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A characterization of Hilbert-Schmidt operators
by

A. PELCZYNSKI (Warszawa)

In this note we substantiate a conjecture of Pietsch [4] by proving
that in a Hilbert space the class of all Hilbert-Schmidt operators eoincides
with the class of all absolutely p-summing operators for arbitrary fixed
p with 1 <p < + oo. ’

Let H, and H, be Hilbert spaces. A linear operator T:H, - H,
is called a Hilbert-Schmidt operator provided D'|Te)? < + oo for some

el

(equivalently, for each) orthonormal basis (e),.; in H, (ef. [1], p. 138).
If 1<p< + oo, then a linear operator 7':H, - H, i3 absolutely
p-summing (cf. [4]) provided there is a positive constant ¢ such that
for arbitrary sequence (,) in H,

@ =]
(1) (> |]Tw,,]|")1m < C“shlp1 (D) 1<an, ayP)”.
n=1 al|=1 "n=1

The class of all Hilbert-Schmidt operators from H, into H, [resp.
of all absolutely p-summing operators] will be denoted by &,(H;, H,)
[resp. Il (Hy, H;)]

THEOREM. S,(H,, H,) = II,(H,, H,) for 1 <p < + oo.

The case p =1 was probably first explicitly stated in the literature
by Pietsch (cf. e.g. [5], p. 42, and the references in [5]). However, it
seems to be known to Grothendieck (cf. [2], p. 55, Théoréme 6). The
Theorem in the case where 1 < p < 2 has been recently established by
Pietsch [4], Satz 5. Combining this result with [4], Satz 11, we get the
inchusion S,(H,, H,) = II,(H,, H,) for 1 <p < + co. The new result
obtained in this note is the inclusion II,(H,, H,) = ©,(H,, H,). However,
we present here for completeness a direct proof of the general case.

1. Preliminary remarks. It is well known that every Hilbert-
-Schmidt operator is compact. Similarly

1.1, If Tell,(H,, Hy), then T is compact.

Proof. We shall show first that if (e,)5, is an orthonormal sequence
in H,, then limTe, = 0. Indeed, if it was not true, then there would
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exist # > 0 and an orthonormal sequence (e,)..; such that 1Ten)| > 5
for n =1,2,... Therefore

N
) (DITefr)” > ¥y for N =1,2, ...
N=1
On the other hand, the orthonormality of the sequence (e,) implieg
y 2
(Xicen, a2 <l for  aed,.
N=1

Thus for p > 2

N N
1/, S\LE
(3) sup 3 [<ea, )" < sup (3 [Kew, apl2) " < 1,
laj=1 "5=7 fedl=1 fm1

and for 1 < p < 2, by Hélder inequality,

N N
W) sup (3K, ayP)< N sup (3 [Cony a1 -,

lal=1 5=1 =1 "p=1

Clearly inequalities (2), (3) and (4) contradict (1).

To complete the proof of the compactness of 7' it is enough to show
that if T': H, — H, is a non-eompact linear operator, then lim ||Te,|| > 0
for some orthonormal sequence (e,)%; in H,. *

We shall define such a sequerice (e,) inductively. Since T is not
compact, T' is not a limit in the operator norm |{|-||| of a sequence of opera-
tors of finite dimensional ranges. Hence there is 7 >0 such that ||| —P||| >y
for each linear operator P: H, - H, of a finite-dimensional range. In
particular, |||T|{| > ». Hence there is ¢, in H, with |le)]]| = 1 such that
I Tes[| > 5. Let us suppose that for some m > 1 the elements €13 €5y «eny Em
have already been defined in such a way that [ Tesli > % and <e;, e = 6
for 4,§ =1,2,...,m. Let Q denote the orthogonal projection from H,
onto the subspace F, spanned by elements €160y .nnyby. Let P =TQ.
Then P has a finite-dimensional range. Therefore 1T —P[|| > #. Choose ¢
in H; with Jje| =1 such that (T —P)ejl > n. Obviously Te # Pe. Thus
e—Q¢ # 0. Let us set

Omy1 = ”(6—@6)”“%6-—@6).

Clearly |len,,| =1 and Teniy = |le—Qe| " (T—P)e. Sinee |je]l =1 and
since @ i3 an orthogonal projection, [le—@e|| < [l = 1. Therefore
1 Tensall = (T—P)e|| > 7. Finally, since Qe =0, the vector 6,,; is
orthogonal to each element in the range of §. In particular, <em,, &;> = 0

for é=1,2,...,m This completes the inductive step and the proof
of 1.1.
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The countable character of (1) implies that Tell,(H,, H,) if and
only if the restriction of T to each separable subspace of H, is abso-
lutely p-summing. The same is true for Hilbert-Schmidt operators.
Therefore without loss of generality we shall assume in the sequel that
H, is separable.

1.2. If T: H, - H, is compact, then there is an orthonormal basis
(fu) in H,y such that Tf, = dugn where (g,) is an orthonormal sequence in
H,, }, are non-negative and 111;1)% = 0.

Proof. Let us consider in H, the bilinear form S(z, y) = (Tz, Ty).
Clearly S is symmetric, non-negative and compact. Thus there is an
orthonormal basis (f,) in H, in which § has the diagonal representation,
ie. (Tfu, Tfmy = 0 for m # m, and ]jlbn {Lfny Tfny = 0 (cf. [6], § 93). We

n

put A, = Tfy for n =1, 2,..., and we define (g,) as an arbitrary ortho-
normal sequence in H, such that

G = |[Tfal* Tf,  for Tf, #0.

2. Proof of the Theorem.

2.1. II,(Hy, Hy) < S, (Hy, Hy).

. Let Tell,(H,, H,). Then, by 1.1, T is compact. Let (f.), (¢.) and
(A,) be as in 1.2. Let r, denote the n-th Rademacher function, i.e.

(—=1)F  for 2"k << 27"(k+1),
0 for t=2"kand fort=1

(k=0,1,...,2"=1;n =1,2,...).

TFix a positive integer N and set for k¥ = 0,1, 21

N
]
Ly = .}_/ Tnfns

=1

where

rh =, (k127N (b =0,1,..,2V—1;n =1,2,..., N).

Then
J . 1\{’ % & 2\1/2
Tl = || 37Tk, =[|14\,1m&ngnl| = (X"
M= = M=
Therefore
2N;1 p . N .
(5) (k% TP )” = 2 (;M) :
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. o where 7, denotes as in 2.1 the n-th Rademacher function. Then (cf. [3])
On the other hand, it a = 3'<a, fi>f;, then using the Khinchin inequality ([7], Chap. V, Theorem 8.4; [5], p. 39)
} ' (k|1)2—N‘ N we geb
[<®ry a’>\p 27” Lay fod| = f Zrn {a, fn>’ dt. S
: froe s Ty O Ysup o
ence
WN_q zN_l(ia+1) -N N , P 1
- 1p 2] > A" 7',,, ln ms fud| At
(k_z; < adl?) p_ (2N, 0 v LZ’“ )<a, fn>’7 i ofm_JZ\MI (T fu>
= o= Jeo—4 =
1 c© 1 oo
oM ) TP L\ =41 1 ¥ () Aoy oy fu | AE
=2 f| S T PNIRICERCRY
h hinchin i li . = -
Therefore, by Khinchin inequality ([7], Chap. V, Theorem 8.4) > (V34) 2(21 (<, fu] )
2Ny M=l A1
/
©® (3 Kew, )" < 2B (2|<a,fn>| )" <27 B, lal],
k=0

= (V34)7* Y| Tl
M=1

where B, is a constant depending only on p.

Comparing (5) and (6) with (1) we obtain This proves the inclusion S,(H,, Hy) = II,(H,, Hy).

< e Finally, let p > 1 and let g = p(p—1)~". Then
9Nl (Zﬁ‘) < Csup (Z <, a>|”) < B2V, )
n=1 llgji=1 00
Thus (E |cm1")l“j = sup 2 [t G -

M=1 M=

oo
3 ltyl9=1
Mie=1

Since inequality (1) is established already for p =1, we get

Since ||Tful = 4, for m =1,2,..., the last inequality implies & =
’ v ( M iTmar)” = s 3| Ttuzal

Z HhlP < T e " 7>§:llt1nl’l.<1m=1
M=l
This shows that TeS,(Hy, H,). <V34 sup sup 2|<fmﬂfm,a>!
2.2. ©,(H,, H,) < II,(H,, Hy). 3
Let (fa), (9n) and (2,) be as in 1.2. If TeS,(H,, H,), then -
22 1/2 = l/gA gup sup y It {&m» ad|
(”Z ) < +oo. llaf]=1 ; =1 |
M=
Let (@a)m-1 be an arbitrary sequence in H,. Let for 0 <t <1 B o y
= }/3A sup ( 2 1{&m,» a’>1p) !
oo fail=1 "m=1
— -1
=4 érn(t) e This completes the proof.
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Supplement to my paper
“On the convergence of superpositions
of a sequence of operators™*

by
M. REICHAW (Haifa)

The author is grateful to M. David for noting that Theorem 1 in
the above paper remains true without the assumption 8;8; = S;. The
proof (the idea of which is similar to that in the paper, but without
using (a)) consists in showing by induction relative to & of the following
formula :

TnTn——lT'n—-z Tlc"‘AT'n—lT'n-z Tk = (Tn‘—A)(Tn-l‘*Snvl) e (Tk—SIc)

starting with & = n—1 and going down to %k = 1 (n fixed).

Since Theorem 1 is used in the next following theorems, these theo-
rems also remain true if one omits in them the assumptions 8;8; = §;
in Theorem 2 and in the proof of sufficiency in Theorem 3 and § = §°
in Theorems 4 and 5.

* See Studia Mathematica 25 (1965), p. 343-351.
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