V}) < 1/2¥+2.
Let p and ¢ be points in U] and X— V] respectively such that o(p, q)
< 1/2%*% Now U7 is contained in 03, and so p is in 0. Since o (0¥, X— DY)
> 1/2"*2, it follows that ¢ is not in X D%, Thus the point ¢ is in D¥ but
not in Vi. Therefore there is a &, 1 < % < m, such that ¢ is in &%, Since
o(p, 9) < 1/2°*%, it easily follows that p is in D} ~*, a contradiction since p
is in UJ.

ASSERTION 3. Let j=1,2, .., k>4, 1<i<m, and 1 <1<
Then ViAVi=0.

Proof. Suppose that the point p is in Vi and V{“, where &.> j+1.
Sinee p is in V7, p is not in CF**. But if p is in V7, then p is in D¥, and
since D7’ is contained in C3*°, it follows that p isin 02*~%, a contradiction.

4. The relation dimX < 2-dy(X, g). In [6] Nagami and Roberts
pose the following question. Is it true that for any metric space (X, g),
AimX < 2.dy (X, 0)? In this section we prove that dimX < 2.-dy(X, o),
thus generalizing Katétov’s result [2] that dimX < 2udim(X, o). The
inequality dim X < 2-dy(X, o) seems quite difficult, In fact, the following
seems to be unknown. If dyX, g) = n < oo, iy dimX finite?

TEwoREM 4.1, Let (X, o) be a metric space. Then dimX < 2.dy( X, o).

Proof. Let dy(X, o) <n and let §= {64, ..., G,} be a finite opén
cover of X. We shall construct an open refmement £ of ¢ such that
ordf < 2n+1. It then follows that dimX < 2n.

Given the open cover 6, let U= {Uh i=1,..,m; j=1,2,..}
and V={Vl: i=1,..,m; j=1, 2,..} be open collections samfymg
the conditions of Lemma 3.1. Fix j, and consider the collection {T}, X— Vi
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i=1,..,m} Since o(TL, X—V>0, i=1,..,m and (X, o) <mn,
there is an open collection W;= {Wi: i=1, ..., m} such that

@) Ticwic wicvi, i=1,...,m

(2) ord{Wi—Wi: i=1,..,m}<

By a Theorem of Morlta ([4], ». 17) there is' an" open oo]lectlon

= {HI: i=1,...,m} such that

(1 (WZ WI)CH{CV{, 1= 1, ey M

(2) ordJ; < n

Now let = | #;; then ord¥ < 2.n. For, let p be a point of X
1=1

which is covered by J€ and let j, be the smallest integer such that p is
covered by 3,. By condition (4) of Lemma 3.1, p is not covered by ¥,
for j > j,-+1. Since ord¥;, < n and ord¥j4s <n, it follows that p is
contained in at most 2-n elements of XK.

Let K= A {W,,X— W’}, % is a mutually disjoint collection of

4=1
—1 2

open sets (see [4], p 17). Fmally, let £ = U X; then £ 1s an, open refin-
ement of § and ordf < 2n-+1.

5. Characterizations of covering dimension. Consider the
following conditions for a metric space (X, g).

(en): Given any countable locally finite closed collection Fy,F,, ...
and any open collection V5, V,, ... such that for all 4, o(¥#:, X—V4) > 0,
there is an open collection Wy, W, ... such that

(1) FC Wy C W;CVy, for all 4.
2) ord{W;—Wi i=1,2,.}<n.

(Bs) Given any locally finite closed ecollection {F.: « in A4} and
any open collection {V,: ain A} such that for all a in 4, o(F., X—V,)
> 0, there is an open collection {W.: a in A} such that

(1) F,C W,C W,CV,, for all a.
(2) ord {W,—Wo: o in A} <
(Yn): Given any closed collection {F,, ain U Ay}, where for each ';,

{#y: a in Ai} is locally finite, and any open co]lectlon {Vai ain UA.}
such that for all a in ~:U1 Ay, 0(Foy X—V,) > 0, there is an open co]leenon
(Wt a in Q A} such that

(1) F.C W.C W.CV, for all a in Q 4.

2) ord{W.—Wa: a in {G Ay <n
=1
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Bach of these conditions is a possible candidate for a dimension
function which would appear to be metric dependent. We shall now
show, however, that each of these conditions characterizes covering
dimension in metric spaces. ‘

TaEoREM 5.1. The following are equivalent in a metric space (X, o).

1) dmX < n.

(2) (X, o) satisfies (o).

(3) (X, o) satisfies (Bn).

(4) (X, o) satisfies (yn).

_ ‘Proof. It is clear that (4)—(3)—(2). The proof that ('2)->(1) is
similar to the proof of Theorem 4.1 and is outlined as follows. Let
§=. {6, ..., G} be a finite open cover of X; we ghall construct an open
refmemejnt £ of § such that ordf < 1. Given the open cover @, let
b= {Tf i=1,..,m; j=1,2,..} and V= Phi=1,..,m;j=1,2,.}
Ee open collections satisfying the conditions of Lemma 3.1. Since X satis-
iey (on), there is an open collection W = {W¥ 4=1,...,m; j=1,2
such that { =2

Q) TicwicwWicvl i=1 ...m;j=1,2,..

@) ord{Wi—Wk i=1,..,m; j=1,2,..}<n.

Byy_a'Theorem of ‘Morita ([4], p- 17) there is an open collection
X= {H.;:_1:= 1,..,m; j=1,2,..} such that

W) (W—WHCHICV], i=1,..,m; j=1,9, ..

(2) ord ¥ < n.

Let %= A m{W:-', X—Wi}, and let £=3Je U X; then £ is an

F=12...
open refinement of § and ordf < n 1.

It remains to prove (1)—(4). So let dimX < n, let {Fy: ain Cj Ay}

. » ‘t;-
be a closed collection in X such that for all iy {Fa: o in 4.} is locally fi111ite,
and let {V,: ain ;.UIA'} be an open collection such that for all « in Luj Ay,

. ‘i-
ézlil?’,, _X—Va) > 0. Given the locally finite cloged collection {Fa: ain 1A;},
1e :ée is, ll;y a I.Jemma due to Morita ([4], p. 22), a locally finite open. col-
on {U.: ain 4} such that for all « in Ay, F, is contained in U,. For

00
each ai =
ch a in I‘L;Jl Ai let G, = U, ~ V,. Now apply [6], p. 25, to the collections
00
@ ain 4} and (G ain ()4 i
= ot U 44} It easily follo bis-
o () 4 o y ws that (X, ¢) satis

COROLLARY 5.2. (Nagami-R i
e g oberts.) For any metric space (X, o),
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