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STUDIA MATHEMATICA, T. XXVII. (1967)

The direct sum of Banach spaces with respect to a basis
by

WILLIAM J. DAVIS and DAVID W. DE AN (Columbus, Ohio)

§ 0. Introduction. Let B be a Banach space of sequences such that
if (a)eB and if || < la,| for all n, then (i) (B)eE and (if) (A <
< [[(@n)l] (*)- In [13] A. Pelezyniski introduced the notion of a countable
sum of Banach spaces with respect to . Specifically, if (X,) is a sequence
of Banach spaces, then Tz X, is the space of sequences (,) with z,¢ X,
for each n, and with ([lz,||) e B, where lz,)} is the norm of &, in X,,. Defining .
a norm on this space by [[(z.)]l = lzullz, and using coordinate-wise
addition and sealar multiplication, Xz X, is a Banach space.

Of particular interest is the case in which X, = E for each n, and
Sp B is isometrie (isometrically isomorphic) in a natural way to F. Exam-
ples of such spaces are (), (k) (I <P), (m). The Fréchet space (s) is
isomorphic to X (s).

Using this isometry and other special properties of these examples,
Pelezyriski has penetrated deeply into their structures. In each of these
examples, the sequence (e,), where e, = (8n5)521, is @ basis (or in the case
of (m), a generalized basis [1]) satisfying (i) and (ii) above ().

Let o; be a subsequence of the positive integers N for each j such
that o; =N and o;~op=0 if j k. Let E(o;) = {aeBlap=0 if k¢os}.
T B is (&), (b) (1 <P < o00), each E(oy) is isometric under the natural
mapping T such that Te;, =é; where j; is the ith element of o;. More-
over, [13], B is isometric to ZzE(g;) in 2 natural way. Another way to
say this is as follows. Let =: N — Nx N be one to one and onto. Let
E; = B({n|z(n) = (j, k) for some k}). Then FE is isometric to each E; and
to ZgK;. Moreover, the isometry T’ of E with X F; bas the property that
Te, = ey, it 7(n) = (j, k), Where ¢, i3 the kth coordinate sequence in the
jth copy of E. If every such v induces an isometry of E with ZzpF, say
that B is dispersed. If each v induces an isomorphism T such that |7, |7~
< & where % is independent of v, say the space is. almost dispersed. If

(*y Every Banach space with a w*.geparable conjugate space bas a genera-
lized basis. Then every such space has a representation as a space of sequences.
() We shall say that such a basis or generalized basis is orthogonal [14].
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there is a 7 inducing an isomorphism of & with ZpF, say B is weakly dis-
persed. The word induces means the following. If (ay;)i2, is a sequence
in ZpB;, (ar)ie. in By, then this sequence is mapped to the sequence
(-15,1y) In H.

With this structure Pelezynski ([13], see also [8], p. 393) has proved:

PROPOSITION 1. Let E be weakly dispersed. If X is a complemented
subspace of E and if E is isomorphic to a complemented subspace of X,
then B s isomorphic to X.

The space ZpF is at the center of this discussion. In § 1 it is shown
that E is almost dispersed if and only if it is weakly dispersed and symme-
tric (defined to be the natural extension of Singer’s symmetric condition
on bases ([15], [16])). In § 2 the almost dispersed concept is characterized
geometrically. Using this characterization, it is shown in §4 that these
spaces are isomorphic to (), (¢), (Is), or reflexive, and if the space is
dispersed then isometric to (I,) (1 < p < o0), or (¢,). Further it is shown
that if (e,) is a basis, then almost dispersed and perfectly homogeneous
are the same. In § 3 it is noted that many of the properties established
in [13] hold for these spaces.

§ 1. Symmetric spaces and dispersed generalized bases. Let P denote
the set of permutations g: N — N. Suppose for each sequence (o;)el
and each sequence (d;) such that |6;] < 1 for each ¢ that one has (;0;)e B.
Following Singer [15], [16], define |||(a)ll| = sup{||(d;ayq)l| 16 <1 for

each 4, geP}. If (¢,) is a basis for B, then ||[(a)]]| = sup{|Y a6
1

|neXN, QeP}. Tf this new norm is equivalent to the old, say that the gene-
ralized basis (e,) is @ symmetric system for E. If |||...]|| = ||..||, say that
E is symmetric.

There is a closé relation between a symmetric B and an almost dis-
persed E. For example, it is immediate that each symmetric generalized
basis is orthogonal. If (e,) is in fact a basis for B, then F is collapsing.
That is:

PROPOSITION 2. Let (e,) be a basis for B which is a symmetric system
and let (n;) be a subsequence of N. Then the mapping Tey, = e for each
i induces an isomorphism of E((n;)) onto E which is an isometry if E is
symmetric.

We remark here that if ¥ is separable and the generalized basis
(én) is orthogonal, then (e,) is a basis [11].

Proof of Proposition 2. It is clear that for arbitrary sequences
(o;) of scalars, and (m,;), (n;) = N, one hag

3 ] = 1] S
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In particular, set m; = ¢ for all 4. Thus,

N
Uy = 2 O, 6;
t=1

determines a Cauchy sequence in # such that

20
Uy —> U =Z“ﬁi°’i a8 N — oco.
=1 )

Furthermore,

) =[] S]]

If we take mutually disjoint sequenees (nf), j = 1,2, ..., of positive
integers, it is clear that a symmetric space F contains an infinite number
of mutually “orthogonal” copies of itself, which might cause us to hope
that B~2XE;, where E; = B((n})). In section 4 we give a counterexample
to this supposition. One does, however, obtain the following

THEOREM 1. The sequence space E is almost dispersed if and only
if (en) 18 a symmetric system and E is weakly dispersed.

Proof. Let E be almost dispersed and g<P. Given any onto and one
to one 7: N — NX N, there exists z; such that t=* u 7, = p. Let § and
8; be the isomorphisms of E onto ZF induced by = and <,, respectively.
Then 8~'08, is an isomorphism of E onto itself satisfying (8~%08,)¢; = etl)-
Thus, from the definition of almost dispersed, there are constants e,
k >0, independent of o, such that for every sequence («)e® one has

eli{a)ll < Sllpdpll(aiae(@)ﬂ < Fefl(a)ll-

1851<1, o

Conversely, assume that  is weakly dispersed and (e,) is a symmetrie
system. Renorming with ||[...|]|, E is symmetric and weakly dispersed.
The latter condition guarantees a v inducing an isomorphism of ¥ with
2z B. Any other 7, is of the form vog for some ¢ in P and the induced
mappings § for ¢ and 7' for v have composition SoT with norm bounded
independent of o. Thus T; = SoT, the induced mapping for z,, has norm
bounded independent of 7.

The following example shows that weakly dispersed does not imply
almost digpersed. The space is isometric to (¢,). This makes it clear that
the notion of dispersed depends on the basis chosen as well as the space
itself.

Exampre 1. Leb (a;) be the sequence (1,2,1,2,4,1,...). Let E
be the Banach space of sequences (f;) such that (a;f;)e(c,) with norm
(Bl = 1i(a;B)ll- The coordinate basis (e,) is not symmetric since shifting
a sequence may change its norm by large amounts. Let 7: ¥ — NxN
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be any one to one, onto mapping such that a, = a;a; if v(n) =
Detine T: B — XB by means of this 7. Thus, T((8,)) =
if v(n) = (j, k). Therefore,

(G, ).
(ﬁj}c) where ﬁﬂ = ﬂ:fk

“((/37'11:)1311)]?111” = H(‘|(ﬂ1}c)7¢°=1“)?11|| = 1S<1}]) (“flﬁ}clp 0 Byl

<00

sup “:/a‘lclﬂﬂl = Sup a”nl/gn] = “(ﬁn)l

1< ko0

!{

Thus, 7' is an isometry. To see that T is onto, notice that all procesges
above are reversible. If follows from theorem 1 that (e,) is not almost
dispersed. This may be seen directly by choosing » such that = (n) = (1, k)
if @ =1 and v(n) #(}, k) if a, >1. Then, the sequence (1/na,)el,
but T((1/na,)) ¢ ZE since |[(Bu)l| = oo, where T((1/nay)) = (B)-

§2. A geometric condition for a dispersed system. Basic to the
concept of a dispersed or weakly dispersed system is the statement:
If o = {neNN| r(n) (k,4) for some ¢} and if # and y are elements of
E such that f;(2) = 0 it j¢o, and fi(y) = 0 it j¢op, n #m (i.e. if 2 and y
are in dlfferent copies of E in XE), then Olz-ty|| <||Ha9||en—|-[|y||em||<
< Kiz+y]. For a dispersed system, ¢ = K = 1 and the system is symme-
trie, 80 lw+y| = [lwlle;+ylles|| for every ¢ # j. The following proposition
iy useful in section 3 and in characterizing dispersed and almost dispersed
systems using geometric conditions of the above type.

PROPOSITION 3. Let B be almost dispersed and let o: N — N be one
to one. Then X({o(N)) = {(e)eB|a; = 0 if i¢p(IN)} is isomorphic o I
under an isomorphism S such that s((a;)) = (aq).

Proof. Note first that X(o(X)) is isometric to X(o(N),1) =
{(m)eZgB| wy; = 0 if j 1 or i¢g(N)}, the isometry being () = (@)
eX(o(N), 1). Now suppose that N —p(N) is infinite. Let v: N — NxN
satisty ©(g(n)) = (n,1) for each n.- If T' is the restriction to X (o(W))
of the isomorphism of B onto ¥ induced by v and if (a;)eX(o(N)),
then T'((«)) = ((@n)f)f>: Where ay, = 0 unless ¢ = g(n) and (i) = (], k)
where k =1 and j ==, or TX(g(N)) = X((¥,1)) which is isometric
to B, letting (w,) > (v,,,). The mapping § is I-'T.

Next suppose that N —g(XN) is finite. Embed X (o () as
in 2B and choose v: N — NxN. Then v*((¢(¥),1)) = Ny has NN,
infinite and by the above, X (v~'¢(N)) is isomorphic to B, say under T,
while 7~ induces an isomorphism T of X(( (¥), 1)) with X (). The
mappmg TT1 T = §is the one we seek, where I is the embedding X (g
to X 1))

We rema,rk that 8], [|§7"| are bounded mdependently of o since
1Tl I177Y are so bounded. .

X ((e(20), 1))
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COROLLARY 1. Let E have orthogonal generalized basis (e,). Then E
s almost dispersed if and only if every one to one, into v: N — Nx N induces
an isomorphism T from B into ZgE such that [T, ITY] are bounded inde-
pendently of .

Proof. Sufficiency is immediate since the set of onto 7’s is inclu-
ded. Thus let E be almost dispersed. Let z: N —> NxXN be one to one
and let 7;: N - NXXN be one to one and onto. Then z7'or: N — N is
one to one. Let 77’0t = p 50 7 = 7;00. Let § and 7, be the isomorphisms
induced by = and 7, respectively. Then T = T,08 is the desired isomor-
phism and is norm bounded independently of .

The geometric condition we are interested in is contained in the
statement of the next theorem. For x in E let the support of 2 (suppz)
be {j| z; # 0}. Say that z and w are disjoint if suppz ~ supps = @.

THEOREM 2. The following are equivaleni. (i) E is almost dispersed.
(ii) The generalized basis (e,) is orthogonal and there exist constants Oy, K > 0
such that, if @y, ..., %n, Y1y...; Yn ore elements of B satisfying supp(w;)
~ Supp (#;) = @ = supp(y;) ~ supp(y;) whenever i = j, and such that
ledl = lwill (¢ =1,...,m), then Ollwi+ ... +aull < Yo+ ... +uall < Kl +
+ o

Proof. Suppose that E is almost dispersed. Let 2;, ¥; be as in (ii)
and let 7, 7;: N — NX N be one to one, into maps such that z(suppz;) <
< ((iy ) and = (suppys) = ((4,5)). Let T and T, be the isomorphisms
induced by = and z; as guaranteed by corollary 1. Then there are constants
A, B >0, independent of 7, 7;, such that

s+ ... dmall < BiTsy + ... + Tl
= Bl|llz:lle, +.-. +liaalled]
= Blllyslles+ ... +lynllen]
= B|[T 191+ ... +Tyal
< ABly:+yo+ - +yal
< ABYT{(y: + ... +ual
= ABYlm;lles + ... +llzallen]

< ABR|my faat ... 2.
Therefore,
1
ot el <

it oo ol < ABH“&“}‘ eve 2l

If the system iy dispersed, 4 = B = 1.

Now assume that (ii) is satisfied. It will be shown in § 4, independently
of this argument, that if (e,) is not a basis for F, then F is isomorphic
to (m) in the natural way (O(@)lle < l(as)llm < Kill(oy)lix for every (a;)eE).
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Thus we assume here that (en) is a basis for Z. For any ()X condition

IIZ’ 45| <

peP. Thus (e,) is a symmetmc bams Let o, be 1nf1n1te, Uow =N, 6, ~ oy
=@ifi#j. For o = (q)el let ey, = o it jeoy, and @y, =0 1f jéo;. Let

(ii) promises that C”ya,ejH KHZ’aje,“ for every = and

T: N—>N><Nemn = {(n, k)| ke_N} Since (e,) is a basis, » = Z% and by

(1) 0”2@[1 IIZmenelll IIZ\man

< Klz| so that (aal)ezﬂE and thc mapping 7' induced by 7 is contmuom.
For any (;)eZpE leb a, = xy it 774, j) = n. Then (a,)eB and T((a,))
= (@;). By theorem 1 we conclude the argument.
Exsvpre 2. Using the geometric conditions we can now construct
a space which is symmetric but not almost dispersed, and so not weakly
dispersed. Similar such examples have been constructed by Singer [16].
Let (d) be the linear space of real sequences o = (a;) with norm

Y lang)

o

llafl = sup § 2
oP L J

Then (e,) is a symmetric basis for (d) which is boundedly complete so
that (d) is a conjugate space, and so it is not isomorphic to (¢p). (If (¥.)
is biorthogonal to (e,L) and (f,) is the natural basis for I, = ¢y, then
(@) ~[yuT*~[fa]* = (m) so that F is not separable; [7], p. 70). Further (e,)
converges weakly 1;0 0 but not in norm as follows: Otherwise there exists
fin (d)* and a sequence (enj) such that f (e,,].) > ¢ for gome ¢ > 0 and some

I*HZ‘mlH for every n, or (| <

1
subsequence (n;) of N. Then if u = 27 €n;, f(u) = co. Thus (d) is not
1
isomorphie to (I,) ([7], p.33). In a private communication J. R. Retherford
has shown that (d) is not reflexive.
To see that (d) is not almost dispersed fix k, m in N with m >1.
Let g; = (logmk)™tifj = m(z——l)—{-l ., mi; 0 1f.g #=m (i—1)+1, ..., mi.

Then ||8;|| = (logmk)~ Zw while HZ Bl = (Z )(logmk)—l which con-
1

verges asmk — co. NOW

I]Z ] = togmir 3 _H 2%
PR .,:(Z’f%‘)(g%)<log,,z+log,c)-l.

i
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3 3
For large k and very large m, |3 8| is near 1 while || lif;l¢;f] is greater
& 1 1
1 1 . e
than ) 27 Thus the geometric condition is violated.

§ 3. Complemented subspaces of Y. In this section we prove the
following theorem:

TueorREM 3. Let B be almost dispersed. If X is an infinite-dimensional
complemented subspace of E, then X is isomorphic to E.

The proof follows the lines of Pelczyiski’s argument for (c), (1)
(1 <p < oo), but does not depend on the special properties of the parti-
cular norms involved. One lemma is needed.

LemuA 1. With E as in theorem 3, let (2,) be a sequence in E with
mutually disjoint supports and z, # 0 for every n. Then [2,] is isomorphic
to E and complemented in E. If E is dispersed then [2,) is isomeiric to B
and there is a morm one projection onto [z,].

Proof. We may assume |jz,]| =1 (since [z,] = 2,/
geometric condition, one obtains

0] 3 ee] <[ 3 5] < K] 3 e

for every m, so the mapping T(Zee;) = Za;2; is an isomorphism of B
onto [#,], which is an isometry if C =K =1

To construct the projection, let 7: N — Nx N be one-to-one so that
Sz,¢B,, the nth copy of F in XF, where § is the isomorphism induced
by . The span of Sz, is one-dimensional, so there is a norm one projection
of B, onto Sz,’s span. By proposition 3 of [13], [Szn] is complemented in
XH, say under a projection =, and |z = 1if ¢ = K =1. The pro;ectmn
81 oyzoS from E onto [2,] has the desired propertles

Using lemma 1, we use Pelezyiiski’s argument ([13], p. 214) to obtain:

LevMA 2. If B is as in theorem 3, and if X is an infinite-dimen-
sional subspace of E, then X contains an infinite-dimensional complemented
subspace of B.

The proof of theorem 3 is now an immediate consequence of proposi-
tion 1 with the aid of lemma 2

COROLLARY 3. Let E and F have almost dispersed bases. Then F can
be embedded in E if and only if F is isomorphic fo B.

Proof. Let T be an embedding (isomorphism into) of F into E.
Then TF contains a subspace ¥ which is complemented in B and isomor-
phic to B. Then T-'Y is complemented in ¥, and so is isomorphic to F
by theorem 3. The other direction is just proposition 1.

). From the
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We-mention the following without proof, since the arguments are
routine. If the unit vector system (e,) for a B-space I is an orthogonal
basis, then F*, as a sequence space, has the coefficient functionals (f,) = B,
as an orthogonal system. Thus, if (X,,) is a sequence of B-spaces, (ZgXy)
is a B-space, and in fact (Zg.Xy) is isomorphic to (ZzX,)*.

§ 4. In this section we characterize almost dispersed and dispersed
B and B, spaces (3).

The next theorem and its corollary characterize almost dispered
sequence spaces.

THEOREM 4. Let E be almost dispersed. Then B is either isomorphic
to (m), or (e,) is an unconditional basis for E. If B is non-separable, the
isomorphism with (m) is such that Te, = J,, where (§,) denotes the unit
coordinate basis of (m).

Proof. The fact that (e,) is an unconditional basis in the separable
case was proved by Kaded and Pelczyhski [11].

In the non-separable case, (¢,) cannot be a basis, so there exists ze®
such that for any finite set o0 ¢ N

“m—Zf.,,(m)en” =>d>0.

By orthogonality,

13 5u@)en)

nec

< flasfl-

If 3'f.(»)e, converged it would converge to # which it does not. Thus
1

there exists an ¢ >0 and 0 = 1, << n, < ... such that
11/7'
Wy = Tal@)en
=gy +1
satisties [fuy]| > & For any a = (¢;)e(m), define By, = a; if ny_; < n < ny,
and denote by Jajw; the sequence {ff,(s))eB. Using orthogonality,

ellalomy < | 3 | < gl -

Now, lebt w; = |wyll~'wy;, and let v: N - Nx N be defined by =(k) = (j, k)
it m;_y <% < m. Let v; be the element u, in the jth copy of B in ZE.
By proposition 2, B is isomorphic to ZH(g;), where H(c;) = 8D (€n;_y 419+
-+3 6q,) i the jth copy of B in XE. Therefore, y = (y,)<E if and only
it (y;9;)e2B(o;), which occurs if and only if Sy ,u;eB. Therefore, (u;)

(%) Certain of these results were obtained simultaneously by the referee and
the authors.
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is equivalent to (e,). This proves E ~ (m) since (u;) is equivalent to (3,;)
in (m). .

CoROLLARY 3. If B is a separable, non-reflexive, almost dispersed
sequence space, then o~ (¢) or B ~ (1,)-

Proof. A non-reflexive space with an unconditional basis (e,)
contains a copy of (¢) or of (I,) [10]. By corollary 2, E is isomorphic to
either (¢,) or (I,).

A. Pelczyr’lski‘ and W. Ruckle have pointed out, in private com-
munications, that if ¥ is dispersed and separable, then it is a P-space
as in [5]. Therefore it is isometric to {¢,) or (I,), 1 < p < oo.

Finally if B is non-normable and a B,-space (Fréchet space) with
basis (e,), and almost dispersed, then it is isomorphic to (s) by theorem
7 of [4].

The following proposition was observed by the referee. A basis (i,)
for a Banach space « is called perfectly homogeneous [3] if every sequence
of the form

Pp+i

w= D,
T t1

043573

with 0 < ¢; < [|2,]] < ¢, << o0 is a basis for its closed span, [2,], equivalent
to the basis (x,) (such a sequence is called a block basic sequence). That
is, the mapping 3 a;#; — D o;% is an isomorphism of X onto [z,].

PrOPOSITION 4. The sequence space E is almost dispersed if and
only if the unit vector basis (e,) s perfectly homogeneous.

Proof. The only if part is clear from the proof of lemma 1. Thus
agsume that (e,) is perfectly homogeneous. Such a basis is symmetric
[16], so we may assume in fact that

”2 51:“5@9(1:)![ .

Then the mappings S,((a;)) = 0 if ¢ <n, a;_y if ¢ > n-1, are isometries.
‘We ghall prove that there are positive constants K,, K, such that given
a block basis sequence (2,) With |jz,| = 1 for every = then K|} a’e <
<13 ai| < K| ase. Using a technique found in [13], p. 215, it is
then easy to show that the geometric condition is satisfied. Assume
that such K, exists. Then there is a sequence of isomorphisms (T,) such
that (T,e,) is a block basic sequence for each n and [[Tnef =1 for all
n, j, and for each m there is an element

. K
' 2 Qi €6 = T,
1

(o)} = sup
16;1<1, 0P
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having norm <1 such that |T,,] > n. Let ¢, be the largest integer in
kﬂ
LIJ supp (I ¢;).

Then let w; = Ty¢; for j =1,...,k while wy, 1z 5= ot .ton Tng1 64
J =ln+1,..., kyy1. Then (w;) is a block basic sequence such that [lw;]| = 1
for all j and

Fpga

%G| <1

I, 2
I=ky . Fop+1

but
Fng1
” Z %(nt1) wy” >n.
F=Ry+ .. oblpy -1
In a similar way one shows that K, exists.
The following problems arise naturally:

PROBLEM 1. Pelesyniski has conjectured that the only B-spaces with
perfedtly homogencous bases are isomorphic to (¢,) or (Ip) (1 <p < o). The
only remaining part of this problem is: If B is separable, almost dispersed
and reflexive, is B isomorphic to some () (1 < p < oo)?

PROBLEM 2. A wide class of complemented subspaces of (m) is known
which contains subspaces isomorphic fo (m),
subspaces of (m) isomorphic to (m)?

PrOBLEM 3. Does proposition 2 remain valid in the non - separable
cased

References

(11 M. G. Arsove and R. E. Edwards, Generalized bases in topological linear
spaces, Studia Math. 19 (1960), p. 95-113.

[21 8. Banach, Théorie des opérations linéaires, Warszawa 1932.

[3]1 C. Bessaga and A. Pelezyhski, On bases and unconditional convergence
of series in Bamach spaces, Studia Math. 17 (1958), p. 151-164,

[4] C. Bessaga, A. Pelezyfiski and §. Rolewicz,. Some properties of the
space (8); Colloq. Math. 7 (1959), p. 45-51.

[5] F. Bohnenblust, An awiomatic characierization of Ly spaces, Duke Math.
J. 6 (1940);, p. 627-640.

[6] W. J. Davis, Dual generalized bases in linear topological spaces, Proc.
A. M. 8. 17 (1966), p. 1057-1063. ’

{71 M. M. Day, Normed linear spaces, New York 1962.

[8]1 D. W. Dean, Projections in  certain continuous Sfumction spaces, Canad.
J. Math. 14 (1962), p. 385-401.

2359]2; Bubspaces of C(H) which are direct factors of C'(H), Proc. A. M. 8. 16 (1965),

. 237.242,

55130] R. C. James, Bases and reflexivity of Banach spaces, Ann. Math. 52 (1950)
p. 518-527.

[9]. Are all complemented,

icm®

Direct sum of Banach spaces 219

[11] M. Kadeé and A. Pelczynski, Basic sequences, biorthogonal systems and
norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), p. 297-323.

[12] A. Markushevich, Sur les bases (au sens large) dans les espaces liné-
aires, Dokl. Akad. Nauk 8. 8. 8. R. 41 (1943), p. 227-229.

[13] A. Pelozyniski, Projections in certain Banach spaces, Studia Math. 19
(1960), p. 209-228.

[14] I. Singer, On a theorem of 1. M. Gelfand, Uspekhi Mat. Nauk 17 (1962,
p. 169-176 (Russian).

[15] — On Banach spaces with symmeiric bases, Revue de Math. Pures. et Appl.,
Acad. R. P. R. 6 (1961), p. 159-166 (Russian).

[186] — Some characterizations of symmetric bases in Banach spaces, Bull. Acad.
Pol. Sei. 10 (1962), p. 185-192.

Regu par la Rédaction le 25. 5. 1966


GUEST




