

The direct sum of Banach spaces with respect to a basis

bу

WILLIAM J. DAVIS and DAVID W. DEAN (Columbus, Ohio)

§ 0. Introduction. Let E be a Banach space of sequences such that if $(a_n) \in E$ and if $|\beta_n| \leq |a_n|$ for all n, then (i) $(\beta_n) \in E$ and (ii) $||(\beta_n)|| \leq \|(a_n)\|$ (1). In [13] A. Pełczyński introduced the notion of a countable sum of Banach spaces with respect to E. Specifically, if (X_n) is a sequence of Banach spaces, then $\Sigma_E X_n$ is the space of sequences (x_n) with $x_n \in X_n$ for each n, and with $(||x_n||) \in E$, where $||x_n||$ is the norm of x_n in X_n . Defining a norm on this space by $||(x_n)|| = ||(||x_n||)||_E$, and using coordinate-wise addition and scalar multiplication, $\Sigma_E X_n$ is a Banach space.

Of particular interest is the case in which $X_n = E$ for each n, and $\Sigma_E E$ is isometric (isometrically isomorphic) in a natural way to E. Examples of such spaces are (c_0) , (l_p) $(l \leq p)$, (m). The Fréchet space (s) is isomorphic to $\Sigma_{(s)}(s)$.

Using this isometry and other special properties of these examples, Pełczyński has penetrated deeply into their structures. In each of these examples, the sequence (e_n) , where $e_n = (\delta_{ni})_{i=1}^{\infty}$, is a basis (or in the case of (m), a generalized basis [1]) satisfying (i) and (ii) above (2).

Let σ_j be a subsequence of the positive integers N for each j such that $\bigcup \sigma_j = N$ and $\sigma_j \cap \sigma_k = \emptyset$ if $j \neq k$. Let $E(\sigma_j) = \{a \in E \mid a_k = 0 \text{ if } k \notin \sigma_j\}$. If E is (c_0) , (l_p) $(1 \leqslant p \leqslant \infty)$, each $E(\sigma_j)$ is isometric under the natural mapping T such that $Te_{j_i} = e_i$ where j_i is the ith element of σ_j . Moreover, [13], E is isometric to $\Sigma_E E(\sigma_j)$ in a natural way. Another way to say this is as follows. Let $\tau \colon N \to N \times N$ be one to one and onto. Let $E_j = E(\{n \mid \tau(n) = (j, k) \text{ for some } k\})$. Then E is isometric to each E_j and to $\Sigma_E E_j$. Moreover, the isometry T of E with $\Sigma_E E_j$ has the property that $Te_n = e_{jk}$ if $\tau(n) = (j, k)$, where e_{jk} is the kth coordinate sequence in the jth copy of E. If every such τ induces an isometry of E with $\Sigma_E E_j$, say that E is dispersed. If each τ induces an isomorphism T such that ||T||, $||T^{-1}|| < k$ where k is independent of τ , say the space is almost dispersed. If

⁽¹⁾ Every Banach space with a w*-separable conjugate space has a generalized basis. Then every such space has a representation as a space of sequences.

(2) We shall say that such a basis or generalized basis is orthogonal [14].

^{14 -} Studia Mathematica

210

there is a τ inducing an isomorphism of E with $\Sigma_E E$, say E is weakly dispersed. The word induces means the following. If $(\alpha_{jk})_{j=1}^{\infty}$ is a sequence in $\Sigma_E E_j$, $(\alpha_{jk})_{k=1}^{\infty}$ in E_j , then this sequence is mapped to the sequence $(\alpha_{\tau^{-1}(j,k)})$ in E.

With this structure Pełczyński ([13], see also [8], p. 393) has proved:

Proposition 1. Let E be weakly dispersed. If X is a complemented subspace of E and if E is isomorphic to a complemented subspace of X, then E is isomorphic to X.

The space $\mathcal{L}_E E$ is at the center of this discussion. In § 1 it is shown that E is almost dispersed if and only if it is weakly dispersed and symmetric (defined to be the natural extension of Singer's symmetric condition on bases ([15], [16])). In § 2 the almost dispersed concept is characterized geometrically. Using this characterization, it is shown in § 4 that these spaces are isomorphic to (l_1) , (c_0) , (l_∞) , or reflexive, and if the space is dispersed then isometric to (l_p) $(1 \leq p \leq \infty)$, or (c_0) . Further it is shown that if (e_n) is a basis, then almost dispersed and perfectly homogeneous are the same. In § 3 it is noted that many of the properties established in [13] hold for these spaces.

§ 1. Symmetric spaces and dispersed generalized bases. Let P denote the set of permutations $\varrho \colon N \to N$. Suppose for each sequence $(a_i) \in E$ and each sequence (δ_i) such that $|\delta_i| \leq 1$ for each i that one has $(\delta_i a_i) \in E$. Following Singer [15], [16], define $|||(\alpha_i)||| = \sup\{||(\delta_i a_{\varrho(i)})|| ||\delta_i| \leq 1$ for each i, $\varrho \in P\}$. If (e_n) is a basis for E, then $|||(\alpha_i)||| = \sup\{||\sum_{i=1}^{n} \alpha_i e_{\varrho(i)}|| ||n \in N, \varrho \in P\}$. If this new norm is equivalent to the old, say that the generalized basis (e_n) is a symmetric system for E. If $||| \dots ||| = || \dots ||$, say that E is symmetric.

There is a close relation between a symmetric E and an almost dispersed E. For example, it is immediate that each symmetric generalized basis is orthogonal. If (e_n) is in fact a basis for E, then E is collapsing. That is:

PROPOSITION 2. Let (e_n) be a basis for E which is a symmetric system and let (n_i) be a subsequence of N. Then the mapping $Te_{n_i} = e_i$ for each i induces an isomorphism of $E((n_i))$ onto E which is an isometry if E is symmetric.

We remark here that if E is separable and the generalized basis (e_n) is orthogonal, then (e_n) is a basis [11].

Proof of Proposition 2. It is clear that for arbitrary sequences (a_i) of scalars, and (m_i) , $(n_i) \subset N$, one has

$$\left\|\left\|\sum_{i=1}^N a_{n_i} e_{n_i}\right\|\right\| = \left\|\left\|\sum_{i=1}^N a_{n_i} e_{m_i}\right\|\right\|.$$

In particular, set $m_i = i$ for all i. Thus,

$$u_N = \sum_{i=1}^N a_{n_i} e_i$$

determines a Cauchy sequence in E such that

$$u_N o u = \sum_{i=1}^\infty a_{n_i} e_i \quad ext{ as } \quad N o \infty.$$

Furthermore,

$$|||u||| = \left\| \left| \sum_{i=1}^{\infty} \alpha_{n_i} e_{n_i} \right| \right\|.$$

If we take mutually disjoint sequences (n_i^j) , j=1,2,..., of positive integers, it is clear that a symmetric space E contains an infinite number of mutually "orthogonal" copies of itself, which might cause us to hope that $E \sim \Sigma E_i$, where $E_i = E((n_i^i))$. In section 4 we give a counterexample to this supposition. One does, however, obtain the following

THEOREM 1. The sequence space E is almost dispersed if and only if (e_n) is a symmetric system and E is weakly dispersed.

Proof. Let E be almost dispersed and $\varrho \in P$. Given any onto and one to one $\tau \colon N \to N \times N$, there exists τ_1 such that $\tau^{-1} \cup \tau_1 = \varrho$. Let S and S_1 be the isomorphisms of E onto ΣE induced by τ and τ_1 , respectively. Then $S^{-1} \circ S_1$ is an isomorphism of E onto itself satisfying $(S^{-1} \circ S_1) e_j = e_{\varrho(j)}$. Thus, from the definition of almost dispersed, there are constants c, k > 0, independent of ϱ , such that for every sequence $(\alpha_i) \in E$ one has

$$\|c\|(\alpha_i)\| \leqslant \sup_{\|\delta_i\| \leqslant 1, \ o \in P} \|(\delta_i \alpha_{\varrho(i)})\| \leqslant k\|(\alpha_i)\|.$$

Conversely, assume that E is weakly dispersed and (e_n) is a symmetric system. Renorming with |||...|||, E is symmetric and weakly dispersed. The latter condition guarantees a τ inducing an isomorphism of E with $\Sigma_E E$. Any other τ_1 is of the form $\tau \circ \varrho$ for some ϱ in P and the induced mappings S for ϱ and T for τ have composition $S \circ T$ with norm bounded independent of ϱ . Thus $T_1 = S \circ T$, the induced mapping for τ_1 , has norm bounded independent of τ_1 .

The following example shows that weakly dispersed does not imply almost dispersed. The space is isometric to (c_0) . This makes it clear that the notion of dispersed depends on the basis chosen as well as the space itself.

EXAMPLE 1. Let (a_j) be the sequence $(1, 2, 1, 2, 4, 1, \ldots)$. Let E be the Banach space of sequences (β_i) such that $(a_i\beta_j)\in(c_0)$ with norm $\|(\beta_i)\|=\|(a_i\beta_j)\|$. The coordinate basis (e_n) is not symmetric since shifting a sequence may change its norm by large amounts. Let $\tau\colon N\to N\times N$

be any one to one, onto mapping such that $a_n = a_j a_k$ if $\tau(n) = (j, k)$. Define $T: E \to \Sigma E$ by means of this τ . Thus, $T((\beta_n)) = (\beta_{jk})$ where $\beta_n = \beta_{jk}$ if $\tau(n) = (j, k)$. Therefore,

$$\begin{split} \big\| \big((\beta_{jk})_{k=1}^{\infty} \big)_{j=1}^{\infty} \big\| &= \big\| \big(\| (\beta_{jk})_{k=1}^{\infty} \| \big)_{j=1}^{\infty} \big\| = \sup_{1 \leqslant j < \infty} (a_j \sup_{1 \leqslant k < \infty} a_k \, |\beta_{jk}|) \\ &= \sup_{1 \leqslant j, k < \infty} a_j \, a_k \, |\beta_{jk}| = \sup_{1 \leqslant n < \infty} a_n \, |\beta_n| = \| (\beta_n) \| \, . \end{split}$$

Thus, T is an isometry. To see that T is onto, notice that all processes above are reversible. If follows from theorem 1 that (e_n) is not almost dispersed. This may be seen directly by choosing n such that $\tau(n) = (l, k)$ if $a_n = 1$ and $\tau(n) \neq (l, k)$ if $a_n > 1$. Then, the sequence $(1/na_n) \in E$, but $T((1/na_n)) \notin \Sigma E$ since $\|(\beta_{1k})\| = \infty$, where $T((1/na_n)) = (\beta_{jk})$.

§ 2. A geometric condition for a dispersed system. Basic to the concept of a dispersed or weakly dispersed system is the statement: If $\sigma_k = \{n \in N \mid \tau(n) = (k, i) \text{ for some } i\}$ and if x and y are elements of E such that $f_j(x) = 0$ if $j \notin \sigma_n$ and $f_j(y) = 0$ if $j \notin \sigma_n$, $n \neq m$ (i.e. if x and y are in different copies of E in ΣE), then $C||x+y|| \leq |||x||e_n+||y||e_m|| \leq K||x+y||$. For a dispersed system, C = K = 1 and the system is symmetric, so $||x+y|| = ||||x||e_i+||y||e_j||$ for every $i \neq j$. The following proposition is useful in section 3 and in characterizing dispersed and almost dispersed systems using geometric conditions of the above type.

PROPOSITION 3. Let E be almost dispersed and let $\varrho \colon N \to N$ be one to one. Then $X(\varrho(N)) = \{(a_i) \in E | a_i = 0 \text{ if } i \notin \varrho(N)\}$ is isomorphic to E under an isomorphism S such that $s((a_i)) = (a_{o(i)})$.

Proof. Note first that $X(\varrho(N))$ is isometric to $X(\varrho(N),1)=\{(x_i)\in \Sigma_E E | x_{ij}=0 \text{ if } j\neq 1 \text{ or } i\notin \varrho(N)\}$, the isometry being $(x_i)\to (x_{i1})\in X(\varrho(N),1)$. Now suppose that $N-\varrho(N)$ is infinite. Let $\tau\colon N\to N\times N$ satisfy $\tau(\varrho(n))=(n,1)$ for each n. If T is the restriction to $X(\varrho(N))$ of the isomorphism of E onto $\Sigma_E E$ induced by τ and if $(\alpha_i)\in X(\varrho(N))$, then $T((\alpha_i))=((\alpha_{jk})_{k=1}^n)_{j=1}^\infty$ where $\alpha_{jk}=0$ unless $i=\varrho(n)$ and $\tau(i)=(j,k)$ where k=1 and j=n, or $TX(\varrho(N))=X((N,1))$ which is isometric to E, letting $(x_n)\overset{\to}{\to} (x_{n,1})$. The mapping S is $I^{-1}T$.

Next suppose that $N-\varrho(N)$ is finite. Embed $X(\varrho(N))$ as $X\left(\left(\varrho(N),1\right)\right)$ in $\Sigma_E E$ and choose $\tau\colon N\to N\times N$. Then $\tau^{-1}\left(\left(\varrho(N),1\right)\right)=N_1$ has $N-N_1$ infinite and, by the above, $X\left(\tau^{-1}\varrho(N)\right)$ is isomorphic to E, say under T, while τ^{-1} induces an isomorphism T^{-1} of $X\left(\left(\varrho(N),1\right)\right)$ with $X(N_1)$. The mapping $TT_1^{-1}I=S$ is the one we seek, where I is the embedding $X\left(\varrho(N)\right)$ to $X\left(\left(\varrho(N),1\right)\right)$.

We remark that $||S||,~||S^{-1}||$ are bounded independently of ϱ since $||T||,~||T_1^{-1}||$ are so bounded.

COROLLARY 1. Let E have orthogonal generalized basis (e_n) . Then E is almost dispersed if and only if every one to one, into $\tau\colon N\to N\times N$ induces an isomorphism T from E into $\Sigma_E E$ such that $\|T\|$, $\|T^{-1}\|$ are bounded independently of τ .

Proof. Sufficiency is immediate since the set of onto τ 's is included. Thus let E be almost dispersed. Let $\tau\colon N\to N\times N$ be one to one and let $\tau_1\colon N\to N\times N$ be one to one and onto. Then $\tau_1^{-1}\circ\tau\colon N\to N$ is one to one. Let $\tau_1^{-1}\circ\tau=\varrho$ so $\tau=\tau_1\circ\varrho$. Let S and T_1 be the isomorphisms induced by τ and τ_1 respectively. Then $T=T_1\circ S$ is the desired isomorphism and is norm bounded independently of τ .

The geometric condition we are interested in is contained in the statement of the next theorem. For x in E let the support of x (suppx) be $\{j | x_j \neq 0\}$. Say that x and u are disjoint if supp $x \cap \text{supp} u = \emptyset$.

THEOREM 2. The following are equivalent. (i) E is almost dispersed. (ii) The generalized basis (e_n) is orthogonal and there exist constants C, K > 0 such that, if $x_1, \ldots, x_n, y_1, \ldots, y_n$ are elements of E satisfying $\sup p(x_i) \cap \sup p(x_j) = \emptyset = \sup p(y_i) \cap \sup p(y_j)$ whenever $i \neq j$, and such that $||x_i|| = ||y_j||$ $(i = 1, \ldots, n)$, then $C||x_1 + \ldots + x_n|| \leq ||y_1 + \ldots + y_n|| \leq K||x_1 + \ldots + x_n||$.

Proof. Suppose that E is almost dispersed. Let x_i , y_i be as in (ii) and let τ , $\tau_1 \colon N \to N \times N$ be one to one, into maps such that $\tau(\text{supp} x_i) \subset ((i,j))$ and $\tau_1(\text{supp} y_i) \subset ((i,j))$. Let T and T_1 be the isomorphisms induced by τ and τ_1 as guaranteed by corollary 1. Then there are constants A, B > 0, independent of τ , τ_1 , such that

$$\begin{split} \|x_1 + \ldots + x_n\| &\leqslant B \|Tx_1 + \ldots + Tx_n\| \\ &= B \|\|x_1\|e_1 + \ldots + \|x_n\|e_n\| \\ &= B \|\|y_1\|e_1 + \ldots + \|y_n\|e_n\| \\ &= B \|T_1y_1 + \ldots + T_1y_n\| \\ &\leqslant AB\|y_1 + y_2 + \ldots + y_n\| \\ &\leqslant AB^2\|T(y_1 + \ldots + y_n)\| \\ &= AB^2\|\|x_1\|e_1 + \ldots + \|x_n\|e_n\| \\ &\leqslant A^2B^2\|x_1 + x_2 + \ldots + x_n\| \end{split}$$

Therefore,

$$\frac{1}{AB} ||x_1 + \ldots + x_n|| \leq ||y_1 + \ldots + y_n|| \leq AB ||x_1 + \ldots + x_n||.$$

If the system is dispersed, A = B = 1.

Now assume that (ii) is satisfied. It will be shown in § 4, independently of this argument, that if (e_n) is not a basis for E, then E is isomorphic to (m) in the natural way $(C_1||(a_j)||_E \le ||(a_j)||_E \le K_1||(a_j)||_E$ for every $(a_j) \in E$).

Thus we assume here that (e_n) is a basis for E. For any $(a_i) \in E$ condition (ii) promises that $C \| \sum_{1}^{n} a_i e_j \| \le \| \sum_{1}^{n} a_i e_{\varrho(i)} \| \le K \| \sum_{1}^{n} a_j e_j \|$ for every n and $\varrho \in P$. Thus (e_n) is a symmetric basis. Let σ_n be infinite, $\bigcup \sigma_n = N$, $\sigma_i \cap \sigma_j = \emptyset$ if $i \neq j$. For $x = (a_j) \in E$ let $x_{i_j} = a_j$ if $j \in \sigma_i$, and $x_{i_j} = 0$ if $j \notin \sigma_i$. Let $\tau \colon N \to N \times N \in \tau \sigma_n = \{(n, k) | k \in N\}$. Since (e_n) is a basis, $x = \sum_{1}^{\infty} x_i$ and by (ii) $C \| \sum_{1}^{n} x_i \| \le \| \sum_{1}^{n} \| x_i \| e_i \| \le K \| \sum_{1}^{n} x_i \|$ for every n, or $C \| x \| \le \| \sum_{1}^{\infty} \| x_i \| e_i \| \le K \| x \|$ so that $(x_i) \in \Sigma_E E$ and the mapping T induced by τ is continuous. For any $(x_i) \in \Sigma_E E$ let $a_n = x_{ij}$ if $\tau^{-1}(i, j) = n$. Then $(a_n) \in E$ and $T((a_n)) = (x_i)$. By theorem 1 we conclude the argument.

EXAMPLE 2. Using the geometric conditions we can now construct a space which is symmetric but not almost dispersed, and so not weakly dispersed. Similar such examples have been constructed by Singer [16]. Let (d) be the linear space of real sequences $a = (a_i)$ with norm

 $||a|| = \sup_{\varrho \in \mathcal{P}} \sum_{j=1}^{\infty} \frac{|a_{p(j)}|}{j}.$

Then (e_n) is a symmetric basis for (d) which is boundedly complete so that (d) is a conjugate space, and so it is not isomorphic to (e_0) . (If (y_n) is biorthogonal to (e_n) and (f_n) is the natural basis for $l_1 = e_0^*$, then $(d) \sim [y_n]^* \sim [f_n]^* = (m)$ so that E is not separable; [7], p. 70). Further (e_n) converges weakly to 0 but not in norm as follows: Otherwise there exists f in $(d)^*$ and a sequence (e_{n_j}) such that $f(e_{n_j}) > \varepsilon$ for some $\varepsilon > 0$ and some subsequence (n_j) of N. Then if $u = \sum_{1}^{\infty} \frac{1}{j} e_{n_j}$, $f(u) = \infty$. Thus (d) is not isomorphic to $(l_1)([7], p. 33)$. In a private communication J. R. Retherford has shown that (d) is not reflexive.

To see that (d) is not almost dispersed, fix k, m in N with m>1. Let $\beta_i=(\log mk)^{-1}$ if $j=m(i-1)+1,\ldots,mi$; 0 if $j\neq m(i-1)+1,\ldots,mi$. Then $\|\beta_i\|=(\log mk)^{-1}\sum_1^m\frac{1}{j}$ while $\left\|\sum_1^k\beta_i\right\|=\left(\sum_1^{mk}\frac{1}{j}\right)(\log mk)^{-1}$ which converges as $mk\to\infty$. Now

$$\left\| \sum_{j=1}^{k} \|\beta_{j}\| e_{j} \right\| = (\log mk)^{-1} \sum_{j=1}^{m} \frac{1}{j} \left\| \sum_{1}^{k} e_{n} \right\|$$
$$= \left(\sum_{1}^{m} \frac{1}{j} \right) \left(\sum_{1}^{k} \frac{1}{n} \right) (\log m + \log k)^{-1}.$$

For large k and very large m, $\left\|\sum_{1}^{k}\beta_{j}\right\|$ is near 1 while $\left\|\sum_{1}^{k}\|\beta_{j}\|e_{j}\right\|$ is greater than $\frac{1}{2}\sum_{1}^{k}\frac{1}{i}$. Thus the geometric condition is violated.

§ 3. Complemented subspaces of ΣE . In this section we prove the following theorem:

THEOREM 3. Let E be almost dispersed. If X is an infinite-dimensional complemented subspace of E, then X is isomorphic to E.

The proof follows the lines of Pełczyński's argument for (c_0) , (l_p) $(1 \le p < \infty)$, but does not depend on the special properties of the particular norms involved. One lemma is needed.

LEMMA 1. With E as in theorem 3, let (z_n) be a sequence in E with mutually disjoint supports and $z_n \neq 0$ for every n. Then $[z_n]$ is isomorphic to E and complemented in E. If E is dispersed then $[z_n]$ is isometric to E and there is a norm one projection onto $[z_n]$.

Proof. We may assume $\|z_n\|=1$ (since $[z_n]=z_n/\|z_n\|).$ From the geometric condition, one obtains

$$C\left\|\sum_{j=1}^{n}a_{j}e_{j}\right\|\leqslant\left\|\sum_{j=1}^{n}a_{j}z_{j}\right\|\leqslant K\left\|\sum_{j=1}^{n}a_{j}e_{j}\right\|$$

for every n, so the mapping $T(\Sigma a_j e_j) = \Sigma a_j z_j$ is an isomorphism of E onto $[z_n]$, which is an isometry if C = K = 1.

To construct the projection, let $\tau \colon N \to N \times N$ be one-to-one so that $Sz_n \in E_n$, the nth copy of E in ΣE , where S is the isomorphism induced by τ . The span of Sz_n is one-dimensional, so there is a norm one projection of E_n onto Sz_n 's span. By proposition 3 of [13], $[Sz_n]$ is complemented in ΣE , say under a projection π , and $||\pi|| = 1$ if C = K = 1. The projection $S^{-1} \circ \pi \circ S$ from E onto $[z_n]$ has the desired properties.

Using lemma 1, we use Pełczyński's argument ([13], p. 214) to obtain:

LEMMA 2. If E is as in theorem 3, and if X is an infinite-dimensional subspace of E, then X contains an infinite-dimensional complemented subspace of E.

The proof of theorem 3 is now an immediate consequence of proposition 1 with the aid of lemma 2.

COROLLARY 3. Let E and F have almost dispersed bases. Then F can be embedded in E if and only if F is isomorphic to E.

Proof. Let T be an embedding (isomorphism into) of F into E. Then TF contains a subspace Y which is complemented in E and isomorphic to E. Then $T^{-1}Y$ is complemented in F, and so is isomorphic to F by theorem 3. The other direction is just proposition 1.

We mention the following without proof, since the arguments are routine. If the unit vector system (e_n) for a B-space E is an orthogonal basis, then E^* , as a sequence space, has the coefficient functionals $(f_n) \subset E_*$ as an orthogonal system. Thus, if (X_n) is a sequence of B-spaces, $(\Sigma_{E^*}X_n^*)$ is a B-space, and in fact $(\Sigma_{E^*}X_n^*)$ is isomorphic to $(\Sigma_EX_n)^*$.

§ 4. In this section we characterize almost dispersed and dispersed B and B_0 spaces (3).

The next theorem and its corollary characterize almost dispered sequence spaces.

THEOREM 4. Let E be almost dispersed. Then E is either isomorphic to (m), or (e_n) is an unconditional basis for E. If E is non-separable, the isomorphism with (m) is such that $Te_n = \delta_n$, where (δ_n) denotes the unit coordinate basis of (m).

Proof. The fact that (e_n) is an unconditional basis in the separable case was proved by Kadeč and Pełczyński [11].

In the non-separable case, (e_n) cannot be a basis, so there exists $x \in E$ such that for any finite set $\sigma \subset N$

$$\left\|x-\sum_{n\in\sigma}f_n(x)e_n\right\|\geqslant d>0.$$

By orthogonality,

$$\left\|\sum_{n\in\sigma}f_n(x)\,e_n\right\| \leqslant \|x\|.$$

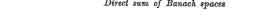
If $\sum f_n(x) e_n$ converged it would converge to x which it does not. Thus there exists an $\varepsilon > 0$ and $0 = n_0 < n_1 < \dots$ such that

$$w_j = \sum_{n=n_{j-1}+1}^{n_j} f_n(x) e_n$$

satisfies $||w_j|| \ge \varepsilon$. For any $a = (a_j) \epsilon(m)$, define $\beta_{jn} = a_j$ if $n_{j-1} < n \le n_j$, and denote by $\sum a_i w_i$ the sequence $(\beta_{in} f_n(x)) \in E$. Using orthogonality,

$$\varepsilon \|\alpha\|_{(m)} \leqslant \|\sum \alpha_j w_j\| \leqslant \|x\| \|\alpha\|_{(m)}.$$

Now, let $u_i = ||w_i||^{-1}w_i$, and let $\tau \colon N \to N \times N$ be defined by $\tau(k) = (j, k)$ if $n_{j-1} < k \le n_j$. Let v_j be the element u_j in the jth copy of E in ΣE . By proposition 2, E is isomorphic to $\Sigma E(\sigma_j)$, where $E(\sigma_j) = \operatorname{sp}(e_{n_{j-1}+1}, \ldots)$..., e_{n_i} in the jth copy of E in ΣE . Therefore, $y = (y_n) \in E$ if and only if $(y_j v_j) \in \Sigma E(\sigma_j)$, which occurs if and only if $\Sigma y_j u_j \in E$. Therefore, (u_j)



is equivalent to (e_n) . This proves $E \sim (m)$ since (u_i) is equivalent to (δ_{ni})

Corollary 3. If E is a separable, non-reflexive, almost dispersed sequence space, then $E \sim (c_0)$ or $E \sim (l_1)$.

Proof. A non-reflexive space with an unconditional basis (e_n) contains a copy of (c_0) or of (l_1) [10]. By corollary 2, E is isomorphic to either (c_0) or (l_1) .

A. Pełczyński and W. Ruckle have pointed out, in private communications, that if E is dispersed and separable, then it is a P-space as in [5]. Therefore it is isometric to (c_0) or (l_p) , $1 \leq p < \infty$.

Finally if E is non-normable and a B_0 -space (Fréchet space) with basis (e_n) , and almost dispersed, then it is isomorphic to (s) by theorem 7 of [4].

The following proposition was observed by the referee. A basis (x_n) for a Banach space x is called perfectly homogeneous [3] if every sequence of the form

$$z_n = \sum_{p_n+1}^{p_{n+1}} a_k x_k$$

with $0 < c_1 \le ||z_n|| \le c_2 < \infty$ is a basis for its closed span, $[z_n]$, equivalent to the basis (x_n) (such a sequence is called a block basic sequence). That is, the mapping $\sum a_i x_i \to \sum a_i z_i$ is an isomorphism of X onto $[z_n]$.

Proposition 4. The sequence space E is almost dispersed if and only if the unit vector basis (e_n) is perfectly homogeneous.

Proof. The only if part is clear from the proof of lemma 1. Thus assume that (e_n) is perfectly homogeneous. Such a basis is symmetric [16], so we may assume in fact that

$$\|(a_j)\| = \sup_{|\delta_i| \leq 1, \varrho \in P} \left\| \sum \delta_i a_i e_{\varrho(i)} \right\|.$$

Then the mappings $S_n((a_i)) = 0$ if $i \leq n$, a_{i-n} if $i \geq n+1$, are isometries. We shall prove that there are positive constants K_1 , K_2 such that given a block basis sequence (z_n) with $||z_n|| = 1$ for every n then $K_1 ||\sum a^i e_i|| \le 1$ $\leq \|\sum a_i z_i\| \leq K_2 \|\sum a_i e_i\|$. Using a technique found in [13], p. 215, it is then easy to show that the geometric condition is satisfied. Assume that such K_2 exists. Then there is a sequence of isomorphisms (T_n) such that $(T_n e_j)$ is a block basic sequence for each n and $||T_n e_j|| = 1$ for all n, j, and for each n there is an element

$$\sum_{1}^{k_n} a_{jn} e_j = x_n$$

⁽³⁾ Certain of these results were obtained simultaneously by the referee and the authors.

having norm ≤ 1 such that $||T_n x_n|| > n$. Let c_n be the largest integer in

$$\bigcup_{1}^{k_n} \operatorname{supp}(T_n e_j).$$

Then let $w_j=T_1e_j$ for $j=1,\ldots,k_1$ while $w_{k_1+\ldots+k_n+j}=S_{e_1+\ldots+e_n}T_{n+1}e_j$, $j=k_n+1,\ldots,k_{n+1}$. Then (w_j) is a block basic sequence such that $\|w_j\|=1$ for all j and

$$\Big\| \sum_{j=k_1+...+k_n+1}^{k_{n+1}} a_{j(n+1)} e_j \Big\| \leqslant 1$$

but

$$\Big\| \sum_{j=k_1+\ldots+k_{n+1}}^{k_{n+1}} a_{j(n+1)} w_j \Big\| > n.$$

In a similar way one shows that K_1 exists.

The following problems arise naturally:

PROBLEM 1. Pełczyński has conjectured that the only B-spaces with perfectly homogeneous bases are isomorphic to (c_0) or (l_p) $(1 \le p < \infty)$. The only remaining part of this problem is: If E is separable, almost dispersed and reflexive, is E isomorphic to some (l_p) (1 ?

PROBLEM 2. A wide class of complemented subspaces of (m) is known which contains subspaces isomorphic to (m), [9]. Are all complemented subspaces of (m) isomorphic to (m)?

Problem 3. Does proposition 2 remain valid in the non-separable case ?

References

- [1] M. G. Arsove and R. E. Edwards, Generalized bases in topological linear spaces, Studia Math. 19 (1960), p. 95-113.
 - [2] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), p. 151-164.
- [4] C. Bessaga, A. Pełczyński and S. Rolewicz, Some properties of the space (s), Colloq. Math. 7 (1959), p. 45-51.
- [5] F. Bohnenblust, An axiomatic characterization of L_p spaces, Duke Math. J. 6 (1940), p. 627-640.
- [6] W. J. Davis, Dual generalized bases in linear topological spaces, Proc. A. M. S. 17 (1966), p. 1057-1063.
 - [7] M. M. Day, Normed linear spaces, New York 1962.
- [8] D. W. Dean, Projections in certain continuous function spaces, Canad. J. Math. 14 (1962), p. 385-401.
- [9] Subspaces of $\mathcal{C}(H)$ which are direct factors of $\mathcal{C}(H)$, Proc. A. M. S. 16 (1965), p. 237-242.
- [10] R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950) p. 518-527.

[11] M. Kadeč and A. Pełczyński, Basic sequences, biorthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), p. 297-323.

[12] A. Markushevich, Sur les bases (au sens large) dans les espaces linéaires, Dokl. Akad. Nauk S. S. S. R. 41 (1943), p. 227-229.

- [13] A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), p. 209-228.
- [14] I. Singer, On a theorem of I. M. Gelfand, Uspekhi Mat. Nauk 17 (1962, p. 169-176 (Russian).
- [15] On Banach spaces with symmetric bases, Revue de Math. Pures. et Appl., Acad. R. P. R. 6 (1961), p. 159-166 (Russian).
- [16] Some characterizations of symmetric bases in Banach spaces, Bull. Acad. Pol. Sci. 10 (1962), p. 185-192.

Reçu par la Rédaction le 25. 5. 1966