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The Arens product and multiplier operators
by

L. MATE (Budapest)

§0. Many problems of analysis are connected with operators of
cortain Banach algebras which commute with left multiplication (see
[31, [4], [6], [8]). The operator T of a Banach algebra B with this property,
j.e. with the property

Toy = Ty, @, yeB,

is called a maultiplier. It is obvious that the seb A of multiplier operators
forms an algebra and the operator

T,: Top = @6, ¢eB,

is a multiplier for every aeB; hence A is an extension of B.

Civin and Yood [2] proposed and investigated a natural extension
of a Banach algebra B namely the second conjugate space B*™ with an
Arens product. The Arens produet in B** is defined as follows: If DB,
geB, then

(3] Gxgp: (Dro)y = Bloy), veB;

it is easy to show that &=* geB* and [[Px ol < |Plillell. If FeB*™, OeB*
then

() Fad: (F+®)y = F(Pxyp), veb,

and it is easy to show that Fx GeB* and | Fx D) < [[FID].
The definition of an Arens product based on (1) and (2) is the follow-
ing:
If F,, F,eB*, then
(3) F*Fy: (Fi2F)D = F(Fyx D), PeB,

and B*™ is a Banach algebra with the product (8). For more details and
proofs, we refer the reader to [2].

In a previous paper [9] we dealt with the various connections between
A and B** with Arens product in ease of B having a wealk right identity
(i.e. there being a sequence {e,} in B such that |lg,| =1 and lim @ (pe,)
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= @(p) for every geB, P<B*). The main point is that A4 is isomorphic
0 a certain subalgebra of ¥* = B**/¥' in this case (for ¥, see Defini-
tion 1), but this does not hold whenever there is no weak right identity
in B.

In §1 we shall deal with B without a weak right identity. The original
norm in ¥ < B* will be repla,eed by a stronger one and the closure ¥’
will be considered. It will be shown that in the dual space ¥'* we can
define a multiplication which is a counterpart of the Arens product and
the connections between 4 and the algebra Y'* are the same as those
between 4 and Y* in the case of B having a weak right identity.

The investigations proposed here cannot be carried out without
any restriction considering the Banach algebra B. The following con-
ditions are presupposed for B:

ConNDITION 1. B 4s without a left annihilator.

CONDITION 2. From

o0 : 0
BieB*,  gueB, Bl <oo  and Y g =0

k=1 k=1
it follows that Y @y (ps) = 0.
k=1

These two conditions fogether are weaker than the condition of
having weak right identity. In fact, if there is weak right identity in B,
then Conditions 1 and 2 are satistied (see [9]). However, if G is a compact
and non-diserete group, then I”(G) (1< p < o) is a Banach algebra
satisfying Conditions 1 and 2 but without a weak right identity. Indeed,
in the case of I?(G) (1< p < o)

Dxo =of@(t+1)cp(t)d1, PeI?, pel?

(see [10]), and if 2 1Bl llsl] < oo, then 2 Dp*preC(G) and Zdik(«pk)
= [Z@k* @](0). On the other hand, if @ is not discrete, I” (@) (1 < p <<oo)

isa reﬂemve space without a right identity; hence [2], Lemma 3.8 , implies
that it is also without a weak right identity.
In §2 we shall show that if B has weak right identity, then ¥'* is

isometric and isomorphic with Y* and we give a sharper form of the
main result of [9].

§ L. If #[B] is the natural embedding B into B**, F, = a[g] (peB) ’

and FeB** such that

Fox Fen[B] for every peB,
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then the operator
(4) T: a[Tp] = FxF, ¢eB,
is a multiplier. If (F % F)® = 0 for every ®eB* and every peB, then
the operator T represented by ¥ in the sense (4) is the null operator and
(B) F(P*g) = (Frd)p = F,(F+P) = (F,xF)® =0, ¢eB, PeB*.
Definition 1. ¥ is the linear hull of the set A
{Pxg; DPeB*, peB}

and Y is the orthogonal complement of ¥ in B**.
On the basis of (5) and Definition 1 we can say that the operator T
represented by F in the sense (4) is the null operator if and only if Fe¥L.

LevmA 1. The following two assertions are equivalent:
(a) B is without a left annihilator;
(b) n[B]~ Y1t = 0.

Proof. Let B be without a left annihilator and g,eB ~ ¥*; then
(@+¢)g0 = B(gpy) = 0, PeB*, peB; hence ¢ = 0.
Conversely, let (b) be satistied, p,eB and o@, = 0 for every ¢eB;

(D% @) o = D(ppy) = 0, ®eB*, geB;

hence p,eB ~ Y+ and consequently ¢, = 0.
Definition 2. ¥’ is the linear hull of the seb

then

(6) [h= Y Guxgi; I Bulligal < 005 PreB”, pieB.
k=1 k=1
THEOREM 1. ¥’ is a Banach space with the norm

) = int{ f IBalllipall; ) Pik gn = B
k=1 k=1

moreover, Y’ is a linear subset of B* and
Rl <IRI°,  ReX'.

Proof. It is obvious that ||...| is a norm. If {4} (h,eX’)is a Cauchy
sequence, then there is a subsequence {hy} sueh that [l —hall’ <1 [2%.
Hence, if

h = h1+2 (hk+1—hk);

k=1

then JJb|’ < oo, % is in form (6) and limh, = h.
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From (1) it 3 it i i 3
m (1) it follows that k;:@,c*(pksB* and it is obvious that |L§1@k*(pk”

n =
< ]}]cé’l@k*%[]’ ; hence the second part of the theorem ig also clear.

Remark. Ifis obvi ied wi "5
L emary s obvious that ¥ supplied with the norm ||...||" is a dense

Let us consider the dual space Y™ of Y'. We ‘ i
et . are going to defi
a modified Arens product by which Y'* becomes a Banach aliebra e
For every heY’ and peB the linear form hx* ¢ is defined by
(hxp)y = h(py),
for every FeY'™* and heY’ the linear form Fxh is defined by
(F+h)p = F(hxp), @eB.
ProrosrTioN 1. For every @eB, he¥’', FeY™
hxpeX' and FxheX'.
Proof. Congider the linear form ¥ defined by

Plp) = F(Pxg),
for FeY'*, @eB*. From

peB;

peB,

(7 ¥ (@) < IFNP*el’ < [FINP] Il
it follows that WeB* For every g,eB

(Fxp)gy = Plpp) = F(Prpp,) = F([Dxplsp,)

= (Fx[Dx H
hence (F*[P+p])py;

(8) Vo = Fx (Dxg).
From (7) and (8) we obtain
Fxh = ) PrrqpeY’,
o k=1
h =
where kb é@k*% and ¥y: Pi(p) = F(Dp*g).
The first part of the assertion, n.
. e , Damely that hxpeY, can be proved
in the same way by taking into account that for every,tpeB F
. .
9) Fo: F (h) = hip), heX’,
defines a unique element of ¥'* (see Lemma 1).

Definition 3. For every F,, F, « Y"*

FixFy: (FixF)h = P, (Fy%h), he¥'.
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As in the case of an Arens product, it is easy to show that » is.a mul-
tiplication and |[Fy* Foll < IFl[[Fsl-

PROPOSITION 2. The ome-to-one mapping from B into Y™ defined
by (9) @8 an algebraic isomorphism.

The proof is obvious.

TeEoREM 2. If B is a Banach algebra satisfying Condition 1, then
for every TeA there is @ unique multiplier extension onto ¥ o

Proof. I. If T* is a conjugabe operator of T, then (see [9])

T*(xg) = (L*P)*p

o

oo oo
and it h = > Pykqy, then S(T*Pp)*gre Y’ and T*h = 3 (T* @) * px;
2 K=t

=1 k=1
hence Y’ is invariant for T*. It is obvious thab T* is bounded concerning
also the norm [...[}'.

TI. Let us consider T* as the bounded operator of ¥’ and T as
the conjugate operator in Y*. Then T’ is an extension of I' onto X
Indeed, if ¢ — F, by the igomorphism in Proposition 2, then

(T'F )b = Fo(T'h) = (I*h)g = h(Tp), he¥’,
and from Lemma 1 it follows that Tp —T'F,.
1. ([T"Flxh)yp = [T'F](h*gp) = F(T*(h+p)]
— F([T*h]*g = (FxT*h)p, ¢eB;
hence
(10) [T'Fixh = F+T*h, Fe¥'™, heY'.
From the basis of (10) for every Fy, Fye ™
[T (B % Fy)1h = (P Fo) T*h = F(Fy+T*h)
= F,([T'F,]%h) = (Fy=T'Fo)h, ke Y';

hence T'(F, % F,) = F,»T'F,.

TErorEM 3. If B is a Banach algebra satisfying Conditions 1 and 2y
then for every Te<A there is o unique Fre¥'™ such that, by the isomor-
phism (9),
(11)

Proof. If

Te = FoxFr, peB.

I:Ih = 2951:(%),

k=1

o0
h = 2 Dpxgpre Y,
=1
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then it is easy to show that IeXY'™* and

FxI=F, FeXl™
hence for every multiplier 1"

T'Fp =T (FxI) =FxT'I.
If Fr = T'I, then Theorem 2 implies (11).
If F,xFp = 0 for every peB, then
(Pr+h)p = F (Fpxh) = (FxFp)h =0, @eB;

hence
(12) Frpxh =0, heX'.
The identity operator E is represented by I in (11) and, for every Fy,
I+Fp = FrxI; hence *
(13) I(Fr+h) = (IxFr)h = Fr(h);
comparing (12) and (13) we obtain Fy = 0, and the representation (11)
is unique for each Ted.

THEOREM 4. If B is a Banach algebra satisfying Conditions 1 and 2,

then A is anii-isomorphic with the subalgebra of Y'™* consisting of those
F for which

(14) F. xFen[B] for every peB,

where w[B] is the image of B in the isomorphism of Proposition 2.

Proof. The operator Ty represented by (14) is a multiplier. Indeed,
considering Proposition 2,

Trlpy) = (B +F,)+F = Fox (F,x F) = ¢Tpy, ¢, peB.

If Ty = F +F, and T,p = F,+F, for every geB, then (T,-+T,)p
=Tp+Top = Fot F1+Fox ¥y and T,T,p = Ty (T,p) = (P, * Fy)xFs;
hence the anti-isomorphism follows from the fact that » is a multipli-
cation in Y'*.

) § 2. Tet us suppose that there is a weak right identity {e,} in B. It
will be shown that the algebra 4 of multipliers in this case is clogely related
to the factor space B**/¥' with an Arens product.

Lemma 2. ¥t is a closed two-sided ideal in B**.

Proof. It is obvious that ¥+ is linear and closed. If FeB**, deB*,
peB, then

[F*D)xgly = (F+D)py = F(D*gy) = F[(Gxp)*y]
= [Fx(P*p)]y, weB;

@ © .
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hence
° (Fx0)xp = Fx (Oxp).

It Fl’FaeB**, deB*, then

[(Fyx Fy) 4 @ly = (FrxFo) (@xy) = Fi[Fo* (Dx9)]
= B, [(Pyx @) xyp] = [Frx(Fox®)]y,  yeb;

hence
(FyeF)x® = Fyx (FyxP).

Moreover, from
’ (F+@)p = F(P#p), OcB, 9<B,

i i i = 0 for every ®PeB*.
it follows that Fe¥L if and only if F x®P =0 4 4 '

From these assertions it follows that Y+ is a two-sided ideal. In
fact, if FeY*, then for every @eB**

(GxF)*® = G* (FxP) =0, ®cB*,

and
(FPr@)x® = Fx(G+D) =0, deB*, q.ed.

TaEorEM 5. If B is o Banach olgebra with a weak right identity {e},
then Y'* is isomelric and isomorphic with B¥[Y*. . -

Proof. If FeB** /Y, then it follows from obvious 11}equa,hmes'
that F is a continuous functional on Y also in the norm [|...]" and ||F|
< F-

Oonversely, if FeY", then

{15) ' B (hxe) < WP Thxed! < IFI TR he',
and if ¥: ¥(p) = F(Pxp), then from (7) it follows thab YeB* and

lmF([P*p]*e,) = ImF(Prger) = ﬁf—“lj("’e“)

a

= W(p) = F(DP*9), ®eB*, peB.
Thus Hm F (h*e,)= F (k) for every heY. Moreover, taking into account

f ula? 15), we have
i 1B®) < IR, e X

hence FeB*|YL and |[F| = |IF|. o

TrmorEM 6. If B is a Banach algebra with a weak r?ght identity {ea}é
then there is an isomelric isomorphism between the multiplier algebra A an
a certain closed subalgebra of B™*|Y* with an Arens product.
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Proof. We have only to show the isometry. If Te4 is represented
by FeXY'™, then from (11) follows

(16) D(Tp) = (F,xF)D = F(Dxgp),
hence

FeB™, GecB*, ¢peB;
IT] = sup
iel=1, lgf=1
since [P+q| < |2 gl
On the other hand, if heY and || =1, then
am) |h(Te,)| < |IT)
since ¥ < B*. Moreover, from (16) it follows that #(Te,) — F(hxe,);
hence (17) implies
[F'(h)] = Hm|F(h*e,)| =Um|k(Te,)| <|T, he¥, |B] =1;
thus [|F]] < [T
GoROLLARY. The following assertions are equivalent:
(a) 4 = B*™*|YY;
(b) =[B] is a right ideal in B**|Y*;
(¢) =[B] s a righi ideal in B**.

|2(Tp)] < sup

llo*gli=1

[F(Pxp)| < |7

References

[1]1 C. E. Rickart, General theory of Banach algebras, D. Van Nostrand C. Inc.
1960.

[2] P. Civin and B. Yood, The second conjugate space of a Bamach algebra as
an algebra, Pac. J. Math. 11 (1961), p. 847-870. .

[3] R. E. Edwards, Endomorphisms of function -spaces, Pac. J. Math. 14
(1964), p. 31-48.

[4] — Approzimation by lution, Pac. J. Math. 15 (1965), p. 85-95.

[6] A. Figa-Talamanca, Translation - invariant operators in LP-spaces, Duke
Math. J. 32 (1965), p. 495-501.

[6] L. Hormander, Translation-invariant operators in LP, Acta Math. 104
(1960), p. 93-104.

[7] L. MAté, Multiplier operators and quotient algebra, Bull. Ac. Polonaise
18 (1965), p. 523-526.

[8] — On the factor theory of commutative Bamach algebras, Magy. Tud. Akad.
Mat. Kut. Int. Kozl 9 (1964), p. 359-364. .

[91 — Embedding multiplier operators of a Banach algebra B into its second conju-
gate space B*¥, Bull. Ac. Polonaise 13 (1965), p. 809-812. ;

[10] J. D. Stafney, Arens multiplication and Tt
(1964), p. 1423.1448.

, Pac. J. Math. 14
POLYTECHNICAL UNIVERSITY OF BUDAPEST

Regu par la Rédaction le 17. 12. 1965

STUDIA MATHEMATICA, T. XXVIIL. (1967)

Conditions de non existence des solutions de Déquation différentielle
des opérateurs de J. Mikusinski

par

B. STANKOVIG (Novi Sad)

Soit K le corps des opérateurs de J. Mikusinski [3]. Nous considérons
léquation différentielle

W e =0

olt v(t) est une fonetion continue sur EO, oo) et u({d) = {u(16 t)<},tu<(zi)
est une fonction continue sur le domaine D_,.D: a<A< ﬁ, ) < mm(;
I’idée essentielle dangs cet article est d’umhsel.: }a. théorie bien cfoﬁ e
de l'intégrale de Laplace pour obtenir des confhtmns de 113103; exfti (131 "
des solutions de I’équation citée. La m&r?e méthode peut étre
i rémes d’existence [4]. )
pourl%o:)xf:;?:uifs ?ﬁ: le probléme d’existence des solutions de Péquation

de la forme
2 ag®(2) =0,
1=0

ol @; sont des i)olyhémes par rapport & Popérateur différentiel s, a 66

résolu par J. Mikusitigki [4]. o .
J’aJIi) aussi établi [5, 6] des résultats qui fzoncernent lesb(quu?lzojx;s

dont les coefficients sont des éléments de certam's sous-ensemble 4 .
Dans la suite on va utiliser les notations suivantes. Domaines:

Dia<i<p 0<t<oo; Dyua<i<p0<i<n.

Fonetions:
: . ft) pour O <t<m,
fn = {fn(t)} = ‘ 0 pour t>=n,
: 0. pour O0<it<n,
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