

On operational calculus of germs and the Laplace transform of germs

by

W. KIERAT (Katowice)

1. J. Mikusiński introduced, in the paper [2] and in the book [3], the notion of an operator. As the starting point for his operator theory, the author considers the ring C of continuous functions defined in the interval $[0,\infty)$ under usual addition and convolution as multiplication. From Titchmarsh's theorem on convolution it follows that C is an integral domain and may therefore be embedded in a field M_{∞} . This embedding is analogous to the embedding of the domain of integers in the field of rational numbers. The field M_{∞} will be called the field of Mikusiński's operators.

For the theory of differential equations, it is useful to have the notion of an operator in a finite interval [0, T] (1). We observe that the analogous ring C_T has divisors of zero. In view of Titchmarsh's theorem on convolution, we can characterize the set Z of divisors of zero in the ring C_T [4], and we can embed this ring in the ring M_T of fractions p/q such that q is not a divisor of zero. This ring will be called the *ring of Mikusiński's operators* in a finite interval.

In the paper [5] J. Mikusiński introduced another ring, which will be denoted by C_0 . This ring is an integral domain. The extension of the integral domain C_0 to a fraction field will be denoted by M_0 and the elements of this field will be called *operator germs*.

In this note we shall show some connections between the field M_{∞} and the field M_0 and the ring M_T . In the last section there will be given a characterization of the elements of the field M_0 by means of the Laplace transform.

2. Definitions of rings C, C_T and C_0 . Let C be a ring of continuous functions defined in the interval $[0, \infty)$ under usual addition and con-

⁽¹⁾ In the paper [4], C_T is a ring of continuous functions in an interval [0, T). In this note C_T denotes a ring of continuous functions in an interval [0, T]. Antosik [1] showed that the ring of fractions formed by rings of continuous functions in the closed interval [0, T] and the open interval [0, T) are isomorphic.

volution regarded as multiplication. Each of the following sets: I_{∞} — the set consisting of the single function $f(t) \equiv 0$, I_T — the set of functions vanishing in a given common interval [0,T], I_0 — the set of functions such that each of them is equal to zero in some interval $[0,\alpha]$ (depending on the function) is an ideal in the ring C.

From Titchmarsh's theorem it follows that I_{∞} and I_0 are prime ideals. The quotient ring C/I_T is isomorphic to the ring C_T . The quotient ring C/I_0 will be called the ring of function germs and denoted by C_0 (see [5]). The quotient ring C/I_{∞} is identical with the ring C. The rings C and C_0 can be extended to fields M_{∞} and M_0 .

3. The set of operators M_{∞}^+ . For every function $f \in C$ we can find a number α which is the endpoint of the longest interval in which the function f is equal to zero. Let the numbers α , β , α_1 and β_1 correspond in this sense to the functions a, b, a_1 and b_1 . If two pairs a/b and a_1/b_1 determine the same operator $p \in M_{\infty}$, then it follows from Titchmarsh's theorem that $a-\beta=\alpha_1-\beta_1=\gamma$. The number γ will be called the *characteristic number* of the operator p. From well-known properties of convolution it follows that

$$\gamma_{pq} = \gamma_p + \gamma_q,$$

where γ_{pq} is the characteristic number of the operator pq, γ_p is the characteristic number of the operator p and γ_q is the characteristic number of the operator q. In addition, from another property of convolution it follows that

(ii)
$$\gamma_{p\pm q} \geqslant \min(\gamma_p, \gamma_q),$$

where $\gamma_{p\pm q}$ denotes the characteristic number of the operator $p\pm q$.

Let M_{∞}^+ denote the set of operators $p \in M_{\infty}$ whose characteristic numbers are non-negative. From (i) and (ii) it follows that M_{∞}^+ is a ring if we adopt the same operations as in M_{∞} . Let J_T denote the set of operators $p \in M_{\infty}^+$ such that $\gamma_p \geqslant T$. From (i) and (ii) we may conclude that J_T is an ideal in the ring M_{∞}^+ . We shall prove the following

Proposition 1. The quotient ring M_{∞}^{+}/J_{T} of elements \overline{p} is isomorphic to the ring M_{T} of operators in the interval [0, T].

Proof. Let p and q belong to a class \overline{p} of equivalent elements of the ring M_{∞}^+/J_T . Furthermore, let γ_p and γ_q denote the characteristic numbers of operators p and q. We take representations p=a/b and q=c/d such that a is equal to zero in the interval $[0,\gamma_p]$ and c is equal to zero in the interval $[0,\gamma_q]$. Here b and d are not equal to zero in any right-hand neighbourhood of the origin. Since the operators p and q belong to the class \overline{p} of the quotient ring M_{∞}^+/J_T , we have $(ad-bc)/bd\epsilon J_T$. The function bd is not equal to zero in any right-hand neighbourhood of the origin.

Hence, $(ad-bc) \epsilon I_T$. This implies that a/b and c/d determine the same element $p \epsilon M_T$. Similarly, we can show that if the pairs a/b and c/d determine the same element p of the ring M_T , then the operators a/b and c/d belong to the same class of the quotient ring M_{∞}^+/J_T . Hence the theorem.

Each element \overline{p} of the ring M_{∞}^+/J_T is a class of equivalent elements $p \in M_{\infty}^+$. If the operators p and q are equivalent, $\gamma_p < T$ and $\gamma_q < T$, then $\gamma_p = \gamma_q$. Conversely, if the characteristic numbers γ_p and γ_q of the operators p and q are not equal, $\gamma_p < T$ and $\gamma_q < T$, then p and q are not equivalent. Hence, the elements p and q determining $\overline{p} \neq J_T$ have the same characteristic numbers. The number $\gamma_{\overline{p}}$, which is the same for all the operators determining the element \overline{p} , will be called the *characteristic number of the element* \overline{p} . In the case of $\overline{p} = J_T$, we shall take $\gamma_{J_T} = T$ as the characteristic number.

If we restrict ourselves to the representation of operators $p \in M_{\infty}^+$ in the form p = a/b, where b is not equal to zero in any right-hand neighbourhood of point zero, then the ring M_{∞}^+/J_T is identical to the ring M_T . Throughout our discussion we shall take only such representations.

4. The quotient ring M_T/J_0 . From (i) and (ii) it follows that the set J_0 of elements $\overline{p} \, \epsilon M_T$ such that $\gamma_{\overline{p}} > 0$ is an ideal in M_T . Hence M_T/J_0 is a field.

PROPOSITION 2. The field M_T/J_0 is isomorphic to the field M_0 . Proof. See [5].

The above discussion can be recapitulated as follows:

The ring M_{∞}^+ is homomorphic to the ring M_T with the kernel J_T . The ring M_T is homomorphic to the field M_0 with the kernel J_0 .

5. Laplace transform of operator germs. Some functions $f \in C$ have their Laplace transform but not all. Nevertheless, we shall show that, in some way, it is possible to define the Laplace transform for every element of the field M_0 . In order to show this, we shall define a ring A and an ideal I_A in A. We shall prove that the quotient ring A/I_A is an integral domain and that we can extend it to a fraction field M^* . The fraction field M^* s isomorphic to the field M_0 .

Definition of the ring A. Let A be a set of functions defined in the interval $[0, \infty)$, locally square integrable and such that $\int_{0}^{\infty} |f(t)|^{2} e^{-2\gamma t} < \infty$ for some γ .

We shall show that A is a ring under usual addition and convolution regarded as multiplication. It is easy to show that the sum f_1+f_2 of functions $f_1 \in A$ and $f_2 \in A$ belongs to A. Moreover, we shall show that the convolution $f_1 * f_2$ of functions f_1 and f_2 , belonging to A, is an element of A.

The functions f_1 and f_2 are locally integrable; therefore their convolution f_1*f_2 is also a locally integrable function (see [6]). In order to prove that f_1*f_2 belongs to A it suffices to show that there exists a number γ such that the integral $\int \int |\int f_1(t-\tau)f_2(\tau)\,d\tau|^2 e^{-2\gamma t}dt$ is finite.

Let the functions f_1 and f_2 belong to A. Then there exist numbers γ_1 and γ_2 such that

$$\int\limits_0^\infty |f_1(t)|^2 e^{-2\gamma_1 t} dt = K_1 \quad ext{ and } \quad \int\limits_0^\infty |f_2(t)|^2 e^{-2\gamma_2 t} dt = K_2.$$

Now we shall show that, for arbitrary $\varepsilon > 0$, the integral

$$\int\limits_0^\infty \left| \int\limits_0^t f_1(t-\tau) f_2(\tau) \, d\tau \right|^2 e^{-2\gamma t} dt$$

where $\gamma = \gamma_0 + \varepsilon$ and $\gamma_0 = \max(\gamma_1, \gamma_2)$, is finite. Indeed,

142

$$\begin{split} \int\limits_0^\infty \Big| \int\limits_0^t f_1(t-\tau) f_2(\tau) \, d\tau \Big|^2 e^{-2(\gamma_0+s)t} dt \\ &\leqslant \int\limits_0^\infty e^{-2st} \Big| \int\limits_0^t f_1(t-\tau) e^{-\gamma_0(t-\tau)} f_2(\tau) \, e^{-\gamma_0\tau} d\tau \Big|^2 dt \\ &\leqslant \int\limits_0^\infty e^{-2st} \Big(\int\limits_0^t |f_1(t-\tau) e^{-\gamma_0(t-\tau)}|^2 \, d\tau \cdot \int\limits_0^t |f_2(\tau) \, e^{-\gamma_0\tau}|^2 d\tau \Big) dt \\ &\leqslant \int\limits_0^\infty K_1 K_2 e^{-2st} dt \, . \end{split}$$

Each function f of the set A has its Laplace transform F(s) $=\int\limits_{-\infty}^{\infty}e^{-st}f(t)\,dt,$ which is an analytic function in the half-plane res $>\gamma$ and is such that

$$(iii) \qquad \qquad \int\limits_{-\infty}^{\infty} |F(x+iy)|^2 \, dy < \infty \quad \text{ for } \quad x > \gamma \, .$$

Conversely, every analytic function in a certain half-plane res $> \gamma$, satisfying condition (iii) is the Laplace transform of a function $f \epsilon A$ (see [7]). It is possible to use the following symbolic notation: $\mathcal{L}(A) = \tilde{A}$. The Laplace transform maps the ring A onto the isomorphic ring A with usual addition and multiplication. The subset I_A of functions $f \in A$ such that each of them vanishes almost everywhere in some right-hand neighbourhood of the origin is an ideal in the ring A. In view of

Titchmarsh's theorem mentioned above I_A is a prime ideal in the ring A. Hence, the quotient ring A/I_A is an integral domain.

Let \tilde{I}_A denote the set of Laplace transforms of functions of the ideal I_A . From a well-known property of the Laplace transform it follows that the function $F \in \tilde{A}$ belongs to \tilde{I}_A if and only if $\lim e^{ax} F(x+iy) = 0$ for some a>0. Hence it follows that \tilde{I}_A is an ideal in the ring A. We observe that the quotient ring A/I_A is isomorphic to the quotient ring \tilde{A}/\tilde{I}_A . The ring A/I_A generates the field M^* . Hence it follows that the quotient ring \tilde{A}/\tilde{I}_A generates the field \tilde{M}^* , which is isomorphic to the field M_0 . Elements of the field \tilde{M}^* can be taken as Laplace transforms of elements of the field M_0 .

References

[1] P. Antosik, Ob usomophusme neromopux roney onepamopos, Studia Math. 25 (1965), p. 227-230 (Russian).

[2] J. Mikusiński, Sur les fondements du calcul opératoire, ibidem 11 (1950), p. 41-70.

[3] - Rachunek operatorów, Warszawa 1957.

[4] - Le calcul opérationnel d'intervalle fini, Studia Math. 15 (1956), p. 225-251.

[5] - Germs and their operational calculus, ibidem.

[6] - and C. Ryll-Nardzewski, Sur le produit de composition, ibidem 12 (1951), p. 52-57.

[7] R. A. C. Paley and N. Wiener, Fourier transform in the complex domain, Russian translation, Moscow 1964.

Recu par la Rédaction le 17. 12. 1965