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On simultaneous extension
of infinitely differentiable functions
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7. OGRODZXA (Warszawa)

Introduction. The first result concerning the extension of differen-
tiable functions is due to Lichtenstein [8], who has shown that any differen-
tiable function on a closed set in R® whose boundary satisfies some condi-
tions ecan be extended to a differentiable function in R3. Whitney [15]
has proved that any function f(z) = f(@y, ..., zx) of class O™ on a closed
subset of R® can be extended to a function of class 0™ in R™ In the case
m — oo this extension is not linear. Hestenes [6] has modified Whitney’s
proof, and has given also another method of extending the differentiable
functions, which is applicable only when m is finite and the boundary
has suitable properties. It is, however, sufficiently general to be of interest
and the proof is relatively simple. The method used is a generalization
of the reflection principle used by Lichtenstein [8] by the use of McShane’s
[9] lemma on the extension localisation.

Next, Mitjagin [10], and Ryll-Nardzewski (not published) have
shown independently the existence of the linear continuous extension
opetator L: C*[a, b] — O°(R) (a < b).

‘Seeley [14] has construeted a linear and continuous extension operator
from the space of functions of class 0 on a half-space to the space of
functions of class C* on the whole R".

Recently Adams, Aronszajn and Smith (announced in [1]) obtained
a complete result concerning the existence of extension, namely a neces-
sary and sufficient condition for a convex domain D to possess the
property of extension is that for a certain bounded cone € and for every
zeD there be a congruent cone with a vertex x, contained in D.

The first results concerning the linear extension operators of the
continuous functions are contained in the papers of Borsuk [2] and
Dugundji [3].

In this paper we prove: (1) the existence of a linear operator extending
the functions of class (™ considered on the closed subset of R™ to the
functions of class €% on the whole R, (2) the existence of a linear operator
extending the functions of class 0* defined on the closed subsets with
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the boundary satisfying some conditions of the #n-dimensional manifold
of clags O™ to the functions of class C*° on the manifold.

Our method is similar to that of Hestenes: application of partition
of unity and reduction to the case where the set under consideration is
an n-dimensional cube. The linear extension operator for the cube is
constructed by several applications of Ryll-Nardzewski’s operator giving
the extension in the one-dimensional case.

In Section 3 we give the application of extension operators. It is
proved that every space of infinitely differentiable functions on a compact
n-dimensional manifold of eclass C% admitting partitions of unity of
class ¢ and possessing a cube division satisfying a certain condition is
isomorphic with 0®(I). This generalizes the earlier results of Mitjagin
[10] and Grothendieck [4].

I would like to express my gratitude to A. Pelezynski for his
guidance and valuable remarks. I also want to thank to C. Bessaga for
his help during the preparation of this paper for the press.

. 1. Notation and terminology. R" will denote, as usual, the #-dimen-
sional real space; its elements are n-tuples & = (%, ..., ,). I" will denote
the unit cube in R" i.e.

<1l,i=1,...

I"={meR”:‘0 < , N}

Throughout the paper, B will denote a linear topological space which
will be assumed to be locally eonvex and sequentially complete (1).

Let 4 be an open subset of R": we shall say that the continuous
tunction f: 4 — E is of class (™ (feC%(4)) for some integer m (0 <m <
< +oo0) if there exist continuous partial derivatives D'f = D{*Dj ... Dirf
for |u| <m, Where p = (g1, fay -y pa)i |8l = prtpiat oo tn; pi 18
a non-negative infeger and Dji denotes Fréchet’s derivative of order
s with respect to #;. The function fis of class 0™ on 4 (fe0%F (4))if feCR(4)
for every m = 0,1, 2,... We shall write (z(4) instead of Cgm(4).

The topology in C%(4) is the topology of uniform convergence on
the compact subsets of 4 in every pseudonorm in E.

In the case where 4 is a closure of an open subset of R" we say that
feCR(A) (m finite if all the dervivatives D*f exist for |u| < m, are uni-
formly continuous in the interior of 4 and can be uniquely extended onto
A. But since F is sequentially complete, it follows that if the function f
from the open subset of R" into F is uniformly continuous, then f has

(*) A locally convex space is sequentially comqolete if for every sequence {un},
n=1,2,...;0f alements of this space the fact that Z‘ Hun“ < 400 for every pseudo-

norm implies that Z up exists and is an element of tlns space,
=1
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a unique extension to the closure of 4. Thus C%(4) where 4 is a closure
of an open subset of R denotes the linear topological space of the funetions
from A into F, which are uniformly continuous in the interior of 4 with
all their derivatives. The function f is of class C* on 4 (feC%(4)) if
feCR(A) for every m = 0,1, ...

All theorems in this paper remain true also if we replace the notion
of a Fréchet derivative and differentiability by weak Fréchet’s derivative,
i.e. if g = D*f means that for every ¢*<E* ¢* g is the value of a suitable
Fréchet derivative of the scalar function e*f. g

A topological Hausdorff space X is said to be an n-dimensional
manifold of class 7 (p = 0,1, ..., co) if there exist a collection of pairs
(Uiy @i (which we shall call an atlas) satisfying some conditions (see
Helgason [5]) where U; is an open subset of X, ¢; is a homeomorphism
from U; onto an open subset of R", and {U,};s covers X.

Let T be a subset of an n-dimensional manifold of class %, which
either is open or is a closure of an open subset. A function f: T — F is

said to be in CF(T) (m < p) if for every zeT there exists a chart (Us, ;)
with e U; such that fog;*is in (J"’”(:,;o1 (T; n T).

We take that fn—>f(fa,feCE(T)) in CET if fao@it —fopit
Colpi(Ug~ T)) for every iel.

Let § and T be the subsets of an n-dimensional manifold of class
0= such that S is a closed subset of T (in particular S and 7' can be subsets
of R", because R" is also an n-dimensional manifold of class C%).

The operator L: Cn(8) - C&(T) is said to be a linear extension ope-
rator if the following conditions are satisfied

(i) If is an extension of f, i.e. f(s) = Lf(s) for every s in 8 and
every f in O%(8); ‘
(i) L(eyfy+eofs) = e Lfy e, If, for fwcC%(8) and czeRY, k=1, 2;

(iii) L is continuous, i.e. for every compact subset Z of T, for every

(Ju] < m) and for every pseudonorm |.| in E there is a pseudonorm
[I.i"" in B and the constant b > 0 such that

where Z=2~T.

Iz, <b ) Iifliz,

[rl<m
An operator of linear extension L: C%(S)— CE(T) is called regu-
larly continuous if condition (iii) can be replaced by the condition
Hfllz,n < bh é‘mllfllz,.r
By this condition. it follows that any regularly continuous extension

operator preserves the classes O’" p=1,2,...,m), ie. LOE(S) = C&(T)
for p < m.

(iii") for every pseudonorm |[.|| in E.
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The general definition of the linear extengion operator for the linear
subspace of Cz(8) to the linear subspace of Cr(T) in the case where T
is a topological space and E is a linear topological space is given in the
paper of Pelezyngki [12].

We shall say that the manifold X of class C7 admits partitions of
unity of class O™ (m < p) if it is paracompact and for each locally finite
covering {V,} (a ranging in some indexing set) of X there is a collection
of functions v, satisfying the conditions:

(1) w,: X — RB* and is of class 0™ on X for each q;

(2) wo(2) =0 for <X and for each a;

(3) {®: pa(a) # 0} = suppy, = V, for each a;

{(4) X wy.(») =1 for each weX.

The definition of paracompactness and the sufficient conditions for an
n-dimensional manifold to admit partitions of unity can be found in
Helgason [5].

A subset of R" is said to be a non- smgulwr manifold of class
P (p=0,1,...,00) if for each of its elements z = (a:l, ., @) there exist

functions w; = mi(yl, V) (e <y <o) i =1,...,n—1),i=1,...,
0
.., m, of class € whose matrix ( i ) has rank n—1
Yi

We shall say that a manifold B is pi€cewise of class 07 (p = 0, 1, ..., oo)
if for every point 4’ < B there are an integer m (1 < m < n) and a non-singu-
lar transformation

(1) =ty oy ta), t=1,...,m,

of class 0" such that the points of B ~ N are the totality of points in ¥
determined by equations (1) and the relations:

20 (J<m);  tty..ty,=0.

We shall say that a subset 4 of an n-dimensional manifold X of
class 0™ has a boundary B piecewise of class O if there is an atlas (U, g:)
on X such that if U; ~ 4 50 then @; B ~ U, is piecewise of class C%.

Let X be an n-dimensional manifold of class C®. By a cube division
of X of class 0® we mean a pair consisting of a cube complex K and a
homeomorphism »* of K onto X with the following property. For each
n-dimengional cube § of K there is a chart (U, ¢;) in X such that Q) <
c U; and @i is of class O™,

2. Existence of linear extension operators.

) THEOREM 1. Assume that A is a closed subset of R”, with a non-empty
wnterior, whose boundary B is a non-singular manifold of class 0. Then

icm
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there exists a linear and regularly continuous exiension operalor
C%(4) = CF(R".

Theorem 1 can be strengthemed as follows:

THEOREM 2. If A 4s a closed subset of R", with a non- empi y interior,
whose boundary B is a non-singular manifold piecewise of class C%, then
there exists a linear and regularly continuous extension operator

C%(4) — OF(B").

The proofs of these theorems are based on two lemmas and two
auxiliary propositions.
Let
= {.’DER"':

—o0 <@y < o0 (j < )3 1 (j >

It is easy to see that Iy = I" and I = R".

Let B denote the set of all ze R" such that —oo <2; < 400 for j < 4,
0 <o < +oo, 0 <ay <1 forj >4 and let By denote the set of all zeR™
such that —oo <#; << 400 for j <4, —oo <a; <1, 0 <a; <1 for

O<w;<

j>i(i=1,...,n—1).

Let us take

&(Bf) = {geC3(B{): D'q(x) =0 for @, >1 and |p| =0,1,...}
and

&(B7) = {geC%(B7): D'g(x) =0 for o, <0 and [p] =0,1,...}.

LeMMA 1. There exist linear and reqularly continuous ewmiension ope-
rators
Li: &(BF) —~

CE(I7) for

O8I,

L7 : &(B7) -~ i=1,...,n—1.

o)) = 3 a* with
k=0

Such a function can be

Proof. Take an arbitrary entire function in R!

the property ¢(2™) = (—1)™ for m = 0,1, ...
constructed (see Saks and Zygmund [13]).
‘We define the operator Lj for the functions ge&(B;)

g(Byy ...y y) for @ > 05

Zakg(ml,
k=0

(a) The series )} apD“g(y, ...
k=0

and uniformly convergent on every compact set of #eI7 such that 2; < 0

s &n) =

k
y Bp1y —2°0;y Ty ey T,)  fOr ;< 0.

s Biyy — 2@, @y, ...y @) i8 absolutely
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in every pseudonorm in E, because

ok
s Biyy =25y Byqy ey )]

N oD g(2y, ...
k=0 ’

oo
- S
k=0

o
and the series 2]%[2"’” is convergent for every u; =0, 1,...

(b) LT!]EOF(In) it ge&(BY).
From (a) it follows that there exist derivatives

1 ok e k,
1) MDD g(mly ceey Bi1y —2 wiymi_;.l, ---,-'l'.,,,)

D*Lig(®y, ..., 2, for all zel? such that z; < 0

and left-hand derivatives

DAL g(ay, ...

,x¢_1,0,$i+1,...,$n) for IM[:O,]_,

On the other hand, there exist derivatives

D*LEg(myy ooy ) = D'g(my, ..., @)  for eIl such that a, >0,
and right-hand derivatives
“ I+ Z i
—D+Lz 9(3317 ceey '”121; 05 991;_(_1, ey m'n) = Dﬁ-g(“"ly ey -Ti—-ly 07 m7;+1, e mn)
Thus we must show that
+
DIiL'L g(mh CERPR Y 07 "vi+11 ceey mn) = Dl—ig(mli ceey Ly_1, 0’ mi-}—l’ ey m’n)

for |u| = 0,1,...

Accordingly let us take x = (z,, ...

B 0
and Teb 2 — 20 o)y 0 = (2o
.

. @)
—0, i.e. #; < 0. Then we have

0 0
s Li1y O, wi_,_l, “es

s
hlg—’- DI} 9(93'1; .3 )
s g ] )
E g (Byy vy By, —2F0;
iy 1y evy Tig, Dy Biy1y oeey Tn)

—1)yHokm 3 Ko k
% ) hl;'[}.o-D g(xlj'--imi—ly —2 mi:m-i.;.l;"-ymn)

= (—D“ﬂD’*y(w%Zakzkﬂi = (—1)1D g () p(2)

k=0

= D¥*g(x?).
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(e¢) The operator L is linear and regularly continuous. The first
property is obvious, and the second one is a consequence of the estimation

V¥ gz, = sup (D" L g 21 i gl = C gz

with Z = Z ~ Bf, for every pseudonorm |I.]lin E and for every compact
subset Z of If.

To construct the extension operator L7 let us take the transforma-
tion

7: By — B?—y Ti(Bay oeey Tu) = (Lry ooy Bim1y L =855 Tigry ooy L) -

The transformation v; induces a linear operator z;
¥ &(B7) = &(BY)

guch that

, &) for

)y In) = gri(@1y - geép(Bi—)

lglls2z,. for every pseudonorm in H,

Thg(®yy ...
with the vproperty |7igllz,. =

every u and every compact subset Z of B; . Thus we can define the exten-

sion operator L : €(B7) — C%(I%) as follows:
Ly g =7 Litfg for ge&(B7).

Tt is easy to verify that I; possesses all the required properties.

TEMMA 2. There exist linear and reqularly continuous extension ope-
rators '
Ly CR(IL) - CR(ID  for i=1,2...,n.
Proof. Take the funection
0 . ) for 1 <0,
pl) =1 & (1— V) for 0<i<1,
1 for t=1.

Tt is easy to show that peC®(R?). Let A denote the restriction of the fun-
ction u to the interval [0,1] and let x(f) = 1—A(1), te[0,1]. Then we
have 4,%eC®[0,1] and A(t)+x(t) =1 for every te[0,1]. It iy easy to
see that the functions A(2)f(@y, .--, n) and z(x;)f(%., ..., ) belong to
CR (I, for every feCR(I7 ;). Moreover, all the derivatives with respect
0 z; of the first function vanish for all # such that x; = 0 and all the deri-
vatives with respect to @; of the second function vanish for all # such
that @; = 1. Thus it is possible to extend these functions by taking them
equal to zero the first for @; < 0, the second for z; > 1. Hence we can
consider that Afe&(B7), #f¢&(Bf) and we can define the operator L; as
follows:

@) +Li (#f) (=

Lif(x) = Li (f) (@
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It is an operator of extension because if welI? ,, then
Lif () = Ly (ﬂf) (®)+Li(4f) () = 2(@)f (@) +2(m:)f () = f(=).

The operator L; possesses the same properties as the operators L
and ILj. '

PROPOSITION 1. Let Q denote an arbitrary n-dimensional closed inter-
val. Then there exists a linear, regularly continuous extension operator

L: 05(Q) — OF(R"™).
Prootf. (i) The case where Q is bounded. Let
Q@ = {weR" 0; <o < by (—o0 < 4y < by < +o0) § = 1,...,n}.
It is sufficient to prove that there exists an operator
L: 0%(I") - C%(R™).
In fact: take feCF(Q) (m = 0,1, ..., c0) and m: I" -0
Wty ooy tn) = (@t L —12)D1y ooy Gty +(L—1,) by);
then fomeOZ(I)" and we can define
L': 03(Q) — 0% (R"),

b~z

L’f(wl,...,wﬂ):l}(fon) b EN
170

bn_mn
’ bn—an ’

L’ has the same properties as the operator L.
The operator

L: 0%(I") - 0%(R™
can be defined as follows:

If = LnLyy...Lf for feOS(I™).

Evidently L is an extension operator and is well- defined, linear and regu-

larly continuous as the iti i
composition of linear and regularly conti
extension operators. sy fmons

(ii) The case where Q is unbounded. Wit i
cam o) he gaso ithout loss of generality we

Q = {xeR": o< < too (1<), 0K m< foo (E<i<3),
0<m <1 (s <i<<n)}.
If s =1, then we define the operator L: C%(Q) — O3 (R™ as follows:

If =LyLny...Lf, 1<s<n.
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The case where s = t = n is trivial. If s > ¢, then we take
If = Ly... Lepr L o Iyyaf

where

G(Byy ey n) for a,;>0,

I’il+'ig(‘r17 ey Bp) =
N By < 0

Liyifyi9 (s .oy %) for
t=1,...,8—1,

7449 denoting the restriction of g to the set I i

PROPOSITION 2 (c¢f. [6]). Let X be an n-dimensional paracompact
manifold of class 0%, admitting partitions of unity of class C°. Assume
that T is a closed subset of X and for every meT there exists an open neighbour-
hood N, in X and a linear regularly continuous exelension operator

Ly OR(Nz ~ T) — CF(Ng).
Then there exists o linear regularly continuous extension operator
L: 0%(T) - CF(X).

Proof. The family of neighbourhoods {¥N_ }.r covers the set T. Let
N, = X—T; then N, is open and the sets Ny, N, zeT, cover X. X is
paracompact, and so we can find a locally finite open covering U,, Us,
zeT, such that U, = N,, U, = N, for wel. Since X admits partitions
of unity, there exist functions gy, ¢z, < T, of class (* such that suppg, = U,
and suppe, = U, for every weT. We define the extension operator L

Lf(y) = D) 0a(y) Laf (4) -

xeT
The sum is finite for every yeX. If yeT, then it belongs to the finite
number of sets of the eovering. Let them be the sets U,, ..., Ug.

From the assumption it follows that

L.f(y) =fly) for i=1,...,8

8
moreover, >'g,{y) = 1. Hence, Lf(y) = f(y). The operator L is linear
is1

because it is the sum of linear operators.
To show its regular continuity, we use the following estimation.

Let Z denote a compact subset of X. Since the set Z ~ | U is also compact,
ael

it intersects only & finite number of members of the covering. Let them
be Uy, ..., Uy; then

Lity) = D oa) Lafly)  for  yeZ.
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I = sup |D'p(y)l

and
VAU .

K = max K.
Il lul
1<ics

By Leibniz’s formula,

1Lflz,. = sup [ Zw(mzﬁ(f(y))l!

<sup2 2 (,’,‘) KDL f ()l

veZ {21 pinl

<SE D Y (B) I flznv,s

t=1 pl<]ul

for every pseudonorm |.| in E.

Proposition 2 can be generalized to the case of vector bundles, to be stated
as follows (we use the terminology of Lang [7]).

Let X be a manifold of class O” and let m: B — X he a vector boundle over X
with a Banach space ¢ as a fibre. Assume that ¥ is a closed subset of X and let S(T)
denote the space of all continuous sections of the boundle over ¥ (i.e. £e§(Y) iff
§: Y - F and &ozm~! = idg). If for every ye ¥ there exist an open neighbourhood
Ny ofy and a linear extension operator Ly: 8(Ny ~ ¥) - §(Ny), then there exists a
linear extension operator L: 8(¥) — §(X). s -

This extension is given by Lé&(s) = qu;u () Ly & (w), where {py} is a partition of
. . . ve o
}mlty for {Ny}. .It is well - defined because every Ly & (z) is an element of 7~ 1 (), which
is homeomorphic with &, and the summation is understood in the space & (cf. Lang
[7], ». 51).
Proof of Theorem 1. Let #'¢B. Since B is a non-singular mani-
fold of class C*, it is representable near ' by functions

@y = ;(Y1s ) Yn_1) (—e <y, {E;j:l,...,n*—l),

7= 1., Sy Py of class C*°, whose matrix (Ox;/0y;) has rank n—1. Let b; be
the direction cosines of the inner normal to B at ', By the use of the

equatipns @ =ml-A(]/1, iv3Yn_1)+biys for y, >0 one obtains a repre-
sentation of a neighbourhood of 2'. We have the determinant

0, 0z,

G By by
............ =0
0z, om,

oy, Fy: b

in a neighbourhood U of &' Hence, there exist inverse functions y; of
class 0 such that

Yi = Y1y ...y @), Ji=1..,n.
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The function A
0@y oo U = F B2 Ws ooy Ya) FDans oo Tallay oos Y1) FDnlla)
is of class C® on the set
Q ={W1y - ¥n): —e<y<ej=LlL...,0—=1 ¥ =0}

for feC*(4). By “Proposition 1 there exists a linear and regularly con-
tinuous extension operator

L': 0%(Q) —~ CE(E").
Hence we can define the extension operator

Ly: 0B(U ~ 4) —C%(D)
as follows:
Lw'f(wll A mn) = L’g(yl(““i’ el mn), R | yﬂ(w17 ey mﬂ))'
We have shown that there exists Jocally a linear and regularly continum}s
extension operator ; thus by Proposition 2 it follows that the hypothesis

is true. .

Proof of Theorem 2. Again by Proposition 2 we can r.es‘tltlct
ourselves to a neighbourhood ¥ of a point 4’ eB. By virtue of the def}mmon
of a manifold piecewise of class (™ we can assume that the points of

B ~ N are given by relations of the form

0<s<e < m), @y.Zm=0; —e < <Le (1 >m).

Consider first the case where the set ¥ ~ A consists of the points
x such that

(2) 0o <e (1<m), (i >m).

—e KTy e

By Proposition 1 there exists a linear and regularly continuous extension
operator
' Ly: O0B( ~ A) - CF(N).
Now consider the other ease, where the points of N determined by (2)
belong to ¥ —N~ A. In this case let

A= {peN: —e<m <0} for i<m.

Then N ~ A = A, w ... U Ap. Let feOF(N ~ A); We shall define the

mappings fy, ..., fn of class ¢ on N with f=Ffi+ ... tfm o0 41~ ...
o Am.
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Take g; = f on the set 4, (i.e. ¢, is a restriction of f to the set 4,)
and use the auxiliary extension operator L; from Lemma 2. Let fi=ILy
on the set N. Let us suppose that we have constructed i1 (4 >1) and
take g; = f—fi— ... —f;_; on 4;; then we can use the auxiliary operator
L; (see Lemma 2) to g;. Let f; = L;g; on §. The function 9:(2) =0 for
@ed;n (Ay v ... u 4;_,) because f=f+... Ffir on A, 0.0 Ag
by virtue of the inductive assumption and since fi(®) = 0 on this set.
On the other hand, for zeA4,,

f(@) = gu(@) = fl@)—ful@)— ... —fi_,(a).

Hence we put If = f, + ... Ffom-

It is easy to see that the operator I defined in this way satisfies all
the required conditions.

THEOREM 3. Let X be an n-dimensional manifold of class C* para-
compact and admitting portitions of wnity of class C°. Assume that 4 is
a closed subset of X with a non-empty interior and o boundary B plecewise
of class O%. Then there ewists a linear and regularly continuous ewtension
operator L: OF(4) - OR(X). '

Proof. Let us take peB and the chart (Ui ;) where pe U;. By Pro-
position 2 it is sufficient to show that there are a neighbourhood W of
pin X, W < U;, and a linear regularly continuous extension operator L,:
OB (W ~A) -0 (W). Let Pi(p) = 2. Since g;(B ~ U,) is piecewise of
class 0%, we prove by the same method ag in Theorem 1 that there exist
a neighbourhood ¥ of #, ¥ =@i(U,) and a linear regularly continuous ex-
tension operator Ly: OF(N ~ ¢;(B ~ U3)) - OF(N). Take pr(N) = W.
Then there exists a linear regularly continnous extension operator L,:

CF(W A~ A) - C2(W) defined as follows:
Lof(9) = Lafor* (pi(g)).

The operator I, possesses obviously the same properties as the

operator L.

3. Isomorphism of spaces of infinitely differentiable functions on
manifolds.

THEOREM 4. Let X be a compact n-dimensional manifold of class
O® admitting partitions of unity of class C°. Assume that there is @ cwbe
division (2%, K) for X such that if Viy.oy V, denote all imverse images
of n-dimensional cubes in complex K, then bd(V, o ... w :) (i=1,...
v P—=1) is a manifold piecewise of class C®. Then ‘

0%(X) 22 C=(I).
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The proof makes use of some auxiliary notions and gropegtlix;.
Consider the intervals I ={f0,1], I =10, n, I= (dO,li,e ] _I;rs)_d,uct;
Tet m>1 be a fixed integer and let D, Dyy D,... deno 3 P
1" xPx I xJ® with 0 <a, B, 7, 5 a+b+y+8 = n,&(D) ——]-l(ihgir/deﬂvai
the spac?a of functions of class 0® on D vanishing with a

i D—-D.
mveslr?ihe sequel we shall use the notions of tensor product. T]lef ge;l(;r?rll
definition of tensor product of linear topo.logical spaces efanc 0L)eX )oznd "
Grothendieck [4]. In the case where M is a sgbspace 01b (uivalenﬂy
is a subspace of C(Y) the tensor product M ®~N may be e(;lon ey
defined as the closed subspace of C*(X x ¥), which is spanne
functions {f(z)-g(y)}, feM, geN.
We have:
2 o D,).
3.1. &(D)®E(Dy) == (D1 XDy _ . -
This prO];osition is & consequence of a more general theorem (Grothen
dieck [4], IT part, Theorem 13).
3.2. &) & EI) =~ &(I). )
Since (a?()I) o~ m(n?) (Mitiagin [10]), where m(n®) denotes the s(pac—e
of all real sequ;nces 2 = {&,}, such that |z|, = sxipn |&,) < 400 (@ =

] ‘) a )® (’i’b )—— ( )) § b
1 2,. . nd m(n m o~ mn 0 we O tain the Sba,telnent

of 3.2.
3.3. &(I) =& (I) ~&(J). . »
The proof makes use of the following properties:

@) eI ~eé(),

(2) a(1) = &(Hx (D),
(3) 8(I) = &(I)x & (D),
(4) &(J) = e(J)xé(l),
(8) &(I) ~ e(I)x (D),
(6) g({) ~ &(I)xE(J).

Property (1) is obviouf.

(2). Since &(I) =~ m(n’),
T({én}s {1.}) = (&1, M5 Eay My +n)

The isomorphism in (3), (4), (b) can be defined ?,s fol_lows.

Tf = (f1, fa) L) =f3F0,  fu() =L (3¢+D)

. ”
for te[0,1] f denoting restriction of f to the interval [i), 3] angm 1(3 lgen;tmii
Ryu—N,ard;ewski’g extension opemtqr from OC>[0, 210‘300 ” an.d b
easy to verify that D*Lg(1) = 0 if DPg(0) = 0 for geC[0,3

C=0,1,...

the isomorphism 7' is given as follows:

where
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. To prove (6) we take f; (f) zf(%(t—i-l)) Ja (1) = (f—L'f)(%t) for ¢e[0, 1

f is as above, .L’ denoting the extension operator from [}, 1] to 0"‘,’ ;
such that D*L'g(0) =0 for every k =0,1,... For inst;;lce L'f t(R)
= ¢(t) Lf(t), where ¢(t) is a funetion of class C®¢(t) = 0 fort < 0, t( )—=
for-t > { and L is an arbitrary extension operator from 01 \i} ;:w((1‘2°~ :
Using the same method as in [11] we get v 0 TR

, E(I) = (X E(T) = E(IXEIXEJT) =~ &(I)x &(T) ~ &(I)

¢(J) = e()xe(l) = eW)xeIxe(l) = &(J)x &(I)x & (T)x &(T)
=~ (E(N)x D)< (&)X ()% (6 (I)x (D)) = e(I)x&(Ix &(I)
=~ &(I)XE(I) = &(I).
‘ LeMMA. Let X be as in Theorem 4. Then
(A) C®(X) = C®(V)XO0®(Vy/Vsn V)X ...
e XO® (Vs [Vpor A (Vi en w Vo)X C(X[Vyw ... w Vo).
Proof of Lemma. We shall show
(B) C°X[Vyu...uTy)
zOm(Vi_)_l/V,;_x_lr\(Vlu...u ,;))XOOQ(X/Vlu...\J
for i=0,1,...p—2.
By C®X[/Vio...o V) and O®(V
. A AL V. ;
for @S; 0 grde mean O*(X) and C™(V,), resl()eegilvlelyjrl n Ty VL))
o Gla,ssegw t(7}1171\./ e 141) for £=0,1, ..., p—1 are manifolds piecewise
eportins 1;’ : er;ao exists by Theorem 3 linear and continuous extension
i1t OV o0 Vi) — 0°(X). Let r;,,f denote a restric-

tion of f tio the set o0
28 tollows: Viv ..o u Vi for fe0®(X). Then f can be represented

i+1)

f= Li+17“i+Lf—(f‘"Li+17'i+ 1f)
where L;, 1 7;1feli 1 0°( Vi v ... w 141) and
(F~Li1ri 1 NeC(X V0 vl U
Sinee L;;0°(V,w ... u V,
i+,)zG°"(V1u...u i B) i i
To get (A) we use (B) step by step for ¢ = 0, 1,1._):1.)_;)—(2.) s obmined
(i =P1rgof of Thegrem 4. Let us remark that V, ~(V,v...u V)
»2y .., p—1) is a sum of some (n—1)-dimensional faces <;f

:)](Jie( t;zube Vi beeagse according to the assumption of Theorem 4
1w Vi) (6=0,1,... p—1) is a manifold. Hence

0°°(Vi+1/17i+1 ATViu...u V‘z)) ~&D) (i=0,1, p—1)
ey ,

1)

icm
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where D = @*"}(V.,,). From 3.1 follows that
&(D) = &(I1$& (16 (Iyee ()

with 0 < a, B, ¥, 8; a+B-Fy+8=n. So by 3.3. and 3.2 we obtain &(D) =~
~ &(I). Using the lemma we have

0°(X) = &(I)x ... x&(I),

and according to property (2) in 3.3 we have CX(X) = & (I) = C°(I).
PrOBLEM 1. Does every compact n-dimensional differentiable mani-
fold possess a cube division satisfying the conditions of theorem 4%
PROBLEM 2. Is the hypothesis of theorem £ true when instead of a cube
division for the manifold there is a simplicial division ?
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