A characterization of Hilbert-Schmidt operators

bу

A. PEŁCZYŃSKI (Warszawa)

In this note we substantiate a conjecture of Pietsch [4] by proving that in a Hilbert space the class of all Hilbert-Schmidt operators coincides with the class of all absolutely p-summing operators for arbitrary fixed p with $1 \le p < +\infty$.

Let H_1 and H_2 be Hilbert spaces. A linear operator $T: H_1 \to H_2$ is called a *Hilbert-Schmidt operator* provided $\sum_{i \in I} ||Te_i||^2 < + \infty$ for some (equivalently, for each) orthonormal basis $(e_i)_{i \in I}$ in H_1 (cf. [1], p. 138). If $1 \leq p < + \infty$, then a linear operator $T: H_1 \to H_2$ is absolutely p-summing (cf. [4]) provided there is a positive constant C such that for arbitrary sequence (x_n) in H_1

$$\left(\sum_{n=1}^{\infty}\left\|Tx_{n}\right\|^{p}\right)^{1/p}\leqslant C\sup_{\|a\|=1}\left(\sum_{n=1}^{\infty}\left|\langle x_{n},\,a\rangle\right|^{p}\right)^{1/p}.$$

The class of all Hilbert-Schmidt operators from H_1 into H_2 [resp. of all absolutely p-summing operators] will be denoted by $\mathfrak{S}_2(H_1, H_2)$ [resp. $H_p(H_1, H_2)$]

THEOREM. $\mathfrak{S}_2(H_1, H_2) = \Pi_p(H_1, H_2)$ for $1 \leqslant p < +\infty$.

The case p=1 was probably first explicitly stated in the literature by Pietsch (cf. e.g. [5], p. 42, and the references in [5]). However, it seems to be known to Grothendieck (cf. [2], p. 55, Théorème 6). The Theorem in the case where $1 has been recently established by Pietsch [4], Satz 5. Combining this result with [4], Satz 11, we get the inclusion <math>\mathfrak{S}_2(H_1, H_2) \subset \Pi_p(H_1, H_2)$ for $1 \le p < +\infty$. The new result obtained in this note is the inclusion $\Pi_p(H_1, H_2) \subset \mathfrak{S}_2(H_1, H_2)$. However, we present here for completeness a direct proof of the general case.

- 1. Preliminary remarks. It is well known that every Hilbert-Schmidt operator is compact. Similarly
 - 1.1. If $T \in \Pi_p(H_1, H_2)$, then T is compact.

Proof. We shall show first that if $(e_n)_{n=1}^{\infty}$ is an orthonormal sequence in H_1 , then $\lim_{n \to \infty} Te_n = 0$. Indeed, if it was not true, then there would

exist $\eta>0$ and an orthonormal sequence $(e_n)_{n=1}^\infty$ such that $\|Te_n\|>\eta$ for $n=1,2,\ldots$ Therefore

(2)
$$\left(\sum_{n=1}^{N} \|Te_n\|^p \right)^{1/p} > N^{1/p} \eta \quad \text{for} \quad N = 1, 2, \dots$$

On the other hand, the orthonormality of the sequence (e_n) implies

$$\left(\sum_{n=1}^{N} |\langle e_n, a \rangle|^2\right)^{1/2} \leqslant ||a|| \quad \text{ for } \quad a \in H_1.$$

Thus for $p \geqslant 2$

(3)
$$\sup_{\|a\|=1} \left(\sum_{n=1}^{N} |\langle e_n, a \rangle|^p \right)^{1/p} \leqslant \sup_{\|a\|=1} \left(\sum_{n=1}^{N} |\langle e_n, a \rangle|^2 \right)^{1/2} \leqslant 1,$$

and for $1 \leq p < 2$, by Hölder inequality,

$$\sup_{\|a\|=1} \Big(\sum_{n=1}^N |\langle e_n, \, a \rangle|^p \Big)^{1/p} \leqslant N^{1/p-1/2} \sup_{\|a\|=1} \Big(\sum_{n=1}^N |\langle e_n, \, a \rangle|^2 \Big)^{1/2} \leqslant N^{1/p-1/2}.$$

Clearly inequalities (2), (3) and (4) contradict (1).

To complete the proof of the compactness of T it is enough to show that if $T: H_1 \to H_2$ is a non-compact linear operator, then $\overline{\lim_n} ||Te_n|| > 0$ for some orthonormal sequence $(e_n)_{n=1}^{\infty}$ in H_1 .

We shall define such a sequence (e_n) inductively. Since T is not compact, T is not a limit in the operator norm $||\cdot||\cdot||$ of a sequence of operators of finite dimensional ranges. Hence there is $\eta>0$ such that $||T-P|||>\eta$ for each linear operator $P:H_1\to H_2$ of a finite-dimensional range. In particular, $|||T|||>\eta$. Hence there is e_1 in H_1 with $||e_1||=1$ such that $||Te_1||>\eta$. Let us suppose that for some $m\geqslant 1$ the elements e_1,e_2,\ldots,e_m have already been defined in such a way that $||Te_i||>\eta$ and $\langle e_i,e_j\rangle=\delta_i^f$ for $i,j=1,2,\ldots,m$. Let Q denote the orthogonal projection from H_1 onto the subspace E_m spanned by elements e_1,e_2,\ldots,e_m . Let P=TQ. Then P has a finite-dimensional range. Therefore $|||T-P|||>\eta$. Choose e in H_1 with ||e||=1 such that $||(T-P)e||>\eta$. Obviously $Te\neq Pe$. Thus $e-Qe\neq 0$. Let us set

$$e_{m+1} = \|(e-Qe)\|^{-1}(e-Qe).$$

Clearly $\|e_{m+1}\|=1$ and $Te_{m+1}=\|e-Qe\|^{-1}(T-P)e$. Since $\|e\|=1$ and since Q is an orthogonal projection, $\|e-Qe\|\leqslant \|e\|=1$. Therefore $\|Te_{m+1}\|\geqslant \|(T-P)e\|>\eta$. Finally, since $Qe_{m+1}=0$, the vector e_{m+1} is orthogonal to each element in the range of Q. In particular, $\langle e_{m+1}, e_i \rangle = 0$ for $i=1,2,\ldots,m$. This completes the inductive step and the proof of 1.1.

The countable character of (1) implies that $T \in H_p(H_1, H_2)$ if and only if the restriction of T to each separable subspace of H_1 is absolutely p-summing. The same is true for Hilbert-Schmidt operators. Therefore without loss of generality we shall assume in the sequel that H_1 is separable.

1.2. If $T: H_1 \to H_2$ is compact, then there is an orthonormal basis (f_n) in H_1 such that $Tf_n = \lambda_n g_n$ where (g_n) is an orthonormal sequence in H_2 , λ_n are non-negative and $\lim \lambda_n = 0$.

Proof. Let us consider in H_1 the bilinear form $S(x,y) = \langle Tx, Ty \rangle$. Clearly S is symmetric, non-negative and compact. Thus there is an orthonormal basis (f_n) in H_1 in which S has the diagonal representation, i.e. $\langle Tf_n, Tf_m \rangle = 0$ for $n \neq m$, and $\lim_n \langle Tf_n, Tf_n \rangle = 0$ (cf. [6], § 93). We put $\lambda_n = Tf_n$ for $n = 1, 2, \ldots$, and we define (g_n) as an arbitrary orthonormal sequence in H_2 such that

$$g_n = ||Tf_n||^{-1}Tf_n \quad \text{ for } \quad Tf_n \neq 0.$$

2. Proof of the Theorem.

2.1. $\Pi_p(H_1, H_2) \subset \mathfrak{S}_2(H_1, H_2)$.

Let $T \in \mathcal{H}_p(H_1, H_2)$. Then, by 1.1, T is compact. Let (f_n) , (g_n) and (λ_n) be as in 1.2. Let r_n denote the n-th Rademacher function, i.e.

$$r_n(t) = \begin{cases} (-1)^k & \text{for} \quad 2^{-n}k < t < 2^{-n}(k+1), \\ 0 & \text{for} \quad t = 2^{-n}k \text{ and for } t = 1 \end{cases}$$
$$(k = 0, 1, \dots, 2^n - 1; n = 1, 2, \dots).$$

Fix a positive integer N and set for $k = 0, 1, ..., 2^{N}-1$

$$x_k = \sum_{n=1}^N r_n^k f_n,$$

where

$$r_n^k = r_n((2k+1)2^{-(N+1)})$$
 $(k = 0, 1, ..., 2^N - 1; n = 1, 2, ..., N).$

Then

$$||Tx_k|| = \left\|\sum_{n=1}^N r_n^k Tf_n\right\| = \left\|\sum_{n=1}^N r_n^k \lambda_n g_n\right\| = \left(\sum_{n=1}^N \lambda_n^2\right)^{1/2}.$$

Therefore

(5)
$$\left(\sum_{k=0}^{2^{N-1}} \left\| T x_k \right\|^p \right)^{1/p} = 2^{N/p} \left(\sum_{n=1}^{N} \lambda_n^2 \right)^{1/2}.$$

Hilbert-Schmidt operators

On the other hand, if $a = \sum_{i=1}^{\infty} \langle a, f_i \rangle f_i$, then

$$\left|\left\langle x_{k},\,a\right\rangle \right|^{p}=\left|\sum_{n=1}^{N}r_{n}^{k}\overline{\left\langle a,f_{n}\right\rangle }\right|^{p}=2^{N}\int\limits_{l_{2}-N}^{(k+1)_{2}-N}\left|\sum_{n=1}^{N}r_{n}(t)\overline{\left\langle a,f_{n}\right\rangle }\right|^{p}dt.$$

Hence

$$\begin{split} & \big(\sum_{k=0}^{2^N-1} |\langle x_k, a \rangle|^p \big)^{1/p} = \big(2^N \sum_{k=0}^{2^N-1} \int_{k2^{-N}}^{(k+1)2^{-N}} \left| \sum_{n=1}^N r_n(t) \langle \overline{a, f_n} \rangle \right|^p dt \big)^{1/p} \\ &= 2^{N/p} \left(\int_{0}^{1} \left| \sum_{n=1}^N r_n(t) \langle \overline{a, f_n} \rangle \right|^p dt \right)^{1/p}. \end{split}$$

Therefore, by Khinchin inequality ([7], Chap. V, Theorem 8.4)

(6)
$$\left(\sum_{k=0}^{2^{N}-1} \left| \langle x_k, a \rangle \right|^p \right)^{1/p} \leqslant 2^{N/p} B_p \left(\sum_{n=1}^{N} \left| \langle a, f_n \rangle \right|^2 \right)^{1/2} \leqslant 2^{N/p} B_p \|a\|,$$

where B_p is a constant depending only on p. Comparing (5) and (6) with (1) we obtain

$$2^{N/p} \left(\sum_{n=1}^{N} \lambda_n^2 \right)^{1/2} \leqslant C \sup_{\|a\|=1} \left(\sum_{k=1}^{2^{N}-1} |\langle x_k, a \rangle|^p \right)^{1/p} \leqslant C B_p 2^{N/p}.$$

Thus

$$\left(\sum_{n=1}^N \lambda_n^2\right)^{1/2} \leqslant CB_p \quad ext{ for } \quad N=1,\,2,\,\dots$$

Since $||Tf_n|| = \lambda_n$ for n = 1, 2, ..., the last inequality implies

$$\sum_{n=1}^{\infty} \|Tf_n\|^2 \leqslant (CB_p)^2 < + \infty.$$

This shows that $T \in \mathfrak{S}_{\mathfrak{d}}(H_1, H_2)$.

2.2. $\mathfrak{S}_2(H_1, H_2) \subset \Pi_p(H_1, H_2)$.

Let (f_n) , (g_n) and (λ_n) be as in 1.2. If $T \in \mathfrak{S}_2(H_1, H_2)$, then

$$A = \left(\sum_{n=1}^{\infty} \lambda_n^2\right)^{1/2} < +\infty.$$

Let $(x_m)_{m=1}^{\infty}$ be an arbitrary sequence in H_1 . Let for $0 \le t \le 1$

$$b(t) = A^{-1} \sum_{n=1}^{\infty} r_n(t) \lambda_n f_n,$$

where r_n denotes as in 2.1 the *n*-th Rademacher function. Then (cf. [3]) using the Khinchin inequality ([7], Chap. V, Theorem 8.4; [5], p. 39) we get

$$\begin{split} \sup_{\|a\|=1} \sum_{m=1}^{\infty} |\langle x_m, \, a \rangle| &\geqslant A^{-1} \sup_{0 \leqslant t \leqslant 1} \sum_{m=1}^{\infty} |\langle x_m, \, b \, (t) \rangle| \\ &\geqslant A^{-1} \int_{0}^{1} \sum_{m=1}^{\infty} \Big| \sum_{n=1}^{\infty} r_n(t) \lambda_n \langle x_m, f_n \rangle \Big| dt \\ &= A^{-1} \sum_{m=1}^{\infty} \int_{0}^{1} \Big| \sum_{n=1}^{\infty} r_n(t) \lambda_n \langle x_m, f_n \rangle \Big| dt \\ &\geqslant (\sqrt{3}A)^{-1} \sum_{m=1}^{\infty} \Big(\sum_{n=1}^{\infty} \lambda_n^2 |\langle x_m, f_n \rangle|^2 \Big)^{1/2} \\ &= (\sqrt{3}A)^{-1} \sum_{m=1}^{\infty} \|Tx_m\|. \end{split}$$

This proves the inclusion $\mathfrak{S}_2(H_1, H_2) \subset \Pi_1(H_1, H_2)$. Finally, let p > 1 and let $q = p(p-1)^{-1}$. Then

$$\left(\sum_{m=1}^{\infty} |c_m|^p\right)^{1/p} = \sup_{\sum_{m=1}^{\infty} |t_m|^q = 1} \sum_{m=1}^{\infty} |t_m c_m|.$$

Since inequality (1) is established already for p = 1, we get

$$\begin{split} \left(\sum_{m=1}^{\infty} \|Tx_m\|^p\right)^{1/p} &= \sup_{\substack{m \geq 1 \\ m=1}} \sum_{t_m|q_{-1}}^{\infty} \|Tt_m x_m\| \\ &\leqslant \sqrt{3} A \sup_{\substack{m \geq 1 \\ m=1}} \sup_{t_m|q_{-1}|} \sum_{m=1}^{\infty} |\langle t_m x_m, a \rangle| \\ &= \sqrt{3} A \sup_{\|a\|=1} \sup_{\substack{m \geq 1 \\ m=1}} \sum_{t_m|q_{-1}|}^{\infty} |t_m \langle x_m, a \rangle| \\ &= \sqrt{3} A \sup_{\|a\|=1} \left(\sum_{m=1}^{\infty} |\langle x_m, a \rangle|^p\right)^{1/p}. \end{split}$$

This completes the proof.

STUDIA MATHEMATICA, T. XXVIII. (1967)

References

- [1] И. Ц. Гохберг и М. Г. Крейн, Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве, Москва 1965.
- [2] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletim Soc. Mat. São Paulo 8 (1956), p. 1-79.
- [3] A. Pełczyński et W. Szlenk, Sur l'injection naturelle de l'espace (l) dans l'espace (lp), Colloquium Mathematicum 10 (1963), p. 313-323.
- [4] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Mathematica 28, (1967), p. 333-353.
 - [5] Nukleare lokalkonvexe Räume, Berlin 1965.
 - [6] F. Riesz et B. Sz-Nagy, Lecons d'analyse fonctionnelle, Budapest 1953.
 - [7] A. Zygmund, Trigonometric series, Volume I, Cambridge 1959.

Reçu par la Rédaction le 7. 10. 1966

Supplement to my paper "On the convergence of superpositions of a sequence of operators"*

by

M. REICHAW (Haifa)

The author is grateful to M. David for noting that Theorem 1 in the above paper remains true without the assumption $S_iS_j=S_j$. The proof (the idea of which is similar to that in the paper, but without using $(\overline{\overline{a}})$ consists in showing by induction relative to k of the following formula:

$$T_n T_{n-1} T_{n-2} \dots T_k - A T_{n-1} T_{n-2} \dots T_k = (T_n - A)(T_{n-1} - S_{n-1}) \dots (T_k - S_k)$$

starting with $k = n - 1$ and going down to $k = 1$ (n fixed).

Since Theorem 1 is used in the next following theorems, these theorems also remain true if one omits in them the assumptions $S_iS_j=S_j$ in Theorem 2 and in the proof of sufficiency in Theorem 3 and $S=S^2$ in Theorems 4 and 5.

Recu par la Rédaction le 17. 10. 1966

^{*} See Studia Mathematica 25 (1965), p. 343-351.