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I. Introduction. Let F(z) be a function defined on I == [0,1] and
taking on values in a real or complex Banach space Y. One says that F
is strongly differentiable at @ in (0, 1) and has strong derivative F' (z), if

F h)y—F
T h)—F)

1

= F'(z).
Limn n (@)

One says that F is weakly differentiable at % in (0, 1) if there is a vector
wl (x), which one calls the weak derivative of F at s, such that

lim y*(F (a4 h))—y*(F (x))

Ti->0 h

= y*{wF (2))

for all y*e ¥*, where ¥* is the Banach space of continuous linear functio-
nals on Y. If there is a vector-valued function pF" () defined on a meas-
urable B < (0,1) such that for each y*<Y*,

tig ¥ @ ) —y* (F (@)
R0 v,h

= y*(pF' (v))

for almost every @B, one says ([6], p. 300) that ¥ has a pseudo-derivative
on H (is pseudo-differentiable on H), and calls pF'(z) a pseudo-derivative
of F on E.

Clearly F'(») and wF' () are unique. Also, if F is strongly differen-
tiable a.e. on E < (0, 1), then F is weakly differentiable a.e. on H, and
if ¥ is weakly differentiable a.e. on H, then F is pseudo-differentiable
on EB.

In general, two pseudo-derivatives of F' need not be a.e. equal (see
below). However, if ¥ has a countable determining set, i.e., countable
set 4 < ¥* such that

Iyl = sup ly*(»)|
yred
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for all ye¥, then we shall show that any two pseudo-derivatives of ¥
must be a.e. equal. One can show as a result of this theorem that, in partic-
ular, the space B of bounded, real-valued functions on I has no countable
determining set (see below). We recall ([5], p. 34) that if ¥ is separable,
then Y and Y™ have countable determining sets. Thus, in particular,
L, (I) and BV (I) ([3], p- 289 and 265) are ¥’s in which two pseudo-deri-
vatives of I can differ on at most a set of measure zero.

One says that F is AC* on I if, given ¢ > 0, there is an 5 = #(¢) > 0
such that if {I; = [0y, b;]} is a finite, non-overlapping sequence of sub-
intervals such that Y'(bi—a;) <7, then J3[F(b)—F(a)| < e Bven
if Fig AC* (in fact, Lipschitzian) and Y* is separable, we have no guarantee
that pF’(2) exists on I (see below) although, as Clarkson has shown [2],
F'(z) exists a.e. if ¥ is uniformly convex. We shall show that an arbitrary
F taking on values in a ¥ with countable determining set and satisfying
a certain local pseudo-differentiability condition must have a pseudo-
derivative on I.

II. Uniqueness and existence of derivatives. In general, two pseudo-
derivatives of F need not agree a.e., and a pseudo-derivative of I need
not be measurable. For example, let ¥ = B, £ = I be non-measurable
and nowhere dense. Define

Xy if .’EG.E,
o it wem.

Then f(z) is integrable in the Graves sense [4] to zero. Since a Graves
infegral is a Birkhoff integral ([1], p. 375), and hence a Pettis integral
([6], p. 281), f(=) is & pseudo-derivative of the function which is identically
zero ([6], p. 300). But so is g(») = 0. Moreover f(x) and g(x) are clearly
not equal a.e., and f(z) is not measurable.

However, we have

1. THEOREM. If ¥ has a countable determining set, then two pseudo-
derivatives of F' can differ on at most a set of measure zero.

Proof. Let {yf} = ¥* be a countable determining set, § a set on
which pF'(x) exists, and

f(@)

H; = {-70: zeS and [yf(F)] (») ;éq/;?(plﬂ'(m))},

Let H = (JH;. Then |H| = 0. Suppose ¢(») is also a pseudo-deriv-
ative of ¥ and

By = {o: we8 and [y} (F)] (2) # v} (7).
Let K = (JK;. Then |K| =0. Let E =H v K and zeS—J. Then

vE (pF" () = yi(g (@)

icm
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for all 4. Thus
lpF* (@) —g(2)ll = sgp[y;!‘ (pF" (@) —g(@))] = 0.

Thus we have a necessary condition for ¥ to have a countable deter-
mining set. In particular, B does not have a countable determining set.

Even if Y* ig separable and F is Lipschitzian, we have no guarantee
that pF’ () exists on I; in fact, pF’ () need exist on no subset of I of
positive measure.

For example, let ¢, = the space of real null sequences. Then it is
well known that I; = the space of sequences {a;} such that }|a;] < oo
is ¢f. It is well known that I, is separable. We consider the following func-
tion (Clarkson [2] has remarked that the function we shall construct
fails to have strong or weak derivative on a set of positive measure):

We define a sequence {p,(z)} of functions on I as follows:

20 it 0,
@1 (@) =
T

2(1—m) if i< 1;
extend ¢, by periodicity to all of (—oo, +-o0);

_ e a)
Pal2) = T

for n = 2,3, ... Define
f(@) = {pi(2)}.

Clearly f(z)ec, for all zel. Moreover, f(z) is clearly Lipschitzian
on I. Suppose that f is pseudo-derivable on B < I. Consider the following
family of members of ¥™: define

y?(“n coey Giy Qg cel) = a4

(Clearly y¥e¥* for all 4.) Then [yf(f)] (%) = @i(2) a.e. on E. But, then,
of (&) = {2e(®)} a.e. on B, where g(z) = 4 1. Since 2¢/(z)+ 0, this
sequence ig not in ¢,. Thus pF’ (¢) does not exist on B.

However, a local pseudo-differentiability condition is sufficient to
insure pseudo-differentiability on I. By a portion of a set E we mean
a set of the form I' ~ F, where I’ is an open interval.

Definition. We say that I is restrictedly pseudo-differentiable (rpd)
on I if, given any closed set B < I, there is a portion P of F such that F
is pseudo-differentiable on P.

2. THEOREM. If Y has a countable determining set, and if F is rpd
on I, then pF' () exists on L.

Proof. Let # be the family of open subintervals of I on which pF'(x)
exists. Then clearly # = @. Suppose & does not cover I. Then we can
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agsume # = {I,,} without affecting the set of points covered by #. Now,
it B={U L), then I is closed. Moreover I ~ I # @.

Suppose B ~ I has an isolated point @,. Then there is an open in-
terval I' = I such that mgel’ and I' A B— {w} = @. Leb Gy(x) = B (m)
on I,, and

By = {@: @cly ~ I, and Gu(2) # G (2)}.

Then, by Theorem 1, |Hyn| =0 for all m and n. Define
Golx) it @welpy—J Ty,
0 it we(U L) v (U,E‘mn).

Then, clearly G(z) = pF'(#) on I'. Bub 1I' ~ B + @, a contradiction.

Now suppose B ~ I has no isolated point. Then there iz an open
I' < I such that pF' (2) exists on P =I' ~ B 5 @. Let Gp(z) = pF' (o)
on P. Let H = B o (U Em). Define

G(z) =

Gu(z) it wel,—H,
G(x) = {Gp(p) if weP,
0 otherwise.

Then, clearly G(z) = p¥' (x) on I'. Hence I'eF. But I ~ I +0,
a contradiction. Thus & covers I. Define

Gu(z) i welp— (U Bn
fla) = Lo (U T,
0 otherwise.

Then f is well-defined and pF' () = f(w) on I.
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The Stone-Cech operator
and its associated functionals

by

JOSEPH B. DEEDS (Baton Rouge)

1.1. Totroduction. The object of this work is to provide a realization
of a certain Hilbert space of vector-valued sequences and to show how
the structure obtained applies to a class of functionals on the space & (H).
We use the symbol H to denote a separable Hilbert space, & (H) o denote
the space of bounded linear transformations thereon, and m to denote
the space of bounded complex-valued sequences.

1.1.1. Definition. A generalized limit is a bounded linear functional
L on m which preserves the ordinary notion of convergence. That is,
if lim (a,) = @, then L((an)) = @

Generalized limits may be characterized as those continuous fune-
tionals which satisfy

1) a, >0 for all n implies L{(a,)) > 0.

2) L((1)) =1, where (1) =(1,1,1,...).

3) If a, = by, for n =K, then L((as) = L{(Bn)-

A stronger requirement than 3) is the translation imvariant property:

4) L((ang)) = I((aw)),
which we will assume only in special cases. The existence of generalized
limits satisfying 1)-4) was proved by Banach [1].

1.2. Extensions and measures. It is well known that each completely
regular topological space X possesses a Stone-Uech compactification 8X
with the property that X is densely embeddable in AX and every con-
tinuous function f mapping X into a ecompact space S possesses a con-
tinuous extension f°: BX — 8. In particular, each bounded continuous
complex-valued function has such an extension, and the correspondence
f —f% is an isometric isomorphism between Op(X) and C(BX). Applying
this to m (where the integers N are given the discrete topology), we see
that m is isomorphic to O (BN), that each sequence (@) e m has a continuous
extension of defined in AN, and that

sup la,| = supla’ (?)].
neN 1efN
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