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1. It is a classical result that if w(z) = u(r, 6) is harmonic in the
open unit sphere |#| <1 in n-dimensional Euclidean space and if

(1.1) fu+(r, 0)df < M < oo for r<1,

|z|=1
then the function « has & non-tangential limit at almost all points on
the surface |#| =1 of the unit sphere.

The natural question whether this result can be extended to a sub-
harmonic function v satisfying condition (1.1) was answered by Little-
wood [2] who showed that for #» = 2, v has a radial limit almost every-
where on |z| = 1. Littlewood’s argument and result extend without
difficulty to # > 2 [3]. On the other hand, simple examples show that
a non-tangential limit may exist almost nowhere for the subharmonic
funtion v, even when v is bounded [4].

In this note we obtain a result on the existence almost everywhere
of non-tangential limits defined in a somewhat different way. Let z<E,
(n > 2). We say that the function »(w), || <1, has a non-langential
limit A at a point 0, |6] =1, in the metric I” (1 <p < oo) if for every
0 < v < =2 we have

= f;n(m)—/u”dw >0 a5 80,

ol ) -
where T, = T5(6, v) is the conical region formed by the points z, || < 1,
whoge distance from f is less than 6, and such that the angle between the
line segment %0 and the radius 06 is less than ». A prerequisite for the
applicability of this definition is that veL?(T,). The ordinary non-tan-
gential limit may be considered as the limiting case p = oo of this defi-
nition (1).

(*) The definition of non-tangential limit in I” used here was suggested by the
work of Calderon and Zygmund [1] on derivatives in I”. The author gratefully ack-
nowledges the guidance of Professor A. Zygmund in the preparation of this paper.
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The main result of this note is
THEOREM 1. Suppose that v(z) = v(r, 0) is subharmonic in |z| < 1,
and that
f vt (r, 0)do

] =1

is uniformly bounded for r < 1. Then the function v has at almost every poing
on |z = 1 a non-tangential limit in the metric LF, provided 1 < p < nf(n—2),
This limil coincides almost everywhere with the (ordinary) radial limit of v,

For n = 2, the p of the theorem may assume any finite value > 1;
but as mentioned above, the result fails for p = co. We note that the
hypothesis of the theorem is satisfied if the function v(z), |#| < 1, ig
subharmonic and bounded from above.

The argument that follows uses much of the technique of Littlewood
[2] for n = 2, and Privaloff [3] for n > 2. Those parts of our proof which,
follow closely [2] or [3] we present in outline only.

2. We use the following notation: « is a point in the n-dimensional
Euclidean space B, (» > 2); the open unit sphere K is the set of all points
@ = (@, @y, ..., ¥n) Such thab 2] = (af L af ... +a2)" < 1; X, the surface
of the unit sphere, is the set |z = 1; 2* = a/|z[* is the conjugate of &
with respect to Zj we use the representation # = (r, 0) where r = |z,
and 0 = &/|z| is a point on X (we also use other representations for n = 2
and n = 3); for ¢ = (v, 0) and & = (p, ¢) in K, s = 1—r (the distance
from % to X), o =1~ g; for v, a function with domain in ,, we may
write equivalently o(z), v(r, 6) ete.; v+ = max(v, 0); |B| is the n-dimen-
sional volume of a region & < #,; |Z}is the area of J; ¢, ¢, ete., are suitably
chosen positive constants, not always the same (even when repeated
in the same expression), and depending upon the parameters indicated.
(However, dependence upon the dimension # will not be indicated. Thus
¢ denotes absolute constants, or constants depending only on %.) Limits
are understood to be finite.

3. Proof of theorem 1. Tet the dimension » (n > 2) and the power p
g p< n[(n—2)) be fized. Assume ag known the bagic result (see [3])
that if » = v(2) = o(r, 0) is subharmonic in K and satisfies the condition

(3.1) , Jorr,00a0 < M <00, <1,
; ;

then

(3.2) V= U—w,

where % is tpe least harmonie majorant of v, and w is a non-negative
superharmonic function. Specifieally, « is the limit as B -» 1 of the Poisson
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integral ugz of the funetion »(R, 0). It is fundamental here that w
is given by

(3.3) ww) = [g(z, HAF (&)
K
where
Iw*~£J} ,
1 —_— =2,
(3.4) g(a, £)={ °g{]‘” o) "7
lo— £~ — af~ e — £, m> 2,

is Green’s function for the unit sphere, and F(£) is & non-negative mass
distribution satisfying the condition

(3.5) [—ignaF(8) < oco.
X

It can be shown [3] that the harmonic function u in (3.2) satisfies
an inequality of the form (3.1) and that consequently u has, at almost
every point 6 on X, an ordinary non-tangential limit 1(8). Also ([2], [3]),
v has at almost every point 6 on X an ordinary radial limit equal to the
same limit 1(6). Thus the theorem will be established upon showing that
the function w in (3.3) has a non-tangential limit in the metric I* equal
to zero at almost every point of 2. '

Without loss of generality, we may replace by zero the masses in
|€] < go << 1, where p, is arbitrarily close to 1; and we may assume that
[ 0dF (&) is arbitrarily small.

b4
For 0¢X and 0 <h <=, let F = E(0,h) denote the sector of K

consisting of those points # of K for which the angle between the radial
segment Ox and the radius 08 is less than A. Then~

®(6,h) = [odF (&)
B

may be congidered as the mass of the open spherieal cap on X with center
0 and angular radius %, induced by the mass distribution odF(£) in E.

Let

D0, h

(DD)(0) = limsup——(ﬁ)-.
>0 K

Given £ > 0, we may assume that the total mass [odF(£) is small
K

enough so that (see [3]) the derived function (D®)(6) is less than ¢ except
on a set of points on X of measure less than &. Choose 6,¢, so that setting
&D(h) = D(6,, h) we have,

. o(h)
(3.6) limsup——- < ¢
heso BT
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Agsume further that there is zero masg on the diameter of K ter-
minating at 6,.

4, Consider the point 6yeZ chosen in Section 3. Let 0 <7y <1,

§p = 1—7y. Let K,(s), 0 < « < 1, denote the sphere with center (ry, 0,)
and radius as,. Let Kﬂ (s,) be the sphere concentric with K,(s,) and having
radios g = }(1+a).

In (3.3) we split K, the domain of integration, into three reglons
Ry, R, and R;. Let I" denote the smaller sector of I whose lateral boun-
dary is formed Dby the rays tangent to the sphere H,(s,). We define R,
to be the complement of I"in the open unit sphere K, R, to be the com-
plement of the sphere Ky(s,) in the gector I', and R, to be the sphere
K4(sy). Thus (3.3) can be written

(4.1) (j4 + [)gte, £ar(e)
Ry Rn Ry

= wy (%) + wa () + w3 (2) .

We will estimate w by estimating separately the w;(w) ({ =1, 2, 3),
with « confined to the sphere K,(s,) and s, — 0. In estimating w, and w,
we follow [2] and [3]. The main novelty here will be the treatment of w,.
Unlike w,; and w,, ws will be found to be small not at individual points,
but on the average only.

For x, £ in the open unit sphere K, let ¥ (0 <y < =) denote the
angle between the radial segments Oz and Of We obtain from (3.4) the
estimates (see [2], [3])

(4.2) oo, & <logli+ —2) (n =),
(4.3) g(#, &) <eso[(s— o)+ "1™ (s <1/2,n >2).

For zin K,(s,) we have s < 2s,. Denote now by b = h(£) (0 <h < x)
the angle between the radius 06, and the radial segment O&. Let 8, < 1/4.

To estimate w, we begin with 1w, . Let well,(8y) and &el,. We obtain,
using (4.3),

g, &) < 0a8poh™™.
Now R, is contained in a region H = {£: &k, ¢,8, < h g =}, Hence

w,(3) < 08, fh- o (£) < ca8y fh‘”d(li(h)

a8y

Integrating by parts and using (3.6), we obtain

(4.4) limsupw,(s) < e a8 30 and weK,(s,).
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We now estimate w,. Let zeK,(s,) and éeR,. We now have (s— o)*-+
+9° > 0,85, 8 < 280, b < ¢.8. Using (4.3) we obtain

Co ©D(0,8,
wa(o) <% [ odP(8) < ou
0 baty 0
It follows from (3.6) that
(4.5) limsupw,(2) <c,e as s, —~>0 and xeK,(8).

5. ].‘mally we estimate w,. Set [z — &| = t. Let ¢ K,(s;) and EeKﬁ(so)
Then s, o, t < 25y; and we obtain from (4.2)

g(m, &) <loglesst™) (n = 2).
From (3.4) we directly obtain ‘ 7
g(z, &) <" (v >2). R
Letting ) ‘ :
log (es2t™? n =29
tz.-—”’ n > 2,

we obtain, since R; = Kz(sy),

(5.0) wy(o) < [ G)AF(E).
Ep(s9)
It follows from Minkowski’s inequality for integrals that
(5.1) I/ w§’(m)dm}””< T[] ewas]"ars.
E,i5) Rg(s0) Ealse)

Fix £eK4(s8). Smce K 2(8) 18 conta,med in the sphere with center £
and radius 2s,, we have

28,
[ s < p:]f G”(t)t”‘ldt.
E4(%0) 0

Thus, for n =2

f @ )ds < flog‘”( )rdt e flog ( )tdt epsE (2);
K 4(8)

(2) If F(£) iz absolutely continuous and F'(£) = 0[ (1—g)~?] then the left
hand side of (5.0) is !

cs? 52 .

u(ﬂ;z)Kf log-t—;tdt =o0(l) f log(c—zg) tdt = o(1)
B(80) 0

and w3 > 0 a8 d — o for # e K, (sp). Thus under this hypothesis it will follow as in the

sequel, that v bas a nontangential limit in the classical sense almost everywhere

In this connection see M. G. Arsove and Alfred Huber, Notices A.M. 8., 634-30,

JApril, 1966, . . R
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and for n.> 2, since p < n/(n—2),

28y
Pyde < |Z| [ #FE-1 G < o, 55PN,
Ka@ﬂ) o0
It follows from (5.1) that (for n > 2)

[ uﬁ(w)dmgcpsﬁ,””““m( [ dlﬂ(g))”.
Ko (80) Kpg(sq)

Since &eKj(sy), we have s < ¢,0, and consequently

(5.2) [ wi@)ae < ca,psi:( [ aMdF(e))”.
Kolso) Kp(%)
For feX, and 0 <y <1, let 2(0) = K denote the conical region
with vertex at 0, with lateral boundary formed by the tangents to the
sphere K,: |2| <7 and with base the smaller spherical cap of K,. Let

(5.3) 1(0) = L) = [ &~"am(s).

2,6)
Then
JI0)d0 <o, [odP(e).
£ b4
(See [5], vol. IL, p. 209, where the proof is for Lebesgue integrals
and » = 2. However the proof is readily adapted to Lebesgue-Stieltjes

integrals and # > 2.) By hypothesis (3.5), I{adF(E) < co. Hence I(6)

is finite for almost all . Suppose that I(6,) is finite. Havi{xg chos?n 7
== 7(a)in (5.3) sufficiently close to 1 so that the sphere K,(s,) is contained
in 2,(6,) for s, sufficiently small, we have

[ am(e) =o(1) as s 0.
Esq)
It follows from (5.2) that
(5.4) j wl(s)dw = o(l) as 8 — 0.
Ka(”o)

6. It is now easy to complete the proof of the theorem. We immediate-
ly deduce from the decomposition (4.1) and the estimates (4.4), (4.B)
and (5.4) that (for ¢ < 1)
(6.1) f w¥ (@) dew < c,e8y,
Ka("o)
provided s, is sufficiently close to zero.
Let T4 be the conical region (of Section 1) with vertex 8,. It is geomet-

rically clear that if the number a in &, (s,) is sufficiently close to 1, and

icm
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A <1 is also sufficiently close to 1, then the family of spheres K,( 8A™),
m =0,1,...,covers Ts. If § is sufficiently small, we now obtain from (6.1)
o] o0
[P (@)dw < Z W (2)dw < ans(élm)" < e, 280™,

7 M0 K@i P ’

Thus

. 1 »
(6.2) limsup—— [P (@)de < c,,e.
80 IT‘;I Ty y

Since & is arbitrarily small, and (6.2) holds on X except for a set of
points on X of measure less than &, it readily follows that there ig a set
8 < Z, having the same measure ag 2, sueh that at all points of § and
tor all p, 1 <p < n/(n—2), w has a non-tangential limit equal to zero
in the metric L”. The theorem is established

7. The conclusion of the theorem is false for ? = nf(n—2). For
7 =2 (and p = oo) this is well known and was mentioned above. A coun-
ter example for that case (see [4]), suitably modified, extends without
difficulty to % > 2. The case n = 3 (and P = 3) is typical and we present
a counter-example for it,

We use spherical coordinates x = {ry6,9), 0 being the longitude
and ¢ the polar angle. For each m = 2,38,..., let 8, denote the system
of 2, =2m*(m?—1) points situated on the spherical surface X,,: |a|
= m = 1—1/m, and having coordinates (Tmy s, @), where' 6; = i /m2,
t=0,1,...,2m*—1, and & = mjm? i =1,2, ..., m—1.

(We may here think of the points of §,, as being uniformly distributed
on X,.) We now place a mass tm = 2™ at each of the points of 8, and
consider the mass distribution F congisting of all the masses for all m.

Now o

[ olF(E) = 3 (1) h i
K

M=
ig finite, and we obtain the subharmonie function

v(@) = — [gla, aAP(£) <0, aeK.
K

Thus » satisfies the hypothesis of Theorem 1. Since 7 — 3,
g(@, &) = lo— &7 — |7 o* — £]72,
and v has a pole of order 1 at each point of § = U 8m. Consequently,
M=2 ’

in the neighborhood of any zeS, v® is not integrable. But every conical
region 7, situated except for its vertex entirely in the open unit sphere X,
containg points of 8. Thus.v® is not integrable over T'; and sb, everywhere
on X, v fails to have a non-tangential limit in the metric I,

IR
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" 8, In the preceding sections we considered functions subharmonic
in a gphere of any number of dimensions. We shall now restrict ourselves
to the case n = 2 and prove a result concerning functions subharmonic
in any domain bounded by a simple closed rectifiable curve. Presumably
the analogue of the theorem that follows holds for any n, but the proof
we give uses conformal mapping and is therefore valid for # = 2 only.

THEOREM 2. Let u(2) be a function subharmonic in a domain D bounded
by a simple closed rectifiable curve C. Suppose that there is a set B on C
of positive measure (length) with the following property: with each poini
%el we can associate an open triangle A = A(z) = D with vertex at 2,
such that w(z) is bowunded from above in A. Then at almost all. points 2B,
the function u(z) has a mon-tangential limit in the metric IP, 1 < p < oo.

We say that «(z) has a non-tangential limit equal to A in the metric
I” at the point ze0 if for every family of homothetic open triangles
4 = D with common vertex #z,, shrinking to 2,, we have

M{ [ 1u(e) =27 dA () = o(1),

where d.A4(z) denotes the element of area in 4. Since ¢ has a tangent
at almost all points of E, it follows that the angle of 4 at 2, may, for
almost all zy¢B, be as close to = as we wish. The present definition is
consistent with the one given in Section 1.

Proof of Theorem 2. The proof resembles an argument from the the-
ory of analytic functions ([5], Vol. IT, p. 199-201) and we may be brief. We
firgt prove the theorem for the special case where D is the unit circle |2 < 1.

Let 2, vary over E. We may assume (perhaps after a denumerable
decomposition) that F is closed; that the triangles 4(z,) are all congruent
and small; that each 4(z,) is symmetric with respect to the radius of D
terminating at #,; and that the upper bound of w(z) in all the A(z,) is
less than a fixed constant. The union of the A(z) suitably extended
inward in D yields a star-shaped domain D, = D with a rectifiable boun-
dary €, o F, such that the function () is bounded from above in D.

Let 2 = &({) be a conformal mapping of the unit circle |¢| < 1 onto
D,, extended so as to be bicontinuous from |¢| <1 onto D, w 0,; and
let u;(£) = w[®({)] = wu(z). The function u,(¢) i3 subharmonic and boun-
_ ded from above for |{| < 1. For a given 6 (0 < 0 < 2r) denote by 4,
members of a family of homothetic open ‘rrla,ngles situated in D, with
common vertex ¢, and shrinking to ¢, By Theorem 1, %, has a non-
tangenmal limit at almost all points ¢” of |¢] = 1. ]'_Tence for almost all
¢° <& ' (H) there is a number 4 = A(e®) such that

(8.1) = [ Q) APAA() 0
' ]ABI 4g . . R
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ag the sides of A, shrink to 0. At almost all points ¢?<® *(H),z = &(f)
is conformal (with the derivative @'({) approaching a non-zero limit
as ¢ approaches ¢ non-tangentially). Also, under @, the sets of measure
zero on |{| = 1 correspond to the sets of measure zero on 0 ([5], Vol. I,
p. 289-295). Using (8.1) and the specified properties of @, we obtain the
conclusion of the theorem for the case where the domain D is the open
unit circle.

Now let .D be any domain bounded by a simple closed rectifiable
curve. Using a conformal mapping of the open unit circle KX onto D and
an argument paralleling the one in the paragraph above, we see that
the theorem holds for D, since it holds for K.
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