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The spectrum of an infinite product measure
by
R. EAUFMAN (Urbana, IIL)

The infinite produet of certain probability measures on compact
abelian groups was discussed by Varopoulus [4]; the measures he con-
sidered are included in the present description. We are mainly interested
in showing how the orthogonality criterion of Kakutani [1] may be used
in place of the almost-everywhere-convergence calculations of [4]. Besides
this we give some elementary facts which aid in constructing examples
in the harmonie analysis of measure algebras.

0. Let G, G, Gy, ... be compact abelian groups ## 0, ¢, the unit
measure at 0 in @, , m,, the normalized Haar measure of §,. Let 0 << @, << 1
for 1 <» and p, = a,6,+(1—a,)m,. Finally,

G=ﬁGn’ #=ﬁﬂn-
1 1

TEEOREM 1. The Fourier tramsform g vanishes at infimity in I' = @,
if and only if a, — 0 (Varopoulos [4], p. 3806).

THEOREM 2. The measure u, as an element of the complex Banach
algebra M (@), has purely real spectrum if and only if

i) 3 (L—an) < oo.

ap>1/2

(ii) For some integer k=1, Y af < oo.

ap<lj2
1. The proofs are divided into one paragraph for the first theorem,
and two for the second.

Proof of Theorem 1. It is well-known that a continuous character
of G is composed in an obvious way from a finite number of characters
Vis Yoy ey Ve ON Gy, Gy, ..., G5 Tespectively, and that z takes the value

8

I1 #(vs) on the composite character. This degenerates to II'ay, II' being
1
the produet over non-trivial components y,. It is clear that if
a < limsupja,] < b,
N-r00
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then | (y)| < b, yel', with a finite exceptional set, and |i(y)| > o in an
infinite subset of I'. I' being discrete, the theorem is proved.

Proof of Theorem 2. We begin by proving that 4" and u*+ have
purely real spectrum. In any case we require the formula

= ale, (1 —adym,, 1<n,1<Ek.

Write 4, = 6, if a, > %, An = my if @, < 4. Then, for 1 < p,

» co P2 el
7 [ Tt [T ] = s
1 s 1 D2

When @, > %, the last norm < (1—a¥) < k(L—ap); when a, < 4,
v e 00

it is < aj. We see then that []ul [T 4, converges in normto [T uf = 4.
1

To4-1

1 P41
Exactly the same argument holds for ", Multiplying out the products

r 0
[T I] 2, We obtain a convex combination of idempotents. The proof

1 P+1
is easily completed from the elementary properties of the Gelfand trans-

form. ([2], Chapter 3).
Proof of Theorem 2b.

Lmyva. If « probability measure p in G has only mutuwally singular
powers, its spectrum in M (@) contains the complex unit circle.

This iy a very slight variation of one in [3], p. 107. For |2| > 1, ¢ the
identity,

o
(26—-/1)*1 — [ulcz-k-l.
2
The powers of x being singular,
l(ze— )l = > je1=*%
0
The inverse is thus unbounded near {|z| = 1} so that ze— u is singular

for fo| =1, [2].

A clas§ of functions. We shall require some properties of functions
J(w, u) defined for integers & >1> L,iz2u>0,1>a2>0 Write

fle, u) = (1—u) (1—~wk)1/2(1—~£vl)1’2+(u(l—m’“)+w")1/2(u(1-m’) -+ )2,
v The properties required are not difficult to verify:
1 ‘ 0 < flw,u) <1,

of
(2 L
) o 0’.

- ©
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(3) f(w,%):l—%w”—{—o(wﬂ) as & —0,

(4) f(w,%)=1+[%(kl)“z—%(k+l)](1—m)+o(1—m) a8 @ 1.

Hakutani’s criterion. We now state for later reference a part of Kaku-
tani’s theorem on orthogonality of infinite product measures ([4], p. 221).
In somewhat imprecise terms, we consider p.l;obability measures P, and
@» on a space £,,n =1,2,3,... Supposing that @, is absolutely con-
tinuous with respect to P,, we write

ai - 1/2
ooy 0) = [ (322) ap, 1<,

Then, writing
P = an Q = an
N=1 N=1

Q and P are singular unless 3 [1— g(Pp, @,)] < oo.
n=1

Completion of the proof. We apply the criterion just stated with
Py o=y, Qn = b, O = G,. Here we assume, on account of the lemma
at the beginning of this paragraph, that y’ and ,uk are not totally singular
for certain integers ¥ > 1> 1.

Let us write 1/4, for the number of elements in &,, so that 0 < 4, < ..
The parts of the measures uf and ul, which are concentrated in {0}, or
concentrated in its complement @, ~ {0}, are respectively proportional.
The numerical masses assigned are i

af+1,(1—af) and a4 A,(1—ak) (in {O}),
(1—4)(1—ay) and (1—A)1—a) (in G, ~{0}),

whence o(uk, pb) = f(@n, &) <Ff(@n, ¥), by (2). By Kakutani’s theorem,
flan, ¥) =1, so that {a,} can accumulate only at 0 or 1, by (1). The con-
vergence of the sums

.
(1—a,) and Z a
ap>1f2 apifz

is assured by (3) and (4), so that the necessity of the conditions in Theo-
rem 2 is proved. In regard to the work of Varopoulos, this contains the
theorem on p. 3807.
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On certain actions of semi-groups on I-spaces*
by

I. NAMIOKA (Seattle)

§ 0. Introduction. Given a semi-group § of continuous linear trans-
formations of F into itself and an element x of F, one can ask (a) whether
the closed convex hull of the orbit of # contains a common fizxed point
under § and (b) whether such a fixed point is unique. The answer to (a)
is affirmative if the closed convex hull of the orbit of # is compact and
the semi-group 8 is left amenable (see [2]). In order to answer (b) affirma-
tively, usually one assumes, among others, that § be both left and right
amenable (see for example [3]). In the present paper we shall study
a situation in which the left amenability of § is sufficient to conclude
(b) affirmatively. More specifically, we shall postulate a certain (right)
action of a semi-group § on 0(X), where X is a compact Hausdorff space,
and we shall study the resulting (left) action of § on the dual C(X)*.
Throughout the paper, we prefer to speak of abstract M-spaces with
units rather than C¢(X). There are two reasons for this. First, not all
M-spaces which arise naturally in this paper (such as 1.(8), UC(8) and
C(X)**) come neatly in the form of ¢(X). Secondly, whenever possible,
we favor order arguments over measure theoretic ones.

The basic facts on vector lattices, M-spaces and L-spaces can be
found in [8].

The following is the summary of the contents. In §1, we introduce
the space UC;(8) of left uniformly continuous functions on a topological
semi-group 8 with separately continuous multiplication, and state basic
properties of UC;(8) needed in the sequel. Section § 2 is devoted to a pro-
position concerning certain projections in IL-spaces. This proposition is
crucial for the proof of the main theorem. In § 3, we define an “action”
of a topological semi-group § on an M-space with unit, and the main
theorem concerning this type of action is established. In §4, we come
back to UC,(S) where § is a left amenable topological semi-group. The
dual UC;(8)* is a Banach algebra, and the results of §3 give some in-
formation about the multiplication on UC;(8)*. Next we introduce a sub-

* The present research was supported by NSF: GP 3902.
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