

On the boundary behavior in the metric L^p of subharmonic functions

bу

LEO ZIOMEK (Chicago)

1. It is a classical result that if $u(x) = u(r, \theta)$ is harmonic in the open unit sphere |x| < 1 in n-dimensional Euclidean space and if

$$(1.1) \quad \int_{|x|=1} u^+(r,\,\theta) d\theta < M < \infty \quad \text{for} \quad r < 1,$$

then the function u has a non-tangential limit at almost all points on the surface |x| = 1 of the unit sphere.

The natural question whether this result can be extended to a subharmonic function v satisfying condition (1.1) was answered by Littlewood [2] who showed that for n=2, v has a radial limit almost everywhere on |x|=1. Littlewood's argument and result extend without difficulty to n>2 [3]. On the other hand, simple examples show that a non-tangential limit may exist almost nowhere for the subharmonic funtion v, even when v is bounded [4].

In this note we obtain a result on the existence almost everywhere of non-tangential limits defined in a somewhat different way. Let $x \in E_n$ $(n \ge 2)$. We say that the function v(x), |x| < 1, has a non-tangential limit λ at a point θ , $|\theta| = 1$, in the metric L^p $(1 \le p < \infty)$ if for every $0 < v < \pi/2$ we have

$$\frac{1}{|T_{\delta}|} \int_{T_{\delta}} |v(x) - \lambda|^{p} dx \to 0 \quad \text{as} \quad \delta \to 0,$$

where $T_{\delta}=T_{\delta}(\theta,\nu)$ is the conical region formed by the points x,|x|<1, whose distance from θ is less than δ , and such that the angle between the line segment $x\theta$ and the radius $\theta\theta$ is less than ν . A prerequisite for the applicability of this definition is that $v \in L^p(T_{\delta})$. The ordinary non-tangential limit may be considered as the limiting case $p=\infty$ of this definition (1).

Studia Mathematica XXIX.1

⁽¹⁾ The definition of non-tangential limit in L^p used here was suggested by the work of Calderon and Zygmund [1] on derivatives in L^p . The author gratefully acknowledges the guidance of Professor A. Zygmund in the preparation of this paper.

The main result of this note is

Theorem 1. Suppose that $v(x) = v(r, \theta)$ is subharmonic in |x| < 1, and that

$$\int_{|x|=1} v^+(r, \theta) d\theta$$

is uniformly bounded for r < 1. Then the function v has at almost every point on |x| = 1 a non-tangential limit in the metric L^p , provided $1 \le p < n/(n-2)$. This limit coincides almost everywhere with the (ordinary) radial limit of v.

For n=2, the p of the theorem may assume any finite value $\geqslant 1$; but as mentioned above, the result fails for $p=\infty$. We note that the hypothesis of the theorem is satisfied if the function v(x), |x|<1, is subharmonic and bounded from above.

The argument that follows uses much of the technique of Littlewood [2] for n=2, and Privaloff [3] for $n \ge 2$. Those parts of our proof which follow closely [2] or [3] we present in outline only.

- 2. We use the following notation: x is a point in the n-dimensional Euclidean space E_n ($n \ge 2$); the open unit sphere K is the set of all points $x = (x_1, x_2, \ldots, x_n)$ such that $|x| = (x_1^2 + x_2^2 + \ldots + x_n^2)^{1/2} < 1$; Σ , the surface of the unit sphere, is the set |x| = 1; $x^* = x/|x|^2$ is the conjugate of x with respect to Σ ; we use the representation $x = (r, \theta)$ where r = |x|, and $\theta = x/|x|$ is a point on Σ (we also use other representations for n = 2 and n = 3); for $x = (r, \theta)$ and $\xi = (\varrho, \varphi)$ in K, s = 1 r (the distance from x to Σ), $\sigma = 1 \varrho$; for v, a function with domain in E_n , we may write equivalently v(x), $v(r, \theta)$ etc.; $v^+ = \max(v, 0)$; |E| is the n-dimensional volume of a region $E \subset E_n$; $|\Sigma|$ is the area of Σ ; c, c_a etc., are suitably chosen positive constants, not always the same (even when repeated in the same expression), and depending upon the parameters indicated. (However, dependence upon the dimension n will not be indicated. Thus c denotes absolute constants, or constants depending only on n.) Limits are understood to be finite.
- **3. Proof of theorem 1.** Let the dimension $n\ (n\geqslant 2)$ and the power $p\ (1\leqslant p< n/(n-2))$ be fixed. Assume as known the basic result (see [3]) that if $v=v(x)=v(r,\theta)$ is subharmonic in K and satisfies the condition

$$(3.1) \qquad \int\limits_{\Sigma} v^{+}(r,\,\theta)\,d\theta < M < \infty, \quad r < 1,$$

then

$$(3.2) v = u - w,$$

where u is the least harmonic majorant of v, and w is a non-negative superharmonic function. Specifically, u is the limit as $R \to 1$ of the Poisson

integral u_R of the function $v(R, \theta)$. It is fundamental here that w is given by

(3.3)
$$w(x) = \int_{\mathcal{E}} g(x, \xi) dF(\xi)$$

where

$$(3.4) g(x, \xi) = \begin{cases} \log\left\{|x| \frac{|x^* - \xi|}{|x - \xi|}\right\}, & n = 2, \\ |x - \xi|^{2-n} - |x|^{2-n} |x^* - \xi|^{2-n}, & n > 2, \end{cases}$$

is Green's function for the unit sphere, and $F(\xi)$ is a non-negative mass distribution satisfying the condition

$$(3.5) \qquad \int\limits_{\mathbb{K}} (1-|\xi|) dF(\xi) < \infty.$$

It can be shown [3] that the harmonic function u in (3.2) satisfies an inequality of the form (3.1) and that consequently u has, at almost every point θ on Σ , an ordinary non-tangential limit $\lambda(\theta)$. Also ([2], [3]), v has at almost every point θ on Σ an ordinary radial limit equal to the same limit $\lambda(\theta)$. Thus the theorem will be established upon showing that the function w in (3.3) has a non-tangential limit in the metric L^p equal to zero at almost every point of Σ .

Without loss of generality, we may replace by zero the masses in $|\xi| \leq \varrho_0 < 1$, where ϱ_0 is arbitrarily close to 1; and we may assume that $\int \sigma dF(\xi)$ is arbitrarily small.

For $\theta \in \Sigma$ and $0 \le h \le \pi$, let $E = E(\theta, h)$ denote the sector of K consisting of those points x of K for which the angle between the radial segment Ox and the radius $O\theta$ is less than h. Then

$$\Phi(\theta,h) = \int_{E} \sigma dF(\xi)$$

may be considered as the mass of the open spherical cap on Σ with center θ and angular radius h, induced by the mass distribution $\sigma dF(\xi)$ in E. Let

$$(D\Phi)(\theta) = \limsup_{h \to 0} \frac{\Phi(\theta, h)}{h^{n-1}}.$$

Given $\varepsilon > 0$, we may assume that the total mass $\int_{\mathcal{K}} \sigma dF(\xi)$ is small enough so that (see [3]) the derived function $(D\Phi)(\theta)$ is less than ε except on a set of points on Σ of measure less than ε . Choose $\theta_0 \varepsilon \Sigma$, so that setting $\Phi(h) = \Phi(\theta_0, h)$ we have,

(3.6)
$$\limsup_{h \to 0} \frac{\Phi(h)}{h^{n-1}} < \varepsilon.$$

Subharmonic functions

101

Assume further that there is zero mass on the diameter of K terminating at θ_0 .

4. Consider the point $\theta_0 \in \Sigma$ chosen in Section 3. Let $0 < r_0 < 1$, $s_0 = 1 - r_0$. Let $K_a(s_0)$, 0 < a < 1, denote the sphere with center (r_0, θ_0) and radius as_0 . Let $K_{\beta}(s_0)$ be the sphere concentric with $K_a(s_0)$ and having radius $\beta = \frac{1}{2}(1+a)$.

In (3.3) we split K, the domain of integration, into three regions R_1 , R_2 and R_3 . Let Γ denote the smaller sector of K whose lateral boundary is formed by the rays tangent to the sphere $K_{\beta}(s_0)$. We define R_1 to be the complement of Γ in the open unit sphere K, R_2 to be the complement of the sphere $K_{\beta}(s_0)$ in the sector Γ , and R_3 to be the sphere $K_{\beta}(s_0)$. Thus (3.3) can be written

(4.1)
$$w(x) = \left(\int\limits_{R_1} + \int\limits_{R_2} + \int\limits_{R_3} \right) g(x, \xi) dF(\xi)$$

$$= w_1(x) + w_2(x) + w_3(x).$$

We will estimate w by estimating separately the $w_i(x)$ (i=1,2,3), with x confined to the sphere $K_a(s_0)$ and $s_0 \to 0$. In estimating w_1 and w_2 we follow [2] and [3]. The main novelty here will be the treatment of w_3 . Unlike w_1 and w_2 , w_3 will be found to be small not at individual points, but on the average only.

For x, ξ in the open unit sphere K, let γ $(0 \le \gamma \le \pi)$ denote the angle between the radial segments Ox and $O\xi$. We obtain from (3.4) the estimates (see [2], [3])

$$(4.2) g(x, \xi) \leqslant \log \left\{ 1 + \frac{cs\sigma}{|x - \xi|^2} \right\} (n = 2),$$

$$(4.3) g(x, \xi) \leqslant cs\sigma[(s-\sigma)^2 + \gamma^2]^{-n/2} (s < 1/2, n \geqslant 2).$$

For x in $K_a(s_0)$ we have $s \leq 2s_0$. Denote now by $h = h(\xi)$ ($0 \leq h \leq \pi$) the angle between the radius $O\theta_0$ and the radial segment $O\xi$. Let $s_0 \leq 1/4$.

To estimate w, we begin with w_1 . Let $x \in K_a(s_0)$ and $\xi \in R_1$. We obtain, using (4.3),

$$g(x, \xi) \leqslant c_{\alpha} s_0 \sigma h^{-n}$$
.

Now R_1 is contained in a region $H = \{\xi : \xi \in K, c_a s_0 < h \leq \pi\}$. Hence

$$w_1(x) \leqslant c_a s_0 \int\limits_H h^{-n} \sigma dF(\xi) \leqslant c_a s_0 \int\limits_{c_a s_0}^{\pi} h^{-n} d\Phi(h).$$

Integrating by parts and using (3.6), we obtain

(4.4)
$$\limsup w_1(x) \leqslant c_a \varepsilon$$
 as $s_0 \to 0$ and $x \in K_a(s_0)$.

We now estimate w_2 . Let $x \in K_a(s_0)$ and $\xi \in R_2$. We now have $(s-\sigma)^2 + \gamma^2 \ge c_a s_0^2$, $s \le 2s_0$, $h \le c_a s_0$. Using (4.3) we obtain

$$w_2(x)\leqslant rac{c_{lpha}}{s_0^{n-1}}\int\limits_{h\leqslant c_{lpha}s_0}\sigma dF(\xi)\leqslant c_{lpha}rac{\varPhi(c_{lpha}s_0)}{s_0^{n-1}}.$$

It follows from (3.6) that

$$(4.5) \qquad \limsup w_2(x) \leqslant c_\alpha \varepsilon \quad \text{as} \quad s_0 \to 0 \text{ and } x \in K_\alpha(s_0).$$

5. Finally we estimate w_3 . Set $|x-\xi|=t$. Let $x \in K_a(s_0)$ and $\xi \in K_\beta(s_0)$. Then $s, \sigma, t \leq 2s_0$; and we obtain from (4.2)

$$g(x, \xi) \leq \log(cs_0^2 t^{-2})$$
 $(n = 2)$.

From (3.4) we directly obtain

$$g(x,\xi)\leqslant t^{2-n} \quad (n>2)$$
 .

Letting

$$G(t) = egin{cases} \log(cs_0^2t^{-2}), & n=2, \ t^{2-n}, & n>2, \end{cases}$$

we obtain, since $R_3 = K_{\beta}(s_0)$,

$$(5.0) w_3(x) \leqslant \int\limits_{R_\beta(s_0)} G(t) dF(\xi).$$

It follows from Minkowski's inequality for integrals that

(5.1)
$$\left\{ \int_{K_{a}(s_{0})} w_{3}^{p}(x) dx \right\}^{1/p} \leqslant \int_{K_{B}(s_{0})} \left[\int_{K_{a}(s_{0})} G^{p}(t) dx \right]^{1/p} dF(\xi).$$

Fix $\xi \in K_{\beta}(s_0)$. Since $K_{\alpha}(s_0)$ is contained in the sphere with center ξ and radius $2s_0$, we have

$$\int\limits_{\mathcal{K}_{\sigma}(s_0)} G^p(t) \, dx \leqslant |\Sigma| \int\limits_{0}^{2s_0} G^p(t) \, t^{n-1} \, dt.$$

Thus, for n=2

$$\int\limits_{K_{d}(s_{0})}G^{p}(t)\,dx\leqslant 2\pi\int\limits_{0}^{2s_{0}}\log^{p}\left(\frac{cs_{0}^{2}}{t^{2}}\right)tdt\leqslant c_{p}\,s_{0}\int\limits_{0}^{2}\log^{p}\left(\frac{c}{t}\right)tdt\leqslant c_{p}\,s_{0}^{2}\left(^{2}\right);$$

(2) If $F(\xi)$ is absolutely continuous and $F'(\xi) = o[(1-\varrho)^{-2}]$ then the left hand side of (5.0) is

$$\sigma(s_0^{-2}) \int_{K_{\beta}(s_0)} \log \frac{cs_0^2}{t^2} t dt = o(1) \int_0^2 \log \left(c \frac{s_0^2}{t^2} \right) t dt = o(1)$$

and $w_3 \to 0$ as $\delta \to o$ for $x \in K_\alpha(s_0)$. Thus under this hypothesis it will follow as in the sequel, that v has a nontangential limit in the classical sense almost everywhere. In this connection see M. G. Arsove and Alfred Huber, Notices A. M. S., 634-30, April, 1966.

and for n > 2, since $p \le n/(n-2)$,

$$\int\limits_{K_\alpha(s_0)} G^p(t)\,dx \leqslant |\varSigma| \int\limits_{\infty}^{2s_0} t^{p(2-n)+n-1}dt \leqslant c_p\,s_0^{n+p(2-n)}.$$

It follows from (5.1) that (for $n \ge 2$)

$$\int\limits_{K_a(s_0)} w_3^p(x)\,dx \leqslant c_p\,s_0^{n+p(2-n)} \Bigl(\int\limits_{K_\beta(s_0)} dF(\xi)\Bigr)^p\,.$$

Since $\xi \in K_{\beta}(s_0)$, we have $s_0 \leqslant c_a \sigma$, and consequently

$$\int\limits_{K_{a}(s_{0})}w_{3}^{p}(x)\,dx\leqslant c_{a,p}s_{0}^{n}\left(\int\limits_{K_{\beta}(s_{0})}\sigma^{2-n}\,dF(\xi)\right)^{p}.$$

For $\theta \in \mathcal{E}$, and $0 < \eta < 1$, let $\Omega(\theta) \subset K$ denote the conical region with vertex at θ , with lateral boundary formed by the tangents to the sphere K_{η} : $|x| \leq \eta$ and with base the smaller spherical cap of K_{η} . Let

(5.3)
$$I(\theta) = I_{\eta}(\theta) = \int\limits_{\Omega_{\eta}(\theta)} \sigma^{2-n} dF(\xi).$$

Then

$$\int\limits_{\Sigma}I(\theta)d\theta\leqslant c_{\eta}\int\limits_{K}\sigma dF(\xi).$$

(See [5], vol. II, p. 209, where the proof is for Lebesgue integrals and n=2. However the proof is readily adapted to Lebesgue-Stieltjes integrals and $n \geq 2$.) By hypothesis (3.5), $\int_K \sigma dF(\xi) < \infty$. Hence $I(\theta)$ is finite for almost all θ . Suppose that $I(\theta_0)$ is finite. Having chosen $\eta = \eta(\alpha)$ in (5.3) sufficiently close to 1 so that the sphere $K_{\beta}(s_0)$ is contained in $\Omega_{\eta}(\theta_0)$ for s_0 sufficiently small, we have

$$\int\limits_{K_{\beta}(s_0)}\sigma^{2-n}dF(\xi)=o(1)\quad \text{ as }\quad s_0\to 0\,.$$

It follows from (5.2) that

6. It is now easy to complete the proof of the theorem. We immediately deduce from the decomposition (4.1) and the estimates (4.4), (4.5) and (5.4) that (for $\varepsilon < 1$)

(6.1)
$$\int_{\mathcal{R}_{\alpha}(s_0)} w^p(x) dx \leqslant c_{\alpha} \varepsilon s_0^n,$$

provided so is sufficiently close to zero.

Let T_{δ} be the conical region (of Section 1) with vertex θ_0 . It is geometrically clear that if the number a in $K_a(s_0)$ is sufficiently close to 1, and

 $\lambda < 1$ is also sufficiently close to 1, then the family of spheres $K_{\alpha}(\delta \lambda^{m})$, $m = 0, 1, ..., \text{covers } T_{\delta}$. If δ is sufficiently small, we now obtain from (6.1)

$$\int\limits_{T_{\delta}} w^p(x) dx \leqslant \sum\limits_{m=0}^{\infty} \int\limits_{K_{\alpha}(\delta\lambda^m)} w^p(x) dx \leqslant \sum\limits_{m=0}^{\infty} c_{\alpha} \varepsilon (\delta\lambda^m)^n \leqslant c_{\alpha,\lambda} \varepsilon \delta^n.$$

Thus

(6.2)
$$\limsup_{\delta \to 0} \frac{1}{|T_{\delta}|} \int_{T_{\delta}} w^{p}(x) dx \leqslant c_{a,\lambda} \varepsilon.$$

Since ε is arbitrarily small, and (6.2) holds on Σ except for a set of points on Σ of measure less than ε , it readily follows that there is a set $S \subset \Sigma$, having the same measure as Σ , such that at all points of S and for all $p, 1 \leq p < n/(n-2)$, w has a non-tangential limit equal to zero in the metric L^p . The theorem is established.

7. The conclusion of the theorem is false for p=n/(n-2). For n=2 (and $p=\infty$) this is well known and was mentioned above. A counter example for that case (see [4]), suitably modified, extends without difficulty to n>2. The case n=3 (and p=3) is typical and we present a counter-example for it.

We use spherical coordinates $x=(r,\,\theta,\,\varphi),\,\theta$ being the longitude and φ the polar angle. For each $m=2,\,3,\,\ldots$, let S_m denote the system of $\lambda_m=2m^2(m^2-1)$ points situated on the spherical surface $\Sigma_m\colon |x|=r_m=1-1/m$, and having coordinates $(r_m,\,\theta_i,\,\varphi_i)$, where $\theta_i=\pi i/m^2,\,i=0,1,\ldots,2m^2-1$, and $\Phi_j=\pi j/m^2,\,j=1,2,\ldots,m^2-1$.

(We may here think of the points of S_m as being uniformly distributed on Σ_m .) We now place a mass $\mu_m = 2^{-m}$ at each of the points of S_m and consider the mass distribution F consisting of all the masses for all m. Now

$$\int\limits_K \sigma dF(\xi) = \sum_{m=2}^\infty (1 - r_m) \lambda_m \mu_m$$

is finite, and we obtain the subharmonic function

$$v(x) = -\int\limits_{\mathcal{K}} g(x, \, \xi) dF(\xi) \leqslant 0, \quad x \in K.$$

Thus v satisfies the hypothesis of Theorem 1. Since n=3,

$$g(x, \xi) = |x - \xi|^{-1} - |x|^{-1}|x^* - \xi|^{-1},$$

and v has a pole of order 1 at each point of $S = \bigcup_{m=2}^{\infty} S_m$. Consequently, in the neighborhood of any $x \in S$, v^3 is not integrable. But every conical region T, situated except for its vertex entirely in the open unit sphere K, contains points of S. Thus v^3 is not integrable over T; and so, everywhere on Σ , v fails to have a non-tangential limit in the metric L^3 .

8. In the preceding sections we considered functions subharmonic in a sphere of any number of dimensions. We shall now restrict ourselves to the case n=2 and prove a result concerning functions subharmonic in any domain bounded by a simple closed rectifiable curve. Presumably the analogue of the theorem that follows holds for any n, but the proof we give uses conformal mapping and is therefore valid for n=2 only.

THEOREM 2. Let u(z) be a function subharmonic in a domain D bounded by a simple closed rectifiable curve C. Suppose that there is a set E on C of positive measure (length) with the following property: with each point $z_0 \in E$ we can associate an open triangle $\Delta = \Delta(z_0) \subset D$ with vertex at z_0 , such that u(z) is bounded from above in Δ . Then at almost all points $z_0 \in E$, the function u(z) has a non-tangential limit in the metric L^p , $1 \leq p < \infty$.

We say that u(z) has a non-tangential limit equal to λ in the metric L^p at the point $z_0 \in C$ if for every family of homothetic open triangles $\Delta \subset D$ with common vertex z_0 , shrinking to z_0 , we have

$$\frac{1}{|\Delta|}\int\limits_{\Delta}|u(z)-\lambda|^{p}dA(z)=o(1),$$

where dA(z) denotes the element of area in Δ . Since C has a tangent at almost all points of E, it follows that the angle of Δ at z_0 may, for almost all $z_0 \in E$, be as close to π as we wish. The present definition is consistent with the one given in Section 1.

Proof of Theorem 2. The proof resembles an argument from the theory of analytic functions ([5], Vol. II, p. 199-201) and we may be brief. We first prove the theorem for the special case where D is the unit circle |z| < 1.

Let z_0 vary over E. We may assume (perhaps after a denumerable decomposition) that E is closed; that the triangles $\Delta(z_0)$ are all congruent and small; that each $\Delta(z_0)$ is symmetric with respect to the radius of D terminating at z_0 ; and that the upper bound of u(z) in all the $\Delta(z_0)$ is less than a fixed constant. The union of the $\Delta(z_0)$ suitably extended inward in D yields a star-shaped domain $D_1 \subset D$ with a rectifiable boundary $C_1 \supset E$, such that the function u(z) is bounded from above in D_1 .

Let $z = \Phi(\zeta)$ be a conformal mapping of the unit circle $|\zeta| < 1$ onto D_1 , extended so as to be bicontinuous from $|\zeta| \leq 1$ onto $D_1 \cup C_1$; and let $u_1(\zeta) = u[\Phi(\zeta)] = u(z)$. The function $u_1(\zeta)$ is subharmonic and bounded from above for $|\zeta| < 1$. For a given θ ($0 \leq \theta < 2\pi$) denote by Δ_{θ} members of a family of homothetic open triangles situated in D, with common vertex $e^{i\theta}$, and shrinking to $e^{i\theta}$. By Theorem 1, u_1 has a nontangential limit at almost all points $e^{i\theta}$ of $|\zeta| = 1$. Hence for almost all $e^{i\theta} \in \Phi^{-1}(E)$ there is a number $\lambda = \lambda(e^{i\theta})$ such that

8.1)
$$\frac{1}{|\mathcal{A}_{\theta}|} \int_{\mathcal{A}_{\theta}} |u_1(\zeta) - \lambda|^p dA(\zeta) \to 0$$

as the sides of A_{θ} shrink to 0. At almost all points $e^{i\theta} \epsilon \Phi^{-1}(E)$, $z = \Phi(\zeta)$ is conformal (with the derivative $\Phi'(\zeta)$ approaching a non-zero limit as ζ approaches $e^{i\theta}$ non-tangentially). Also, under Φ , the sets of measure zero on $|\zeta| = 1$ correspond to the sets of measure zero on C_1 ([5], Vol. I, p. 289-295). Using (8.1) and the specified properties of Φ , we obtain the conclusion of the theorem for the case where the domain D is the open unit circle.

Now let D be any domain bounded by a simple closed rectifiable curve. Using a conformal mapping of the open unit circle K onto D and an argument paralleling the one in the paragraph above, we see that the theorem holds for D, since it holds for K.

References

- [1] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Stud. Math. 20 (1960), p. 171-225.
- [2] J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. 28 (1928), p. 383-393.
- [3] I. Privaloff, Boundary value problems in the theory of harmonic and sub-harmonic functions in space (in Russian), Math. Sborn., N. S., 3 (45) (1958), p. 3-25.
- [4] E. Tolsted, Limiting values of subharmonic functions, Proc. Am. Math. Soc. 1 (1950), p. 636-647.
 - [5] A. Zygmund, Trigonometric series, Vol. I and II, Cambridge 1959.

CHICAGO CIRCLE CAMPUS, UNIVERSITY OF ILLINOIS

Reçu par la Rédaction le 18. 11. 1966