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On vanishing n-th ordered differences and Hamel bases
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Jensen’s functional equation (over the reals R)

) MEE P LR [0

hag a general solution [1]
f(z) = A°+AYz), A° constant,

where Al(») satisties Oauchy’s functional equation

(2) Ao +y) = AX(x) +4Yy) .
If in (1) we set y = @42, then (1) may be written in the form
(1) Arf(@) & f(o+29)—2f (@ +9) +f(2) = 0.
The equation
(3) g(®—+y) +g(@—y) = 29(2) +2¢(y)
has a general solution [2]
(4) g9(z) = A¥x)

where A%z) = A,(z,z) and A,(v, y¥) is a symmetric bi-additive function
(satisfying (2) in each variable). If we set ¥y = » and replace » by x4
in (3) we obtain

(3" (@) = 29(3) .
Clearly, (3') implies
(B) 43g(w) =0.

In this note we study the general solutions of the equation

(6) A (@) =0

and also 4"f(z) = g(v) when no regularity assumptions are imposed. It i

known that if f satisfies (6) and is continuous at one point, or bounded
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on a set of positive measure, then f(x) is continunous at all points and is
therefore a polynomial of degree n, [3], [4], [56], [6].

Let A4, denote a symmetric multi-additive function on R” to R,
the reals: Ay(z,, @2, ..., @,) satisfies Cauchy’s functional equation (2) in
each argument, and Ay(@y, .., %)= 4A,@s, ..., ¥;,) for permutations
(%1 ouny Bp) Of (1, ..., p). By A" is meant the function on R to R obtained

by diagonalizing 4,, that is
A%(z) = Ap(w, @, ..., 7).
The function A” will play a role analogous to the power function z->a®.
LEMMA 1. If A™w) denotes the diagomalization at z of a symmetric

multi-additive function An(®y, ..., 2s) of n arguments, then
D4 ntdA™v) if p=wn,
0 pata =50 G AT

Proof. Let A, ..(@;y) denote the value of A,(zy, ..., 2s) for z; = z,
i=1,.,n—r and or=y, t=n—7r-41,..,n In particular Aq,(y;2)
= An(z;y) = A™(z). Then

n

A0 dy) = Au(@ 4y, oy 0 4Y) = D) (2) Ancoalz; y) -

o=0

Further, from the additivity of 4, in each argument follows

An—aom@; myy) = mi "mgAn_,.(#; y) for integer (or rational) m,, m,.
Hence
i
A% A" (@) = Z 1:.) 1)~ "A” (@ +1v)
’ r=0
b

=220 '?) (—1)P " ool 1)

Il
Eﬂ_:
e

) (=177} (1) Aneaolas 9) .
But since [7]

L 0 if
IS A

=0
the lemma follows.
COROLLARY 1. If f(2) = A™w), then A™f(») = n!f(v).

n
COROLLARY 2. If f(x) = Z; A"(x), where A°(w) = A° is constant, then
4"+’f(m) = 0.
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THEOREM. If A" 'f(x) = 0 for all x and v real, then there exists symmetrio

multi-additive functions A, for p =1,2, ..., n such that
(8) flo) = A°+ANz) + ... +4"(x) for all ©,

where A° is constant. Conversely, any such f(x) satisfies A" *f(z) =0 for

all o, v real.

Proof. We may consider the elements b, of a Hamel basis B as
a basis of the infinite dimensional vector space R over the rationals Q;
if B is a finite subset of 3, let By denote that subset of the reals B whose
Hamel representation requires only elements of B:

N
Rp={#| 2= D ribuy-ri€Q-byeB}.
i=1
If [B] denotes the cardinality of the (finite) set B, we may introduce
a bijective map ¢p: Rp—Q", the space of rational [B]-tuples, defined by

(9) o5(0) = g5 D 1ibe) = (11 .., 7m), for any o« R,

provided we specify the order in which the rational coefficients in @
= Zrib,‘ are to be chosen. By Zermelo’s theorem we may assume the
Hamel basis & to be transfinitely ordered, and that in (9), a; < a; when
1 < j; the rational [B]-tuple associated with & by @p is then unique. We
denote the inverse map by ¢z .

11 Q'% is considered as & vector space over @, clearly ¢p is Q-linear,

(10)  ¢B(z+y) = pp(») +o5(y), e¢slar)= app(x), for @,y ¢Rp,aecQ.
Given any set of distinet real numbers @¢ e Rp of the form
(11) Ty =&+Nv

for fixed 2, v e R, Ny integers; then (@;— @;)/(#1— xx) = ayx € Q for ¢ # j
# k£ 1.

By (10) it follows that @s(@«)—@s(@;) = aumles(@)— @a(2x)] implying
that the points ggp(x;) are co-linear in Q'®\. Conversely, a straight line
in @ is given parametrically by ;= yit +p¢ where yi, fi,t¢@, i=1,
..., [B] and co-linear points corresponding to the parameters #;,j=1,
..., N, have as images under pz’ the real numbers

LB]
mj = Z(yst] +ﬁ3) bd.) ?‘ == 1’ ooy N; asl < a,, When sl < 82 .

8=1
23*
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But then
(L1— )| (s— dp) = (Be~15)[(li— k) €@ for 4 £j#EkF+1,
and with

Ty—Tr Mk
Ty — Ty Mg

N
Ty — Ty
g = & —\Ng me | —x

= {1 mi}

i=1

for integers ng, my and k=2, .., N

we may write

so that the x's are of the form (11). Hence, a finite set of distinct real
numbers z; are of the form (11) if and only if their images in Q"™ (under
the map gg) are co-linear. Here B is any finite subset of B relative to
which all z;’s are expressible.
Let P} denote some nth degree polynomial in m variables, Py, : R™ —E.
n

If f is a polynomial of the form f(z) = ) a:@f, as e B, then
i=0

n [B]
_ ‘
(12) Her' (11 vy 1m)} = 2“‘(2”1%) = P71y ooy T1m1) -
i=0 =1
Alternatively, if f coincides with a polynomial P} on Rg, then fpzp' coincides

with a Pl on Q. The converse however is not true, for consider
[5)

foB (71, ooy Yim) = 71, that is, f(ié: mbm) = 7;, which is clearly not a po-

B]
Iynomial in #= ) rib, (unless [B] = 1); f in this example is Q-linear
i=1

on Rp however.
If f satisfies A4™'f(x) = 0 for all #, » ¢ R then clearly f coincides with

a polynomial P} on any set of the form (11); alternatively fpz' coincides
with a polynomial P on any linein Q' If we choose in particular the lines
parallel to the co-ordinate axes in Q'®', we have that fpz" is a polynomial
in each variable, for every fixed value of the remaining variables, whence
oz coincides with some Pls on all @, and this for every B. As in the
above example, it does not follow that f is itself a polynomial on Rjp.
However, we now show that f can be obtained by diagonalization of
@ -multilinear functions.

It is well known [8] that any multinomial P[5, defined on @', can
be written uniquely in the form

(13) (8= ZA% where A} is a constant
p=0
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and A% is the diagonalization of a uniquely determined symmetric multi-
linear form Ap, in p variables, each ranging over Q'%’. Since in (12)
the Ps depend on the subset B C B, so also the multilinear forms; the
dependence is shown by the subscript B in Ag,. Hence by (12) and (13)

(14) fog' = ZA% on Q' for every B

p=0
or alternatively

n

(147) f= ZA%an on R for every B.

=0

Each A%pp is iself the diagonalization of a multi-additive form on RE
since, by the linearity of ¢n, dpp{pa(®), ..., pr(®y)} 48 additive in each
z; ¢ Rp.

We first treat the individual terms in (14') and show that if a function
g: R—R reduces to g = A%pn on each Rg, then g = A" on R where A" is
the diagonalization of a symmetric multilinear form A, on R®. But one
may simply define

(15) Ap(®1y ooy 0p) = App{ps(®), o, P5(0p)}

where B consists of elements of & including those required in the Hamel
representation of all 4, i1 =1, ..., p. We now prove that B, on the right
hand side of (16), may be replaced by any B’ D B, and hence that 4, is well
defined by (1) on RP. Since each A% determines a unique symmetric
multilinear form Ag,, it follows that two symmetric multilinear forms
Apy and Ap, which differ at one point must give rise to different
diagonalizations A% and A’ Further a multilinear form 4z, (51, . £p)
on p argument vectors E; eQLB] may be diagonalized (E1 = 5,, = E)
at some & belonging to a subspace @ of Q'"’; the same result is clearly
obtained if the £; are first restricted to the subspace, thereby defining
& symmetric multilinear form 4%, on Q""" and then diagonalizing A5,
at £ e Q7 Hence if Ap, does not coincide with Az, then AR+ A%
whence A%(€) # A%(E) for some £ e Q' C Q'F1, But by hypothesis

9(#) = Ajop(r) = Apopp () for xeBpCRp.

Hence Ap,pp must agree with Ap/ ,pp on all By as required.
It remains only to show that the individual terms in (14') define

a function g: R—R. It is conceivable for example that a function f: R->E,
whose restriction to Rp is fp, may be written in the form (fz— b, )—|—b

where b, is the firgt element in the well ordered set B. Clearly fs— b,
and b, do not define functions on R. That this is not the case in (14’)
follows from Lemma 1 since 4™ (0) = n!A%Bpg(y) for any » e Ez. Hence,
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n!A%pp on Rp defines the function 4"f(0) on R; the remaining terms
therefore also define a function on R, satisfying él”f(m) = 0. By repeating

the above argument the desired result follows, proving the theorem.
COROLLARY 3. A mnecessary and sufficient condition for the equation

(16) A" (@) = g(»)

to have a solution is that g(v) = n!A™(v) where A" is the diagonalization
of a multi-additive function An of n arguments. The general solution of (16)
is then f(@) = A™®)+h(z) where h(x) is the general solution of fl"’h(w) = 0.

Proof. From (16) follows 4"*'f(x) = 0 whenece f is given by (8).
But by Lemma (1) follows .fl”f(w) = n!A"™(»).

COROLLARY 4. A necessary and sufficient condition for f(z) to be of
the form A™(z) is that A’"f(w) = n!f(»).
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