- icm®
- [4] M. Altman, On the method of orthogonal projection, Bull. Acad. Polon. Sci. 5 (1957), S. 229-231.
- [5] An approximative method for solving linear equations in a Hilbert spaces, ibid. 5 (1957), S. 601.
- [6] Connection between the method of steepest descent and a Newton method, ibid. 5 (1957), S. 1031.
- [7] T. Leżański, Über das Minimumproblem für Funktionale in Banachschen Räumen, Math. Annalen 152 (1963), S. 271-274.
- [8] Eine effektive Lösungsmethode nichtlinearer Gleichungen in Hlibertschen Räumen, ibid. 158 (1965), S. 377-386.

Reçu par la Rédaction le 28. 3. 1966

On simultaneous extension of infinitely differentiable functions

by

Z. OGRODZKA (Warszawa)

Introduction. The first result concerning the extension of differentiable functions is due to Lichtenstein [8], who has shown that any differentiable function on a closed set in \mathbb{R}^3 whose boundary satisfies some conditions can be extended to a differentiable function in \mathbb{R}^3 . Whitney [15] has proved that any function $f(x) = f(x_1, \ldots, x_n)$ of class C^m on a closed subset of \mathbb{R}^n can be extended to a function of class C^m in \mathbb{R}^n . In the case $m = \infty$ this extension is not linear. Hestenes [6] has modified Whitney's proof, and has given also another method of extending the differentiable functions, which is applicable only when m is finite and the boundary has suitable properties. It is, however, sufficiently general to be of interest and the proof is relatively simple. The method used is a generalization of the reflection principle used by Lichtenstein [8] by the use of McShane's [9] lemma on the extension localisation.

Next, Mitjagin [10], and Ryll-Nardzewski (not published) have shown independently the existence of the linear continuous extension operator $L\colon C^\infty[a,\,b]\to C^\infty(R)$ (a< b).

Seeley [14] has constructed a linear and continuous extension operator from the space of functions of class C^{∞} on a half-space to the space of functions of class C^{∞} on the whole R^n .

Recently Adams, Aronszajn and Smith (announced in [1]) obtained a complete result concerning the existence of extension, namely a necessary and sufficient condition for a convex domain D to possess the property of extension is that for a certain bounded cone C and for every $x \in D$ there be a congruent cone with a vertex x, contained in \overline{D} .

The first results concerning the linear extension operators of the continuous functions are contained in the papers of Borsuk [2] and Dugundji [3].

In this paper we prove: (1) the existence of a linear operator extending the functions of class C^{∞} considered on the closed subset of R^n to the functions of class C^{∞} on the whole R^n , (2) the existence of a linear operator extending the functions of class C^{∞} defined on the closed subsets with

cm[©]

the boundary satisfying some conditions of the n-dimensional manifold of class C^{∞} to the functions of class C^{∞} on the manifold.

Our method is similar to that of Hestenes: application of partition of unity and reduction to the case where the set under consideration is an n-dimensional cube. The linear extension operator for the cube is constructed by several applications of Ryll-Nardzewski's operator giving the extension in the one-dimensional case.

In Section 3 we give the application of extension operators. It is proved that every space of infinitely differentiable functions on a compact n-dimensional manifold of class C^{∞} admitting partitions of unity of class C^{∞} and possessing a cube division satisfying a certain condition is isomorphic with $C^{\infty}(I)$. This generalizes the earlier results of Mitjagin [10] and Grothendieck [4].

I would like to express my gratitude to A. Pełczyński for his guidance and valuable remarks. I also want to thank to C. Bessaga for his help during the preparation of this paper for the press.

1. Notation and terminology. R^n will denote, as usual, the *n*-dimensional real space; its elements are *n*-tuples $x = (x_1, \ldots, x_n)$. I^n will denote the unit cube in R^n , i.e.

$$I^n = \{x \in \mathbb{R}^n : 0 \leq x_i \leq 1, i = 1, ..., n\}.$$

Throughout the paper, E will denote a linear topological space which will be assumed to be locally convex and sequentially complete (1).

Let A be an open subset of R^n : we shall say that the continuous function $f\colon A\to E$ is of class C^m $\left(f\in C_E^m(A)\right)$ for some integer m $(0\leqslant m<<+\infty)$ if there exist continuous partial derivatives $D^\mu f=D_1^{\mu_1}D_2^{\mu_2}\dots D_n^{\mu_n}f$ for $|\mu|\leqslant m$, where $\mu=(\mu_1,\mu_2,\dots,\mu_n);\ |\mu|=\mu_1+\mu_2+\dots+\mu_n;\ \mu_i$ is a non-negative integer and $D_i^{\mu_i}$ denotes Fréchet's derivative of order μ_i with respect to x_i . The function f is of class C^∞ on $A\left(f\in C_E^\infty(A)\right)$ if $f\in C_E^m(A)$ for every $m=0,1,2,\dots$ We shall write $C_E(A)$ instead of $C_E^0(A)$.

The topology in $C_E^m(A)$ is the topology of uniform convergence on the compact subsets of A in every pseudonorm in E.

In the case where A is a closure of an open subset of R^n we say that $f \in C_E^m(A)$ (m finite if all the derivatives $D^\mu f$ exist for $|\mu| \leqslant m$, are uniformly continuous in the interior of A and can be uniquely extended onto A. But since E is sequentially complete, it follows that if the function f from the open subset of R^n into E is uniformly continuous, then f has

a unique extension to the closure of A. Thus $C_E^m(A)$ where A is a closure of an open subset of R^n denotes the linear topological space of the functions from A into E, which are uniformly continuous in the interior of A with all their derivatives. The function f is of class C^∞ on A $(f \in C_E^\infty(A))$ if $f \in C_E^m(A)$ for every $m = 0, 1, \ldots$

All theorems in this paper remain true also if we replace the notion of a Fréchet derivative and differentiability by weak Fréchet's derivative, i.e. if $g = D^u f$ means that for every $e^* \epsilon E^* e^* g$ is the value of a suitable Fréchet derivative of the scalar function $e^* f$.

A topological Hausdorff space X is said to be an n-dimensional manifold of class C^p $(p=0,1,\ldots,\infty)$ if there exist a collection of pairs $(U_i,\varphi_i)_{i\in I}$ (which we shall call an atlas) satisfying some conditions (see Helgason [5]) where U_i is an open subset of X, φ_i is a homeomorphism from U_i onto an open subset of R^n , and $\{U_i\}_{i\in I}$ covers X.

Let T be a subset of an n-dimensional manifold of class C^p , which either is open or is a closure of an open subset. A function $f\colon T\to E$ is said to be in $C_E^m(T)$ $(m\leqslant p)$ if for every $x\in T$ there exists a chart (U_i,φ_i) with $x\in U_i$ such that $f\circ \varphi_i^{-1}$ is in $C_E^m(\varphi_i(U_i\cap T))$.

We take that $f_n \to f(f_n, f \in C_E^m(T))$ in $C_E^m T$ if $f_n \circ \varphi_i^{-1} \to f \circ \varphi_i^{-1}$ in $C_E^m (\varphi_i(U_i \cap T))$ for every $i \in I$.

Let S and T be the subsets of an n-dimensional manifold of class C^{∞} such that S is a closed subset of T (in particular S and T can be subsets of R^n , because R^n is also an n-dimensional manifold of class C^{∞}).

The operator $L\colon C_E^m(S)\to C_E^m(T)$ is said to be a linear extension operator if the following conditions are satisfied

- (i) Lf is an extension of f, i.e. f(s) = Lf(s) for every s in S and every f in $\mathcal{O}_{E}^{m}(S)$;
 - (ii) $L(c_1f_1+c_2f_2) = c_1Lf_1+c_2Lf_2$ for $f_k \in C_E^m(S)$ and $c_k \in \mathbb{R}^1$, k=1,2;
- (iii) L is continuous, i.e. for every compact subset Z of T, for every μ ($|\mu| \leq m$) and for every pseudonorm $\|.\|'$ in E there is a pseudonorm $\|.\|''$ in E and the constant b>0 such that

$$\|Lf\|_{Z,\mu}' \leqslant b \sum_{|\mathbf{r}| \leqslant m} \|f\|_{\widetilde{Z},\mathbf{r}}'' \quad ext{ where } \quad ilde{Z} = Z \wedge T.$$

An operator of linear extension $L\colon C_E^m(S) \to C_E^m(T)$ is called regularly continuous if condition (iii) can be replaced by the condition

$$\text{(iii')} \quad \ \|L\!f\|_{Z,\mu}\leqslant b\sum_{|\nu|\leqslant m}\!\|f\|_{\widetilde{Z},\nu}\quad \text{ for every pseudonorm }\|.\|\text{ in }E.$$

By this condition it follows that any regularly continuous extension operator preserves the classes C^p $(p=1,\,2,\,\ldots,\,m)$, i.e. $LC_E^p(S)\subset C_E^p(T)$ for $p\leqslant m$.

⁽¹⁾ A locally convex space is sequentially complete if for every sequence $\{u_n\}$, $n=1,2,\ldots$, of elements of this space the fact that $\sum\limits_{n=1}^{\infty}\|u_n\|<+\infty$ for every pseudonorm implies that $\sum\limits_{n=1}^{\infty}u_n$ exists and is an element of this space.

The general definition of the linear extension operator for the linear subspace of $C_E(S)$ to the linear subspace of $C_E(T)$ in the case where T is a topological space and E is a linear topological space is given in the paper of Pełczyński [12].

We shall say that the manifold X of class C^p admits partitions of unity of class C^m $(m \le p)$ if it is paracompact and for each locally finite covering $\{V_a\}$ $(\alpha$ ranging in some indexing set) of X there is a collection of functions ψ_a satisfying the conditions:

- (1) $\psi_a: X \to R^1$ and is of class C^m on X for each α ;
- (2) $\psi_a(x) \geqslant 0$ for $x \in X$ and for each α ;
- (3) $\{x: \psi_a(x) \neq 0\} = \operatorname{supp} \psi_a \subset V_a \text{ for each } a;$
- (4) $\sum_{\alpha} \psi_{\alpha}(x) = 1$ for each $x \in X$.

The definition of paracompactness and the sufficient conditions for an n-dimensional manifold to admit partitions of unity can be found in Helgason [5].

A subset of R^n is said to be a non-singular manifold of class C^p $(p=0,1,\ldots,\infty)$ if for each of its elements $x=(x_1,\ldots,x_n)$ there exist functions $x_i=x_i(y_1,\ldots,y_{n-1})$ $(-\varepsilon\leqslant y_j\leqslant \varepsilon); j=1,\ldots,n-1), i=1,\ldots,\ldots,n$, of class C^p whose matrix $\left(\frac{\partial x_i}{\partial y_i}\right)$ has rank n-1.

We shall say that a manifold B is pi^e cewise of class C^p $(p=0,1,\ldots,\infty)$ if for every point $x' \in B$ there are an integer m $(1 \leqslant m \leqslant n)$ and a non-singular transformation

(1)
$$x_i = x_i(t_1, \ldots, t_n), \quad i = 1, \ldots, n$$

of class C^p such that the points of $B \cap N$ are the totality of points in N determined by equations (1) and the relations:

$$t_i \geqslant 0 \ (i \leqslant m); \quad t_1 t_2 \dots t_m = 0.$$

We shall say that a subset A of an n-dimensional manifold X of class C^{∞} has a boundary B piecewise of class C^{∞} if there is an atlas (U_i, φ_i) on X such that if $U_i \cap A \neq 0$ then $\varphi_i B \cap U_i$ is piecewise of class C^{∞} .

Let X be an n-dimensional manifold of class C^{∞} . By a cube division of X of class C^{∞} we mean a pair consisting of a cube complex K and a homeomorphism π^* of K onto X with the following property. For each n-dimensional cube Q of K there is a chart (U_i, φ_i) in X such that $\pi^*(Q) \subset U_i$ and $\varphi_i \pi^*$ is of class C^{∞} .

2. Existence of linear extension operators.

THEOREM 1. Assume that A is a closed subset of R^n , with a non-empty interior, whose boundary B is a non-singular manifold of class C^{∞} . Then

there exists a linear and regularly continuous extension operator

$$L: C_E^{\infty}(A) \to C_E^{\infty}(\mathbb{R}^n)$$
.

Theorem 1 can be strengthened as follows:

THEOREM 2. If A is a closed subset of R^n , with a non-empty interior, whose boundary B is a non-singular manifold piecewise of class C^{∞} , then there exists a linear and regularly continuous extension operator

$$L: C_E^{\infty}(A) \to C_E^{\infty}(\mathbb{R}^n).$$

The proofs of these theorems are based on two lemmas and two auxiliary propositions.

Let

$$I_i^n = \{x \in \mathbb{R}^n \colon -\infty < x_j < +\infty \ (j \leqslant i); \ 0 \leqslant x_j \leqslant 1 \ (j > i)\}.$$

It is easy to see that $I_0^n = I^n$ and $I_n^n = R^n$.

Let B_i^+ denote the set of all $x \in R^n$ such that $-\infty < x_j < +\infty$ for j < i, $0 \le x_i < +\infty$, $0 \le x_j \le 1$ for j > i and let B_i^- denote the set of all $x \in R^n$ such that $-\infty < x_j < +\infty$ for j < i, $-\infty < x_i \le 1$, $0 \le x_j \le 1$ for j > i (i = 1, ..., n-1).

Let us take

$$\mathscr{E}(B_i^+) = \{g \, \epsilon \, C_E^\infty(B_i^+) \colon \, D^\mu g(x) = 0 \ \, \text{for} \ \, x_i \geqslant 1 \ \, \text{and} \ \, |\mu| = 0, \, 1, \ldots \}$$

and

$$\mathscr{E}(B_i^-) = \{g \, \epsilon \, C_E^\infty(B_i^-) \colon \, D^\mu g(x) = 0 \, \text{ for } \, x_i \leqslant 0 \, \text{ and } \, |\mu| = 0, 1, \ldots \}.$$

LEMMA 1. There exist linear and regularly continuous extension operators

$$L_i^+: \mathscr{E}(B_i^+) \to C_E^\infty(I_i^n),$$

$$L_i^- : \mathscr{E}(B_i^-) \to C_E^{\infty}(I_i^n) \text{ for } i = 1, \ldots, n-1.$$

Proof. Take an arbitrary entire function in R^1 $\varphi(t) = \sum_{k=0}^{\infty} a_k t^k$ with the property $\varphi(2^m) = (-1)^m$ for $m = 0, 1, \ldots$ Such a function can be constructed (see Saks and Zygmund [13]).

We define the operator L_i^+ for the functions $g \in \mathscr{E}(B_i^+)$

$$L_i^+ g(x_1, \ldots, x_n) = egin{cases} g(x_1, \ldots, x_n) & ext{for} & x_i \geqslant 0\,; \ \sum_{k=0}^\infty a_k g(x_1, \ldots, x_{i-1}, -2^k x_i, x_{i+1}, \ldots, x_n) & ext{for} & x_i < 0\,. \end{cases}$$

(a) The series $\sum_{k=0}^{\infty} a_k D^{\mu} g(x_1, \ldots, x_{i-1}, -2^k x_i, x_{i+1}, \ldots, x_n)$ is absolutely and uniformly convergent on every compact set of $x \in I_i^n$ such that $x_i < 0$

in every pseudonorm in E, because

$$\begin{split} \sum_{k=0}^{\infty} a_k D^{\mu} [g(x_1, \dots, x_{i-1}, -2^k x_i, x_{i+1}, \dots, x_n)] \\ &= \sum_{k=0}^{\infty} a_k (-1)^{\mu_i} 2^{k \mu_i} D^{\mu} g(x_1, \dots, x_{i-1}, -2^k x_i, x_{i+1}, \dots, x_n) \end{split}$$

and the series $\sum\limits_{k=0}^{\infty} |a_k| \, 2^{k\mu_k}$ is convergent for every $\mu_i = 0, 1, \ldots$

(b) $L_i^+ g \in C_E^{\infty}(I_i^n)$ if $g \in \mathscr{E}(B_i^+)$.

From (a) it follows that there exist derivatives

$$D^{\mu}L_{i}^{+}g(x_{1},\ldots,x_{n})$$
 for all $x \in I_{i}^{n}$ such that $x_{i} < 0$

and left-hand derivatives

$$D^{\mu}_{-}L^{+}_{i}g(x_{1},\ldots,x_{i-1},0,x_{i+1},\ldots,x_{n})$$
 for $|\mu|=0,1,\ldots$

On the other hand, there exist derivatives

$$D^\mu L_i^+g(x_1,\ldots,x_n)=D^\mu g(x_1,\ldots,x_n)\quad \text{ for }\quad x\epsilon I_i^n \text{ such that } x_t>0\,,$$
 and right-hand derivatives

$$D^{\mu}_{+}L^{+}_{i}g(x_{1},\ldots,x_{i-1},0,x_{i+1},\ldots,x_{n}) = D^{\mu}_{+}g(x_{1},\ldots,x_{i-1},0,x_{i+1},\ldots,x_{n}).$$

Thus we must show that

$$D^{\mu}_{-}L^{+}_{i}g(x_{1},\ldots,x_{i-1},0,x_{i+1},\ldots,x_{n}) = D^{\mu}_{+}g(x_{1},\ldots,x_{i-1},0,x_{i+1},\ldots,x_{n})$$
for $|\mu| = 0,1,\ldots$

Accordingly let us take $x=(x_1,\ldots,x_n)$, $x^0=(x^0_1,\ldots,x^0_{i-1},0,x^0_{i+1},\ldots,x^0_n)$ and let $x\to x^0-0$, i.e. $x_i<0$. Then we have

$$\begin{split} &\lim_{x\to x^0-0} D^\mu L_i^+ g(x_1,\dots,x_n) \\ &= \lim_{x\to x^0-0} D^\mu \sum_{k=0}^\infty a_k g(x_1,\dots,x_{i-1},-2^k x_i,x_{i+1},\dots,x_n) \\ &= \sum_{k=0}^\infty a_k (-1)^{\mu_i} 2^{k\mu_i} \lim_{x\to x^0-0} D^\mu g(x_1,\dots,x_{i-1},-2^k x_i,x_{i+1},\dots,x_n) \\ &= (-1)^{\mu_i} D^\mu g(x^0) \sum_{k=0}^\infty a_k 2^{k\mu_i} = (-1)^{\mu_i} D^\mu g(x^0) \varphi(2^{\mu_i}) = D^\mu g(x^0). \end{split}$$

(c) The operator L_i^+ is linear and regularly continuous. The first property is obvious, and the second one is a consequence of the estimation

$$||L_{i}^{+}g||_{\mathbf{Z},\mu} = \sup_{x \in \mathbf{Z}} ||D^{\mu}L_{i}^{+}g(x)|| \leqslant \sum_{i=1}^{\infty} |a_{k}| 2^{k\mu_{i}} ||g||_{\mathbf{Z},\mu} = C ||g||_{\mathbf{Z},\mu}$$

with $\tilde{Z} = Z \cap B_i^+$, for every pseudonorm $\|.\|$ in E and for every compact subset Z of I_i^n .

To construct the extension operator L_i^- let us take the transformation

$$\tau_i: B_i^- \to B_i^+, \quad \tau_i(x_1, \ldots, x_n) = (x_1, \ldots, x_{i-1}, 1 - x_i, x_{i+1}, \ldots, x_n).$$

The transformation τ_i induces a linear operator τ_i^*

$$\tau_i^* \colon \mathscr{E}(B_i^-) \to \mathscr{E}(B_i^+)$$

such that

$$\tau_i^* g(x_1, \dots, x_n) = g \tau_i(x_1, \dots, x_n)$$
 for $g \in \mathscr{E}(B_i^-)$

with the property $\|\tau_i^*g\|_{Z_i,\mu} = \|g\|_{\tau_i^{-1}Z_i,\mu}$ for every pseudonorm in E, every μ and every compact subset Z of B_i^+ . Thus we can define the extension operator L_i^- : $\mathscr{E}(B_i^-) \to C_E^\infty(I_i^n)$ as follows:

$$L_i^- g = \tau_i^* L_i^+ \tau_i^* g$$
 for $g \in \mathscr{E}(B_i^-)$.

It is easy to verify that L_i^- possesses all the required properties.

LEMMA 2. There exist linear and regularly continuous extension operators

$$L_i: C_E^{\infty}(I_{i-1}^n) \to C_E^{\infty}(I_i^n) \quad \text{for} \quad i = 1, 2, \dots, n.$$

Proof. Take the function

$$\psi(t) = \left\{ egin{array}{ll} 0 & ext{for} & t \leqslant 0 \,, \ e^{1-t^{-2}}(1-e^{-(t-1)^{-2}}) & ext{for} & 0 < t < 1 \,, \ 1 & ext{for} & t \geqslant 1 \,. \end{array}
ight.$$

It is easy to show that $\psi \in C^{\infty}(R^1)$. Let λ denote the restriction of the function ψ to the interval [0,1] and let $\varkappa(t)=1-\lambda(t),\ t\in[0,1]$. Then we have $\lambda, \varkappa\in C^{\infty}[0,1]$ and $\lambda(t)+\varkappa(t)=1$ for every $t\in[0,1]$. It is easy to see that the functions $\lambda(x_i)f(x_1,\ldots,x_n)$ and $\varkappa(x_i)f(x_1,\ldots,x_n)$ belong to $C_E^{\infty}(I_{i-1}^n)$ for every $f\in C_E^{\infty}(I_{i-1}^n)$. Moreover, all the derivatives with respect to x_i of the first function vanish for all x such that $x_i=0$ and all the derivatives with respect to x_i of the second function vanish for all x such that $x_i=1$. Thus it is possible to extend these functions by taking them equal to zero the first for $x_i<0$, the second for $x_i>1$. Hence we can consider that $\lambda f \in \mathscr{E}(B_i^-)$, $\varkappa f \in \mathscr{E}(B_i^+)$ and we can define the operator L_i as follows:

$$L_i f(x) = L_i^-(\lambda f)(x) + L_i^+(\kappa f)(x).$$

It is an operator of extension because if $x \in I_{i-1}^n$, then

$$L_i f(x) = L_i^-(\lambda f)(x) + L_i(\kappa f)(x) = \lambda(x_i) f(x) + \kappa(x_i) f(x) = f(x)$$
.

The operator L_i possesses the same properties as the operators L_i^- and L_i^+ .

Proposition 1. Let Q denote an arbitrary n-dimensional closed interval. Then there exists a linear, regularly continuous extension operator

$$L: C_E^{\infty}(Q) \to C_E^{\infty}(\mathbb{R}^n).$$

Proof. (i) The case where Q is bounded. Let

$$Q = \{x \in \mathbb{R}^n : a_i \leqslant x_i \leqslant b_i \ (-\infty < a_i < b_i < +\infty) \ i = 1, \dots, n\}.$$

It is sufficient to prove that there exists an operator

$$L: C_E^{\infty}(I^n) \to C_E^{\infty}(R^n).$$

In fact: take $f \in C_E^m(Q)$ $(m = 0, 1, ..., \infty)$ and $\pi: I^n \to Q$

$$\pi(t_1,\ldots,t_n)=(a_1t_1+(1-t_1)b_1,\ldots,a_nt_n+(1-t_n)b_n);$$

then $f \circ \pi \in C_E^m(I)^n$ and we can define

$$L'\colon C^{\infty}_{E}(Q) \to C^{\infty}_{E}(\mathbb{R}^{n})$$

$$L'f(x_1,\ldots,x_n) = L(f\circ\pi) \left(\frac{b_1-x_1}{b_1-a_1},\ldots,\frac{b_n-x_n}{b_n-a_n}\right).$$

L' has the same properties as the operator L.

The operator

$$L: C_E^{\infty}(I^n) \to C_E^{\infty}(\mathbb{R}^n)$$

can be defined as follows:

$$Lf = L_n L_{n-1} \dots L_1 f$$
 for $f \in C_E^{\infty}(I^n)$.

Evidently L is an extension operator and is well-defined, linear and regularly continuous as the composition of linear and regularly continuous extension operators.

(ii) The case where Q is unbounded. Without loss of generality we can assume that

$$Q = \{x \in \mathbb{R}^n \colon -\infty < x_i < +\infty \ (1 \leqslant i \leqslant t), \ 0 \leqslant x_i < +\infty \ (t < i \leqslant s),$$

$$0 \leqslant x_i \leqslant 1 \ (s < i \leqslant n)\}.$$

If s = t, then we define the operator $L: C_E^{\infty}(Q) \to C_E^{\infty}(\mathbb{R}^n)$ as follows:

$$Lf = L_n L_{n-1} \dots L_{s+1} f, \quad 1 \leqslant s < n.$$

The case where s = t = n is trivial. If s > t, then we take

$$Lf = L_n \dots L_{s+1} L'_s \dots L'_{t+1} f$$

where

$$L'_{t+i}g(x_1,\ldots,x_n) = egin{cases} g(x_1,\ldots,x_n) & ext{for} & x_{t+i}\geqslant 0\,, \ L_{t+i}r_{t+i}g(x_1,\ldots,x_n) & ext{for} & x_{t+i}< 0 \end{cases}$$
 $i=1,\ldots,s-1$

 $r_{t+i}g$ denoting the restriction of g to the set I_{t+i-1}^n .

PROPOSITION 2 (cf. [6]). Let X be an n-dimensional paracompact manifold of class C^{∞} , admitting partitions of unity of class C^{∞} . Assume that T is a closed subset of X and for every $x \in T$ there exists an open neighbourhood N_x in X and a linear regularly continuous exetension operator

$$L_x: C_E^{\infty}(\overline{N}_x \cap T) \to C_E^{\infty}(\overline{N}_x).$$

Then there exists a linear regularly continuous extension operator

$$L \colon C_E^{\infty}(T) \to C_E^{\infty}(X)$$
.

Proof. The family of neighbourhoods $\{N_x\}_{x\in T}$ covers the set T. Let $N_0=X-T$; then N_0 is open and the sets N_0 , N_x , $x\in T$, cover X. X is paracompact, and so we can find a locally finite open covering U_0 , U_x , $x\in T$, such that $U_0\subset N_0$, $U_x\subset N_x$ for $x\in T$. Since X admits partitions of unity, there exist functions φ_0 , φ_x , $x\in T$, of class C^∞ such that $\sup \varphi_0\subset U_0$ and $\sup \varphi_x\subset U_x$ for every $x\in T$. We define the extension operator L

$$Lf(y) = \sum_{x \in T} \varphi_x(y) L_x f(y)$$
.

The sum is finite for every $y \in X$. If $y \in T$, then it belongs to the finite number of sets of the covering. Let them be the sets U_{x^1}, \ldots, U_{x^s} . From the assumption it follows that

$$L_{xi}f(y) = f(y)$$
 for $i = 1, ..., s$;

moreover, $\sum_{i=1}^{s} \varphi_{x^{i}}(y) = 1$. Hence, Lf(y) = f(y). The operator L is linear because it is the sum of linear operators.

To show its regular continuity, we use the following estimation. Let Z denote a compact subset of X. Since the set $\overline{Z} \cap \bigcup_{x \in T} \overline{U}_x$ is also compact, it intersects only a finite number of members of the covering. Let them be U_{x1}, \ldots, U_{x^3} ; then

$$Lf(y) = \sum_{i=1}^{s} \varphi_{x^i}(y) L_{x^i} f(y) \quad \text{ for } \quad y \, \epsilon Z \, .$$

Let

$$K_i^r = \sup_{y \in Z \cap U_{x^i}} |D^r \varphi_{x^i}(y)|$$
 and $K = \max_{\substack{|v| \leq |\mu| \\ 1 \leq i \leq s}} K_i^r$.

By Leibniz's formula,

$$\begin{split} \|L\!f\|_{Z,\mu} &= \sup_{y \in Z} \left\| D^{\mu} \Big(\sum_{i=1}^s \varphi_{x^i}(y) L_{x^i}(f(y)) \right\| \\ &\leqslant \sup_{y \in Z} \sum_{i=1}^s \sum_{|\nu| \leqslant |\mu|} \binom{\mu}{\nu} K_i^{\mu-\nu} \|D^{\nu} L_{x^i} f(y)\| \\ &\leqslant K \sum_{i=1}^s \sum_{|\nu| \leqslant |\mu|} \binom{\mu}{\nu} \|L_{x^i} f\|_{Z \cap U_{x^{i,\nu}}} \end{split}$$

for every pseudonorm $\|.\|$ in E.

Proposition 2 can be generalized to the case of vector bundles, to be stated as follows (we use the terminology of Lang [7]).

Let X be a manifold of class \mathcal{O}^p and let $x: E \to X$ be a vector boundle over X with a Banach space $\mathscr E$ as a fibre. Assume that Y is a closed subset of X and let S(Y) denote the space of all continuous sections of the boundle over Y (i.e. $\xi \in S(Y)$ iff $\xi \colon Y \to E$ and $\xi \circ \pi^{-1} = id_E$). If for every $y \in Y$ there exist an open neighbourhood N_y of y and a linear extension operator $L_y: S(N_y \cap Y) \to S(N_y)$, then there exists a linear extension operator $L: S(Y) \to S(X)$.

This extension is given by $L\xi(x) = \sum_{y \in Y} \varphi_y(x) L_y \xi(x)$, where $\{\varphi_y\}$ is a partition of unity for $\{N_y\}$. It is well-defined because every $L_y \xi(x)$ is an element of $\pi^{-1}(x)$, which is homeomorphic with \mathscr{E} , and the summation is understood in the space \mathscr{E} (cf. Lang [7], p. 51).

Proof of Theorem 1. Let $x' \in B$. Since B is a non-singular manifold of class C^{∞} , it is representable near x' by functions

$$x_i = x_i(y_1, \ldots, y_{n-1}) \quad (-\varepsilon \leqslant y_j \leqslant \varepsilon; \ j = 1, \ldots, n-1),$$

 $i=1,\ldots,n$, of class C^{∞} , whose matrix $(\partial x_i/\partial y_j)$ has rank n-1. Let b_i be the direction cosines of the inner normal to B at x'. By the use of the equations $x_i=x_i(y_1,\ldots,y_{n-1})+b_iy_n$ for $y_n\geq 0$ one obtains a representation of a neighbourhood of x'. We have the determinant

in a neighbourhood U of x'. Hence, there exist inverse functions y_j of class C^∞ such that

$$y_j = y_j(x_1, ..., x_n), \quad j = 1, ..., n.$$

The function

$$g(y_1, \ldots, y_n) = f(x_1(y_1, \ldots, y_{n-1}) + b_1 y_n, \ldots, x_n(y_1, \ldots, y_{n-1}) + b_n y_n)$$

is of class C^{∞} on the set

$$Q = \{(y_1, \ldots, y_n): -\varepsilon \leqslant y_j \leqslant \varepsilon \ j = 1, \ldots, n-1, \ y_n \geqslant 0\}$$

for $f \in C^{\infty}(A)$. By Proposition 1 there exists a linear and regularly continuous extension operator

$$L': C_E^{\infty}(Q) \to C_E^{\infty}(\mathbb{R}^n).$$

Hence we can define the extension operator

$$L_{x'} \colon \widetilde{C_E^{\infty}(U \cap A)} \to C_E^{\infty}(\overline{U})$$

as follows:

$$L_{x'}f(x_1,\ldots,x_n) = L'g(y_1(x_1,\ldots,x_n),\ldots,y_n(x_1,\ldots,x_n)).$$

We have shown that there exists locally a linear and regularly continuous extension operator; thus by Proposition 2 it follows that the hypothesis is true.

Proof of Theorem 2. Again by Proposition 2 we can restrict ourselves to a neighbourhood N of a point $x' \in B$. By virtue of the definition of a manifold piecewise of class C^{∞} we can assume that the points of $B \cap N$ are given by relations of the form

$$0 \leqslant x_i \leqslant \varepsilon \ (i \leqslant m), \quad x_1 \ldots x_m = 0; \quad -\varepsilon \leqslant x_i \leqslant \varepsilon \ (i > m).$$

Consider first the case where the set $\overline{N \cap A}$ consists of the points x such that

(2)
$$0 \leqslant x_i \leqslant \varepsilon \ (i \leqslant m), \quad -\varepsilon \leqslant x_i \leqslant \varepsilon \quad (i > m).$$

By Proposition 1 there exists a linear and regularly continuous extension operator

$$L_x \colon C_E^{\infty}(\overline{N \cap A}) \to C_E^{\infty}(\overline{N}).$$

Now consider the other case, where the points of N determined by (2) belong to $N-N \cap A$. In this case let

$$A_i = \{x \, \epsilon \, \overline{N} \colon -\epsilon \leqslant x_i \leqslant 0 \} \quad ext{for} \quad i \leqslant m.$$

Then $N \cap A = A_1 \cup ... \cup A_m$. Let $f \in C_E^{\infty}(\overline{N \cap A})$; we shall define the mappings $f_1, ..., f_m$ of class C^{∞} on \overline{N} with $f = f_1 + ... + f_m$ on $A_1 \cap ... \cap A_m$.

Take $g_1 = f$ on the set A_1 (i.e. g_1 is a restriction of f to the set A_1) and use the auxiliary extension operator L_1 from Lemma 2. Let $f_1 = L_1 g_1$ on the set \overline{N} . Let us suppose that we have constructed f_{i-1} (i > 1) and take $g_i = f - f_1 - \ldots - f_{i-1}$ on A_i ; then we can use the auxiliary operator L_i (see Lemma 2) to g_i . Let $f_i = L_i g_i$ on \overline{N} . The function $g_i(x) = 0$ for $x \in A_i \cap (A_1 \cup \ldots \cup A_{i-1})$ because $f = f_1 + \ldots + f_{i-1}$ on $A_1 \cup \ldots \cup A_{i-1}$ by virtue of the inductive assumption and since $f_i(x) = 0$ on this set. On the other hand, for $x \in A_i$,

$$f(x) = g_i(x) = f(x) - f_1(x) - \dots - f_{i-1}(x)$$
.

Hence we put $Lf = f_1 + \ldots + f_m$.

It is easy to see that the operator L defined in this way satisfies all the required conditions.

THEOREM 3. Let X be an n-dimensional manifold of class C^{∞} paracompact and admitting partitions of unity of class C^{∞} . Assume that A is a closed subset of X with a non-empty interior and a boundary B piecewise of class C^{∞} . Then there exists a linear and regularly continuous extension operator $L: C^{\infty}_E(A) \to C^{\infty}_E(X)$.

Proof. Let us take $p \in B$ and the chart (U_i, φ_i) where $p \in U_i$. By Proposition 2 it is sufficient to show that there are a neighbourhood W of p in $X, W \subset U_i$, and a linear regularly continuous extension operator L_p : $C_E^\infty(\overline{W} \cap A) \to C_E^\infty(\overline{W})$. Let $\varphi_i(p) = x$. Since $\varphi_i(B \cap U_i)$ is piecewise of class C^∞ , we prove by the same method as in Theorem 1 that there exist a neighbourhood N of $x, N \subset \varphi_i(U_i)$ and a linear regularly continuous extension operator $L_x' \colon C_E^\infty(\overline{N} \cap \varphi_i(B \cap \overline{U_i})) \to C_E^\infty(\overline{N})$. Take $\varphi_i^{-1}(N) = W$. Then there exists a linear regularly continuous extension operator $L_p \colon C_E^\infty(\overline{W} \cap A) \to C_E^\infty(\overline{W})$ defined as follows:

$$L_p f(q) = L'_x f \circ \varphi_i^{-1} (\varphi_i(q)).$$

The operator L_p possesses obviously the same properties as the operator L_x' .

Isomorphism of spaces of infinitely differentiable functions on manifolds.

THEOREM 4. Let X be a compact n-dimensional manifold of class C^{∞} admitting partitions of unity of class C^{∞} . Assume that there is a cube division (π^*, K) for X such that if V_1, \ldots, V_p denote all inverse images of n-dimensional cubes in complex K, then $\operatorname{bd}(V_1 \cup \ldots \cup V_i)$ $(i=1,\ldots p-1)$ is a manifold piecewise of class C^{∞} . Then

$$C^{\infty}(X) \simeq C^{\infty}(I)$$
.

The proof makes use of some auxiliary notions and properties. Consider the intervals $I=[0,1],\ \tilde{I}=[0,1),\ I=(0,1],\ J=(0,1].$ Let $n\geqslant 1$ be a fixed integer and let $D,\ D_1,\ D_2\dots$ denote a product $I^a\times \tilde{I}^{\beta}\times I^{\gamma}\times J^{\delta}$ with $0\leqslant a,\beta,\gamma,\delta;\ a+\beta+\gamma+\delta=n,\mathscr{E}(D)=C^{\infty}(\overline{D}/\overline{D}-D),$ the space of functions of class C^{∞} on \overline{D} vanishing with all their derivatives on $\overline{D}-D$.

In the sequel we shall use the notions of tensor product. The general definition of tensor product of linear topological spaces can be found in Grothendieck [4]. In the case where M is a subspace of $C^{\infty}(X)$ and N is a subspace of $C^{\infty}(Y)$ the tensor product $M \otimes N$ may be equivalently defined as the closed subspace of $C^{\infty}(X \times Y)$, which is spanned on all the functions $\{f(x) \cdot g(y)\}$, $f \in M$, $g \in N$.

We have:

3.1.
$$\mathscr{E}(D_1) \, \hat{\otimes} \, \mathscr{E}(D_2) \simeq \mathscr{E}(D_1 \times D_2)$$
.

This proposition is a consequence of a more general theorem (Grothen-dieck [4], II part, Theorem 13).

3.2.
$$\mathscr{E}(I) \hat{\otimes} \mathscr{E}(I) \simeq \mathscr{E}(I)$$
.

Since $\mathscr{E}(I) \cong m(n^a)$ (Mitiagin [10]), where $m(n^a)$ denotes the space of all real sequences $x = \{\xi_n\}$, such that $|x|_a = \sup_n n^a |\xi_n| < +\infty$ ($\alpha = 1, 2, ...$) and $m(n^a) \hat{\otimes} m(n^a) \simeq m(n^a)$; so we obtain the statement of 3.2.

3.3.
$$\mathscr{E}(I) \simeq \mathscr{E}(I) \simeq \mathscr{E}(J)$$
.

The proof makes use of the following properties:

$$\mathscr{E}(\underline{I}) \simeq \mathscr{E}(\tilde{I}),$$

(2)
$$\mathscr{E}(I) \simeq \mathscr{E}(I) \times \mathscr{E}(I)$$
,

(3)
$$\mathscr{E}(I) \simeq \mathscr{E}(I) \times \mathscr{E}(\tilde{I}),$$

$$\mathscr{E}(J) \simeq \mathscr{E}(J) \times \mathscr{E}(\tilde{I}),$$

(5)
$$\mathscr{E}(\underline{I}) \simeq \mathscr{E}(\underline{I}) \times \mathscr{E}(\underline{I}),$$

(6)
$$\mathscr{E}(I) \simeq \mathscr{E}(I) \times \mathscr{E}(J).$$

Property (1) is obvious.

(2). Since $\mathscr{E}(I) \simeq m(n^a)$, the isomorphism T is given as follows:

$$T(\{\xi_n\}, \{\eta_n\}) = (\xi_1, \eta_1, \xi_2, \eta_2, \ldots).$$

The isomorphism in (3), (4), (5) can be defined as follows:

$$Tf = (f_1, f_2), \quad \text{where} \quad f_1(t) = f(\frac{1}{2}t), \quad f_2(t) = (f - L\tilde{f})(\frac{1}{2}(t+1))$$

for $t \in [0, 1]$, \tilde{f} denoting restriction of f to the interval $[0, \frac{1}{2}]$ and L denoting Ryll-Nardzewski's extension operator from $C^{\infty}[0, \frac{1}{2}]$ to $C^{\infty}(R)$. It is easy to verify that $D^k Lg(1) = 0$ if $D^k g(0) = 0$ for $g \in C^{\infty}[0, \frac{1}{2}]$ and $k = 0, 1, \ldots$

To prove (6) we take $f_1(t) = f(\frac{1}{2}(t+1)), f_2(t) = (f-L'\tilde{f})(\frac{1}{2}t)$ for $t \in [0, 1]$. \tilde{f} is as above, L' denoting the extension operator from $C^{\infty}[\frac{1}{2},1]$ to $C^{\infty}(\tilde{R})$ such that $D^k L'q(0) = 0$ for every k = 0, 1, ... For instance, L'f(t) = $= \varphi(t) Lf(t)$, where $\varphi(t)$ is a function of class $C^{\infty} \varphi(t) = 0$ for $t \leq 0$; $\varphi(t) = 1$ for $t \ge \frac{1}{2}$ and L is an arbitrary extension operator from $C^{\infty}[\frac{1}{2}, 1]$ to $C^{\infty}(R)$. Using the same method as in [11] we get

$$\mathscr{E}(\underline{I}) \simeq \mathscr{E}(I) \times \mathscr{E}(J) \simeq \mathscr{E}(I) \times \mathscr{E}(I) \times \mathscr{E}(J) \simeq \mathscr{E}(I) \times \mathscr{E}(\tilde{I}) \simeq \mathscr{E}(I)$$

and

$$\begin{split} \mathscr{E}(J) &\simeq \mathscr{E}(J) \times \mathscr{E}(\tilde{I}) \simeq \mathscr{E}(J) \times \mathscr{E}(\tilde{I}) \times \mathscr{E}(\tilde{I}) \simeq \mathscr{E}(J) \times \mathscr{E}(I) \times \mathscr{E}(J) \times \mathscr{E}(\tilde{I}) \\ &\simeq \left(\mathscr{E}(J) \times \mathscr{E}(I)\right) \times \left(\mathscr{E}(I) \times \mathscr{E}(J)\right) \times \left(\mathscr{E}(I) \times \mathscr{E}(\tilde{I})\right) \simeq \mathscr{E}(\tilde{I}) \times \mathscr{E}(I) \times \mathscr{E}(I) \\ &\simeq \mathscr{E}(I) \times \mathscr{E}(I) \simeq \mathscr{E}(I) \,. \end{split}$$

LEMMA. Let X be as in Theorem 4. Then

$$\begin{split} (\mathbf{A}) \quad & C^{\infty}(X) \simeq C^{\infty}(V_1) \times C^{\infty}(V_2/V_2 \, \smallfrown \, V_1) \times \ldots \\ & \ldots \times C^{\infty}(V_{p-1}/V_{p-1} \, \smallfrown \, (V_1 \, \cup \, \ldots \, \cup \, V_{p-2})) \times C^{\infty}(X/V_1 \, \cup \, \ldots \, \cup \, V_{p-1}). \end{split}$$

Proof of Lemma. We shall show

(B)
$$C^{\infty}(X/V_1 \cup \ldots \cup V_i)$$

$$\simeq \mathit{C}^{\infty} \big(\mathit{V}_{i+1} / \mathit{V}_{i+1} \, \cap \, (\mathit{V}_{1} \, \cup \, \ldots \, \cup \, \mathit{V}_{i}) \big) \times \mathit{C}^{\infty} (\mathit{X} / \mathit{V}_{1} \, \cup \, \ldots \, \cup \, \mathit{V}_{i+1})$$

for i = 0, 1, ..., p-2.

By $C^{\infty}(X/V_1 \cup \ldots \cup V_i)$ and $C^{\infty}(V_{i+1}/V_{i+1} \cap (V_1 \cup \ldots \cup V_i))$ for i = 0 we mean $C^{\infty}(X)$ and $C^{\infty}(V_1)$, respectively.

Since $\operatorname{bd}(V_1 \cup \ldots \cup V_{i+1})$ for $i = 0, 1, \ldots, p-1$ are manifolds piecewise of class C^{∞} , there exists by Theorem 3 linear and continuous extension operator $L_{i+1}\colon C^\infty(V_1 \cup \ldots \cup V_{i+1}) \to C^\infty(X)$. Let $r_{i+1}f$ denote a restriction of f to the set $V_1 \cup \ldots \cup V_{i+1}$ for $f \in C^\infty(X)$. Then f can be represented as follows:

$$f = L_{i+1}r_{i+1}f - (f - L_{i+1}r_{i+1}f)$$

where $L_{i+1}r_{i+1}f_{\epsilon}L_{i+1}C^{\infty}(V_1 \cup \ldots \cup V_{i+1})$ and

$$(f-L_{i+1}r_{i+1}f)\,\epsilon\,C^{\infty}(X/V_1\,\cup\,\ldots\,\cup\,V_{i+1})\,.$$

Since $L_{i+1}C^{\infty}(V_1 \cup \ldots \cup V_{i+1}) \simeq C^{\infty}(V_1 \cup \ldots \cup V_{i+1})$, (B) is obtained. To get (A) we use (B) step by step for i = 0, 1, ..., p-2.

Proof of Theorem 4. Let us remark that $V_{i+1} \cap (V_1 \cup \ldots \cup V_i)$ $(i=1,2,\ldots,p-1)$ is a sum of some (n-1)-dimensional faces of the cube V_{i+1} because according to the assumption of Theorem 4 $\operatorname{bd}(V_1 \cup \ldots \cup V_{i+1}) \ (i=0,1,\ldots p-1)$ is a manifold. Hence

$$C^{\infty}(V_{i+1}/V_{i+1} \cap (V_1 \cup \ldots \cup V_i)) \simeq \mathscr{E}(D) \quad (i = 0, 1, \ldots, p-1),$$

where $\overline{D} = \pi^{*-1}(V_{i+1})$. From 3.1 follows that

$$\mathscr{E}(D) \simeq \mathscr{E}(I)^a \hat{\otimes} \mathscr{E}(I)^\beta \hat{\otimes} \mathscr{E}(\tilde{I})^\gamma \hat{\otimes} \mathscr{E}(J)^\delta$$

with $0 \leqslant \alpha, \beta, \gamma, \delta$; $\alpha + \beta + \gamma + \delta = n$. So by 3.3. and 3.2 we obtain $\mathscr{E}(D) \simeq$ $\simeq \mathcal{E}(I)$. Using the lemma we have

$$C^{\infty}(X) \simeq \mathscr{E}(I) \times \ldots \times \mathscr{E}(I)$$
,

and according to property (2) in 3.3 we have $C^{\infty}(X) \simeq \mathscr{E}(I) = C^{\infty}(I)$.

PROBLEM 1. Does every compact n-dimensional differentiable manifold possess a cube division satisfying the conditions of theorem 4?

PROBLEM 2. Is the hypothesis of theorem 4 true when instead of a cube division for the manifold there is a simplicial division?

References

[1] N. Aronszajn, Potentiels besseliens, Ann. Inst. Fourier (Grenoble) 15, 1 (1965), p. 43-58.

[2] K. Borsuk, Über Isomorphie der Funktionalraume, Bull, Int. Acad. Pol.

Sei. 1933, p. 1-10.

[3] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), р. 353-367,

[4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).

[5] S. Helgason, Differential geometry and symmetric spaces, New York 1962.

[6] M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), p. 183-192.

[7] S. Lang, Introduction to differentiable manifolds, New York 1962.

[8] L. Lichtenstein, Eine elementare Bemerkung zur reellen Analysis, Math. Z. 30 (1929), p. 794-795.

[9] E. J. McShane, Necessary conditions in generalised-curve problems of the calculus of variations, Duke Math. J. 7 (1940), p. 25-27.

[10] B. S. Mitjagin, Approximative dimension and bases in nuclear spaces

(Russian), Uspehi Mat. Nauk 164 (1961), p. 63-132. [11] A. Pelczyński, On the isomorphism of the spaces m and M, Bull. Acad.

Polon. Sci. Sér. Sci. Math. Astr. Phys. 7 (1958), p. 695-696. [12] - On simultaneous extension of continuous functions, Studia Math. 24 (1964),

p. 285-304.

[13] S. Saks and A. Zygmund, Analytic functions, Warszawa 1959, Chapter VII, § 2, p. 289.

[14] R. T. Seeley, Extension of Confunctions defined in a half-space, Proc. Amer. Math. Soc. 15 (1964), p. 625-626.

[15] H. Whitney, Analytic extension of differentiable functions defined in the closed sets, Trans. Amer. Math. Soc. 36 (1934), p. 63-89.

Reçu par la Rédaction le 6. 4. 1966