References

- [1] A. Albrycht and W. Orlicz, A note on modular spaces II, Bull. Acad. Pol. Sci. 10 (1962), p. 99-106.
 - [2] A note on modular spaces III, ibidem 10 (1962), p. 153-157.
- [3] R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), p. 337-352.
- [4] W. M. Bogdanowicz, Integral representation of linear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space, Proc. Nat. Acad. Sci. U. S. A. 54 (1965), p. 351-353.
- [5] S. Bochner, Additive set functions on groups, Ann. of Math. 40 (1939), p. 769-799.
- [6] S. Bochner and R. S. Phillips, Additive set functions and vector lattices, ibidem 42 (1941), p. 316-324.
- [7] S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly valued functions, ibidem 39 (1938), p. 913-944.
- [8] L. E. Dubins and L. J. Savage, How to gamble if you must, New York
- [9] N. Dunford and J. T. Schwartz, Linear operators, Part I, New York 1958.
 - [10] J. L. Kelley, General topology, Princeton 1955.
- [11] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces (Translation), Groningen 1961.
- [12] K. Krickeberg and C. Pauc, Martingales et dérivation, Bull. Soc. Math. France 91 (1965), p. 455-544.
- [13] S. Leader, The theory of L^p-spaces for finitely additive set functions, Ann. of Math. 58 (1953), p. 528-543.
 - [14] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft 1955.
- [15] M. Morse and W. Transue, Functionals Γ bilinear over the product of two pseudo-normed vector spaces, II. Admissible spaces A, Ann. of Math. 51 (1950), p. 576-614.
- [16] R. A. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), p. 108-136.
 - [17] On linear transformations, Trans. Amer. Math. Soc. 2 (1940), p. 516-541.
- [18] M. M. Rao, Linear functionals on Orlicz spaces, Nieuw Arch. Wisk. 12 (1964), p. 77-98.
 - [19] Linear functionals on Orlicz spaces (II), to appear.
- [20] Decomposition of vector measures, Proc. Nat. Acad. Sci. U. S. A. 51 (1964), p. 771-774.
- [21] J. J. Uhl, Jr., Orlicz spaces of finitely additive set functions, linear operators, and martingales, Bull. Am. Math. Soc. 73, in print.
 - [22] G. Weiss, A note on Orlicz spaces, Portugaliae Math. 15 (1956), p. 35-47.
 - [23] K. Yosida, Functional analysis, Berlin 1965.
 - [24] A. C. Zaanen, Linear analysis, Amsterdam 1953.

CARNEGIE INSTITUTE OF TECHNOLOGY PITTSBURG, PENNSYLVANIA, U.S.A.

Reçu par la Rédaction le 28. 8. 1966

The spectrum of an infinite product measure

b

R. KAUFMAN (Urbana, Ill.)

The infinite product of certain probability measures on compact abelian groups was discussed by Varopoulus [4]; the measures he considered are included in the present description. We are mainly interested in showing how the orthogonality criterion of Kakutani [1] may be used in place of the almost-everywhere-convergence calculations of [4]. Besides this we give some elementary facts which aid in constructing examples in the harmonic analysis of measure algebras.

0. Let G_1, G_2, G_3, \ldots be compact abelian groups $\neq 0$, e_n the unit measure at 0 in G_n , m_n the normalized Haar measure of G_n . Let $0 < a_n < 1$ for $1 \leq n$ and $\mu_n = a_n e_n + (1 - a_n) m_n$. Finally,

$$G = \prod_{1}^{\infty} G_n, \quad \mu = \prod_{1}^{\infty} \mu_n.$$

THEOREM 1. The Fourier transform $\hat{\mu}$ vanishes at infinity in $\Gamma = \hat{G}$, if and only if $a_n \to 0$ (Varopoulos [4], p. 3806).

THEOREM 2. The measure μ , as an element of the complex Banach algebra M(G), has purely real spectrum if and only if

(i)
$$\sum_{a_n>1/2} (1-a_n) < \infty$$
.

(ii) For some integer $k \geqslant 1$, $\sum_{a_n \leqslant 1/2} a_n^k < \infty$.

1. The proofs are divided into one paragraph for the first theorem, and two for the second.

Proof of Theorem 1. It is well-known that a continuous character of G is composed in an obvious way from a *finite* number of characters $\gamma_1, \gamma_2, \ldots, \gamma_s$ on G_1, G_2, \ldots, G_s respectively, and that $\hat{\mu}$ takes the value $\prod_{i=1}^{s} \hat{\mu}(\gamma_s)$ on the composite character. This degenerates to $\Pi'a_n, \Pi'$ being the product over non-trivial components γ_n . It is clear that if

$$a < \limsup |a_n| < b,$$

icm[©]

then $|\hat{\mu}(\gamma)| < b$, $\gamma \in \Gamma$, with a finite exceptional set, and $|\hat{\mu}(\gamma)| > a$ in an infinite subset of Γ . Γ being discrete, the theorem is proved.

Proof of Theorem 2. We begin by proving that μ^k and μ^{k+1} have purely real spectrum. In any case we require the formula

$$\mu_n^k = a_n^k e_n + (1 - a_n^k) m_n, \quad 1 \leq n, 1 \leq k.$$

Write $\lambda_n = e_n$ if $a_n > \frac{1}{2}$, $\lambda_n = m_n$ if $a_n \leqslant \frac{1}{2}$. Then, for $1 \leqslant p$,

$$\left\| \prod_{1}^{p} \mu_{n}^{k} \prod_{p+1}^{\infty} \lambda_{n} - \prod_{1}^{p+2} \mu_{n}^{k} \prod_{p+2}^{\infty} \lambda_{n} \right\| = \|\lambda_{p+1} - \mu_{p+1}^{k}\|.$$

When $a_p > \frac{1}{2}$, the last norm $\leq (1 - a_p^k) \leq k(1 - a_p)$; when $a_p \leq \frac{1}{2}$, it is $\leq a_p^k$. We see then that $\prod_{1}^p \mu_n^k \prod_{p+1}^m \lambda_n$ converges in norm to $\prod_{1}^\infty \mu_n^k = \mu^k$. Exactly the same argument holds for μ^{k+1} . Multiplying out the products $\prod_{p}^p \mu_n^k \prod_{p+1}^\infty \lambda_n$, we obtain a convex combination of idempotents. The proof is easily completed from the elementary properties of the Gelfand transform ([2], Chapter 3).

Proof of Theorem 2b.

LEMMA. If a probability measure μ in G has only mutually singular powers, its spectrum in M(G) contains the complex unit circle.

This is a very slight variation of one in [3], p. 107. For $|z|>1,\,e$ the identity,

$$(ze-\mu)^{-1} = \sum_{k=0}^{\infty} \mu^{k} z^{-k-1}.$$

The powers of μ being singular,

$$||(ze-\mu)^{-1}|| = \sum_{0}^{\infty} |z|^{-k-1}.$$

The inverse is thus unbounded near $\{|z|=1\}$ so that $ze-\mu$ is singular for |z|=1, [2].

A class of functions. We shall require some properties of functions f(x, u) defined for integers $k > l \ge 1, \frac{1}{2} \ge u \ge 0, 1 > x > 0$. Write

$$f(x, u) = (1 - u)(1 - x^k)^{1/2}(1 - x^l)^{1/2} + (u(1 - x^k) + x^k)^{1/2}(u(1 - x^l) + x^l)^{1/2}.$$

The properties required are not difficult to verify:

$$0 \leqslant f(x, u) < 1,$$

$$\frac{\partial f}{\partial u} > 0,$$

(3)
$$f\left(x, \frac{1}{2}\right) = 1 - \frac{1}{8}x^{2l} + o(x^{2l})$$
 as $x \to 0$,

(4)
$$f\left(x, \frac{1}{2}\right) = 1 + \left[\frac{1}{2}(kl)^{1/2} - \frac{1}{4}(k+l)\right](1-x) + o(1-x)$$
 as $x \to 1$.

61

Kakutani's criterion. We now state for later reference a part of Kakutani's theorem on orthogonality of infinite product measures ([4], p. 221). In somewhat imprecise terms, we consider probability measures P_n and Q_n on a space Ω_n , $n=1,2,3,\ldots$ Supposing that Q_n is absolutely continuous with respect to P_n , we write

$$\varrho(P_n, Q_n) = \int \left(\frac{dQ_n}{dP_n}\right)^{1/2} dP_n, \quad 1 \leqslant n,$$

Then, writing

$$P = \prod_{n=1}^{\infty} Q_n, \quad Q = \prod_{n=1}^{\infty} Q_n,$$

Q and P are singular unless $\sum_{n=1}^{\infty} [1 - \varrho(P_n, Q_n)] < \infty$.

Completion of the proof. We apply the criterion just stated with $P_n = \mu_n^k, Q_n = \mu_n^l, \Omega_n = G_n$. Here we assume, on account of the lemma at the beginning of this paragraph, that μ^l and μ^k are not totally singular for certain integers $k > l \geqslant 1$.

Let us write $1/\lambda_n$ for the number of elements in G_n , so that $0 \leqslant \lambda_n \leqslant \frac{1}{2}$. The parts of the measures μ_n^k and μ_n^l which are concentrated in $\{0\}$, or concentrated in its complement $G_n \sim \{0\}$, are respectively proportional. The numerical masses assigned are

$$a_n^k + \lambda_n (1 - a_n^k)$$
 and $a_n^l + \lambda_n (1 - a_n^l)$ (in $\{0\}$), $(1 - \lambda_n) (1 - a_n^k)$ and $(1 - \lambda_n) (1 - a_n^l)$ (in $G_n \sim \{0\}$),

whence $\varrho(\mu_n^k, \mu_n^l) = f(a_n, \lambda_n) \leqslant f(a_n, \frac{1}{2})$, by (2). By Kakutani's theorem, $f(a_n, \frac{1}{2}) \to 1$, so that $\{a_n\}$ can accumulate only at 0 or 1, by (1). The convergence of the sums

$$\sum_{a_n>1/2} (1-a_n) \quad \text{and} \quad \sum_{a_n\leqslant 1/2} a_n^{2l}$$

is assured by (3) and (4), so that the necessity of the conditions in Theorem 2 is proved. In regard to the work of Varopoulos, this contains the theorem on p. 3807.

References

- [1] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (49) 1948, p. 214-224.
 - [2] C. E. Rickart, Banach algebras, Princeton 1960.
 - [3] W. Rudin, Fourier analysis on groups, New York 1962.
- [4] N. Varopoulos, Sur les mesures de Radon d'un groupe localement compact abelien, C. R. Paris 258 (1964), p. 3805-3808.

Reçu par la Rédaction le 21. 9. 1966

On certain actions of semi-groups on L-spaces*

by

I. NAMIOKA (Seattle)

§ 0. Introduction. Given a semi-group S of continuous linear transformations of E into itself and an element x of E, one can ask (a) whether the closed convex hull of the orbit of x contains a common fixed point under S and (b) whether such a fixed point is unique. The answer to (a) is affirmative if the closed convex hull of the orbit of x is compact and the semi-group S is left amenable (see [2]). In order to answer (b) affirmatively, usually one assumes, among others, that S be both left and right amenable (see for example [3]). In the present paper we shall study a situation in which the left amenability of S is sufficient to conclude (b) affirmatively. More specifically, we shall postulate a certain (right) action of a semi-group S on C(X), where X is a compact Hausdorff space, and we shall study the resulting (left) action of S on the dual $C(X)^*$. Throughout the paper, we prefer to speak of abstract M-spaces with units rather than C(X). There are two reasons for this. First, not all M-spaces which arise naturally in this paper (such as $l_{\infty}(S)$, $UC_{l}(S)$ and $C(X)^{**}$) come neatly in the form of C(X). Secondly, whenever possible, we favor order arguments over measure theoretic ones.

The basic facts on vector lattices, M-spaces and L-spaces can be found in [8].

The following is the summary of the contents. In § 1, we introduce the space $UC_l(S)$ of left uniformly continuous functions on a topological semi-group S with separately continuous multiplication, and state basic properties of $UC_l(S)$ needed in the sequel. Section § 2 is devoted to a proposition concerning certain projections in L-spaces. This proposition is crucial for the proof of the main theorem. In § 3, we define an "action" of a topological semi-group S on an M-space with unit, and the main theorem concerning this type of action is established. In § 4, we come back to $UC_l(S)$ where S is a left amenable topological semi-group. The dual $UC_l(S)^*$ is a Banach algebra, and the results of § 3 give some information about the multiplication on $UC_l(S)^*$. Next we introduce a sub-

^{*} The present research was supported by NSF: GP 3902.