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§ 1. Introduction. In their investigation of Waring’s problem, Hardy
and Littlewood considered the following question: Given positive in-
tegers k and s satisfying % > 2, to construct as many integers as possible
which are less than a given (large) integer N and expressible in the form

ko K %
O+ 2+ ..+ T

where @, %, ..., 4, are positive integers.

They established the following result. If UM (N) denotes the number
of integers not exceeding N that are expressible as the sum of s positive
integral kth powers, then for every &> 0 and N > N,(e),

1) UP(N) > N+
where
(2) a =1—(1—2/k)(1—1/k)*2

The importance of this construction in the evaluation of G(k) ™
in Waring’s problem is easily seen from the equivalence of the following
two statements.

I. Given a positive integer k>> 2, there exists an integer s = s(k)
such that all sufficiently large integers are representable as the sum of s
positive integral kth powers.

II. Given a positive integer % > 2, there exists an integer s = s(k)
and a positive constant ¢ = ¢(%) such that

UP(N)>N—¢ for N >N,

Thus the determination of s in accordamnce with IT would provide
an independent proof of Hilbert’s theorem. Linnik’s (2) elementary proof

* This paper is part of author’s Ph. D. thesis, submitted to the University of
London.

(*) As usual G (%) is defined to be the least value of s for which every large
integer is the sum of s positive integral kth powers.

(*) See Khinchin [4].
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of Hilbert’s theorem (based on Schnirelmanr’s definition of the density
of sequences) is on these lines.
The bound for U (V) used by Vinogradov in his estimation of G (k)

is

3) U > N
where o
(4) B =1—(1—1[k)"

For small values of & sharper results concerning @ (k) were obtained
by Davenport (*). These were based on better lower bounds for U¥ ().

When s is large, the bounds for KU () obtained by Davenport’s
method differ very little from (4). But in order to estimate @ (k) for large %,
we need to estimate U (N) with large values of s. This is the reason,
why Davenport’s construction does not give a more powerful bound for
G (k) than that given by Vinogradov (for large %).

The objeet of this paper is to extend Davenport’s method to Frei-
man’s generalization of Waring’s problem. Here the problem is to represent
large integers in the form

() ot a . o
where
(6) 2<h<k<... and Dk = oo
i=1
Denote by
Gy, gy .0}

the least value of r for which all large integers are representable in the

form (8); so that G{k, %, ...} corresponds to @(k) in Waring’s problem.
In the proof of Freiman’s statement by Scourfield [7], the following

construction was considered. Given integers %, &,, ..., k, satisfying

2 <y <hy <o <oy

and a large natural number ¥, denote by U,(k;, ks, ..., k; N) the number
of integers that are less than N and expressible in the form

m’fl—i—w'z‘z-[-. . +wf'
where @;, @y, ..., #; are positive integers. The inequality used in Scourfield is

@ Us(ly Ty oy Bgj N) > N'=T00 k)

() H. Davenport [1] (proof that G(4) = 16, and that a modified number
G*(k) satisfies G*(4) < 14) and [3] (proof that G(5) < 23 and G(6) < 36).
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where
8
(8) (i, .oy k) = [[ (1—1/ky).
=1

This was obtained by generalizing the Hardy-Littlewood construction.
If the integers %, ks, ..., ks are small, we can obtain slightly better
lower bounds for Us(k, ..., k; N) than (7). These when applied to the
generalized Waring’s problem (with small exponents) yield more precise
results. Thus, we can consider the representation of integers as sums
of cubes and fourth powers, cubes and fifth powers and so on. In fact
the exponents in these additive representations need not all be small,
Thus there are many possible problems. However, in this paper we content
ourselves with two problems which may be of some general interest to
number theoreticians. ’

We prove the following theorems.

THEOREM 1. Every sufficiently large positive integer N is represent-
able in the form

35
9 ¥= gt
8=1
where the a’s are positive integers.

This is an improvement on Roth's (see [6]) result that every large
integer N-is representable in the form

. 50
(10 N = Y+
% A

It is a well-known (best possible) result (of Davenport) that all
large positive integers are representable as the sum of 16 fourth powers,
though for certain restricted integers a lesser number of powers suffices.
‘We show that the following result is also true. '

THEOREM 2. Hvery sufficiently large positive integer N is representable
in the form

9 16
(11) = Dab+ Yaf
. B 8=1 tnulO‘
where the x’s are positive integers.

Remark 1. (10) was deduced from Theorem 1 of Roth [6], which

states that the number of integers that are less than ¥ and not represent-
able in the form

: . '
. 1—— e

(12) it mtaita s <N P

so that the construction is carried out for integers of the form

as . oo+t af.
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Though the exposition is slightly different, the bound for U, (6,7, ...
...,51; N) used by Roth is essentially (*) (8).

Remark 2. In obtaining results similar to (12), with more integral
powers, and then constructing the integers which are sums of the suc-
cessive powers (for example, we could first estimate the number of in-
tegers less than N which are not expressible in the form ;34 w5
+af+af, and then carry out the construction for integers of the type
@i+ ak+...), the techniques employed in the Hardy-Littlewood method
do not seem to yield a sharper result than Theorem 1. We can attribute
this to the fact that both Weyl’s inequality and the construction under
consideration are most effective for integral powers with small exponents.

Remark 3. Asregards the connection between (10) and (9), one
observes the following interesting phenomenon. As we go on cutting
down the number of powers required for the representation, we meet
with more and more resistance since the density of the sequence «® (% > 2),
increases as %k decreases, so that it is difficult to dispense with smaller
powers in the representation. On the other hand, we need the bounds
for Us(ky, .., ks; V) with smaller values of s and the exponents ki, ..., k.;
so that in view of our earlier remarks, the resistance is slightly less than
what one expects.

Remark 4. Though it would be very interesting to know the exact
value of G{2, 3, ...}, we remark that with the existing techniques, Theo-
rem 1 (viz. G{2,3,...} < 35) seems to have reached almost a stage of
finality in the Hardy-Littlewood framework. Any further substantial
improvement would require another new idea.

Remark 5. In the proof of Theorem 2, we consider the construction
of integers of the form

(14) ob+af + af -+ 2§+ af,
and also integers of the form
(18) o+ o5+ a5+ a5+ 5.

The rest of the argument depends on that of Davenport [1]. However,

for the sake of completeness and clarity, the essence of the logical structure
is presented.

§ 2. Notation. a,¢9,#,y,2,... (with. or without suffices) denote
Tlatura.l numbers. a, f, y,... denote real numbers. N is a large positive
integer and & a small positive number. & is an arbitrarily small positive

(%) (8) gives the bound Uk(6,7, ..., 51; N)> N'-3/51-¢ and Roth uses the
bound Tg(6, 7, ..., 51; N)> N-U10+2 where § is some positive constant.
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number. The constants implied by the notation “<” depend at most
on ¢ and e.

e(a) denotes €™ and eg(a) = e(ajq).

Throughout a,q satisfy e« <g¢ and (a,q) =1 (unless otherwise
specified).

For any natural number n and positive numbers X, ¥ satisfying

2<n, 1<X Y,

we define

X<V

q
Sula, q) = D eglaa"),
w(X, Y58 =» D vy e(By),

X<y
Fo(X,Y;50,q,0) = ¢ ' 8ula, Ow(X, Y;a—alg),

5

A, g) = D es(—ow){[T{a™ 8u(a, 9))},

n=2

A*(uyq) = Deg(—au){g™" y(a, )Y,

S(X,u) = D Au,q), S (X,u)= D A"u,qg),

<X <X

S(u) = D A(u, g), & (u) = D' 4*(u, g).
g=1

a=1

Let %y, %,, ..., uy be the integers that are expressible in the form

18 35
(16) Dlaft M,
8=5 8==20

and satisfy w, < N/4, i =1,..., U.

Also let v,, v,, ..., 9p and wy, w,, ..., wy be the integers expressible
respectively in the forms

4 4 5
n+ay ool and ool oi+al4-o,
and satisfy

(A7) v < N/4, v=0,1,2,3,40r 5(mod16), ¢=1,...,V;
(18) w; < N[44, w;=0,1,2,3,40r 5B(mod16), j=1,..., W

Acta Arithmetica XTIL3 1
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Write
(19) 0(a) = [[fulN/2" N;a),
U 14 w

(20)  2(a) = Dle(an), Qi(a) = Ye(an), Qf(a) = Y e(awy),

de=l i1 j=1
(21) A(a) = 0(a) 2(a)fu(l, N/d; a),

5

(22) @(aigi a) =[]FH(N/2",J\T;0/,Q, a),
(23) 0*(a) = {fo(N/16, N'; a)}°,
(24) @*(0'711; a) = {F4(N/161N§a:q’a)}6:
s0 that . }
(25) Q) =T, L{O)y=V, Q}H0)=TW.

§ 3. Farey dissection.

(T) The’ Dissection’ designed in order to prove Theorem 1 is somewhat
artificial. Write

(26) p = [N+,
(27) 7 = 14/71L.
The unit interval

(28) lp<a<1l4lfp

is divided into basic and supplementary intervals as follows.
The intervals ’

(29) a=ualg+p with ¢ <N"and | < (gp)*

will be denoted by IM,, and called the basic intervals.
The intervals

(80) a=ajg+f with N <q<p, 8] <(gp), af any My,

will be denoted by m,, and called the supplementary intervals.

This makes the basic intervals less numerous (and of course the
supplementary intervals more numerous) than if we defined them with
g < N’ This glight deviation from the traditional division seems to
be necessary to get the maximum out of the basic and supplementary
intervals simultaneously. :

hm@

“
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For a given a, g we also denote the points of the interval (28) which
do not belong to the corresponding M, by M,,. The union of all
M,o’s, Myg's are denoted by M, m, respectively.

(II) Write

(31) " = [N,
The intervals OR;, defined by
(32) a=alg+p, ¢<N" 1f] <(gp")7,

and the union of intervals m:lq’s defined by

a=ualg+B, NF<g<o*, I8 <(gp")', af¢ any m,,
together form the unit interval
(33) - 1" < a < 14+1fp"

Again for a given a, ¢ the points of (33) which do not belong to the corre-
sponding N, are denoted by 9Ms,. The union of MYs, m’.’s, are
denoted by ¥, m*, respectively.

It can be proved in the usual way that any two 9R,,'s and any two
M} '8 are mutually exclusive.

Now write !
1+1fp
(34) P(N) = j Ala)e(—Na)da,
1/
and ’
1+1g*
(85) ) = [ 6%(0) Q3 () Q3 (a)e(—Na)da

1o

(cf. (20), (21) and (23)).
We observe that »(N) does not exceed the number of representa-
tions of N in the form
35
N = Zwﬁ“,

8=1

and that »*(N) does not exceed the number of representations of N in

the form
- . 9 16
N= »ats+ ¥ af.
EEP)

i=10

Thus, in order to prove Theorems 1 and 2, it will suffice to show that

r(N)>0 and #(N)>0 for large N,
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§ 4. Preliminary results.
Levma 1. If 2 < ky < &y, then the number of solutions of the equation

(36) oyttt = ity
where )
Byt < NP5 my gy < NV
X3
< N1/k1+1/k2+a_
Proof. (36) can be written as
(37) ot —yt = yr—af2.

Since the number of solutions of the equation
“’{cl—ﬂ’fl =m, with o #y,,

is < m’, the number of solutions of (37) with @, = ¢, is < N¥*2**, Also
the number of solutions of (36) with @, = y, (and hence with @, = y,)
is < NY¥rtU% The result follows since

. 1.2
k, kT By
GorROLLARY. The number of iniegers less than N and representable
i the form
a1 4 zj?
18
S NYEHIfkg-e

Proof. If (m) denotes the number of representations of . in the
form m’f1+w;‘2, where

(38) z < (N2)R1, @, < (N[2)1,

then 3 r?(m) does not exceed the number of solutions of (36) subject to
m

(38). Hence by the lemma,
vt = b
m
Also the number of integers less than ¥ that are representable in the form

ot ag

> D1

£(m)>0

is

¥
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But by Cauchy’s inequality

Z’ 1> {Zr(m)}z/{z 7‘2('m)} > _Nz(l/kl+1/k2)/1\71/k1+1/k2+s’
r(mr)n>0 i i
and the result follows.

Lemma 2. Let 0<np<l1l and A=1—(1—n)/k,k >3. Then if
by lay ooy B S @ Sequence of positive integers satisfying

(39) <ty ... <tp <P

the number S of solutions of

(40) ity =g+

subject to

(41) P<z<?2P, P<y<?2P
satisfies

(42) 8 < PTPHmer(pety porioippt

where 1 < k—2.
This is Theorem 1 of Davenport [3].
LeMMA 3. If 3 <k, <k <., <k, and

(43) Us_i(kyy Koy oony Foguy; N) > N°

for all large N, where 1jk, < a < 1, then

(44) Us(kyy kay vy kg3 N) > NP* for N > N,(e)
where

. 1 (2" 1) (% —1)+ (h+1)
4 = _ .
(5) f = max o {1 + 2 11a a}

This is deduced from Lemma 2 in the same way as Theorem 2 of
Davenport [3] is deduced from Theorem 1.

COROLLARY. The number f given by (45), satisfies

<1
(46) B> {1+ (k—1)a}.
Proof.

(2" —1) (ks —1)+ (h+1)
2 _1+a

P —l+ta
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The corollary follows from this, since o« <1 and hence if we take
b= (ks—2), .
(h-+1)= (ks—T) & = (ks—1){1—a) > 0.

Remark 6. The full force of Lemma 3 is not used for all the ex-
ponents in the proof of Theorem 1; instead we use the corollary for large
exponents. By doing so, we avoid unnecessary caleulations since the
slight improvements -on the bounds of Us(k, ks, ...y ks; N) obtained by
using (45) throughout is not sufficient to improve on Theorem 1. Fur-
thermore, the inequality

by STy <o Shs
is irrelevant in the proof of the lemma. First we could consider sums
of (s—1) integral powers where the exponents are selected in any manner
from the s integers &, ..., ks and then apply the Lemma to the remaining
integer.

Remark 7. If, in the notation of Lemma 3, we take

then by (46) we have
s—1 .8
: =il - 110-5)
= — |14 (ks—1)31— 1—— | =1— 1——].
A ﬂ( B [T{-
These are precisely the bounds given by (7). Thus we see that the
bounds given by (45) are slightly superior to thqse given by (7).
LemvA 4. Let

23 1109 43622 3217363
“= T30 T Lge0’ BT Tesiny M 7243102’
201918499 10718805701
% = 3774379637 ° 17063905440’
.1
47) - » a =—i§(7+12a6), |
1 o, 874200\ 42287030765 1835 9O
= 20a’) = = B
(48) o = 55 (16+20a) ( 57 ) 18632130504 ~ 213 T 10°
Then

U,(11,12; N) > N9, Us(10, 11, 125 N) > N*2™™,

Uu(9,10,11,12; V) > No=™, Us(8,9,10,11, 12; N) > N,

Us(7,8,9,10,11,12; N) > N™%,  U,(6,7,8,9,10,11,12; N) > N,
Uw(6,7,...,19; N) > N¥"1,
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and
(49) Usg(6,7,...,19,21,22,...,36; N) > N-¥0,

Proof. «, is obtained by using Lemma 1. a2, O, G4, G5, ¢ aTe Ob-
tained from Lemma 3 by taking
k=10, 7 =2; k=9, =2 k=8, h=3;
ks =7, h=3; k =68, h =3,
respectively.
a' is obtained as follows. From (46),

Us(6,7,...,13; N) > N°™,
1
where o, = E(l +12a4);
Ug(6,7,...,14; N) > Nt
=—1-(2+12aﬁ).
14

Proceeding thus inductively we get U (6, 7;---,19;'N) < -1
where o’ is defined by (47). ' ’

. a* is obtained from o' in' the same way by a repeated application
of (46).

COROLLARY. We have

) 1
where «, = ﬂ(1+13a7)

(50) ‘ £2(0) > NITHBE - (Cf. (20)).
This is easily verified from (27), (48) and (49).

. Re_mark 8. In a certain sense, Lemma 1 is the best possible result
f)f its kind. Also Lemma 3 is more effective for small values of %,. Thus
in the construction of integers of the form

o+ @yt +af,
we first apply Lemma 1 to the exponents 11, 12 and then apply Lemma 3
to the remaining smaller exponents. It is remarkable that the bounds

obtained by first applying Lemma 1 to the smaller exponents 6, 7 and

then applying Lemma 3 to the larger exponents, are not sharp enough
to prove Theorem 1.

LeMmA b, Let

_ 2 47 433 , 1073
/31— 5’ Ba = 85 ﬂa—"‘604“’ 3 2“1605’
7441 , 4691
Ba

T 89807 * T Bgss”
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Further, let Us(kyy Koy ...y bs; fr 1, N) denote the number of integers
= f(modl) and less than N which are representable in the form

I
DRI YL}

Then, if

. fi=0,10r2; fo=0,1,20r3; f3=0,1,2,30r4

(1) and f,=0,1,2,3,4 0r b,

we have
U¥(5,5; /1,16, N) > NA~%,
U(3,5, 5; 2,16, N) > Nfa—*,
U;(4,5,8,8;fs,16, N) > N53—657

(52) U:(45475’5 5§f4’16,N)>-N54—-8R3
UL(5,5,5,53fa, 16, ) > N*7,

(53) US(4,5,5,5,55£,16,N) > N

Proof. §,is obtained from Lemma 1, and 8, fs, f, are obtained
from Lemma 3 by taking % =5, h =2; ky =4, h =2; ks =4, h =2
respectively, and noting that the congruence condition imposed on the
integers does not affect their bounds by more than N7°

Similarly g;, 8; are obtained from Lemma 3 by taking k, = 5, h = 3;
ks = 4, h = 2 respectively.

A formal proof of the lemma could be given by using the arguments
in the proof of Lemms 2 of Davenport [1] on noting that

n =f(mod?2%) implies = = f(mod16).
COROLLARY. In the nmotation of (17), (18), (20) and (25), we have
(84) QF0) = V > NP1,
(55) 20) = W > ¥

These follow trivially from the lemma.
We also note for future reference that

ﬂ4+/34 1
(56) 2 AR > 5 16 0"
§5. Lemmas for Theorem 1. Let

5

77
(87) = Qv ==
and

1 4
(38) p=pt =

20 3
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LeMMA 6. If a = afq+p, where |8] < 1/2, we have

Fo(N[2", N3 a,q, ) < ¢ "min (X", N"7!|g]7Y).

This is essentially Lemma 5 of Davenport [1], on noting that at
that stage the restriction n >4 in the paper is not relevant.
LemMA 7. If « = alg+f, where ¢ < N'7°, B < g ' N4, then
TN 2%, N5 a)—Fu(N[2", N; a, g, a) < g+
This is essentially Lemma 8 of Davenport [1]for n
of Davenport [2] for n = 3.
For n = 2, we can prove by the same methods that

fo(N]4, N5 a)

= 4, and Lemma 7

—Fy(Ni4, N;a,q,a) < g™,
LeMyma 8 (WEYL'S INEQUALITY). If a = ajg-+4, where
Nv——d < q <N1—ﬂ+d tmd ﬂ< q—«INi'—l—-d’
then
Fal N2, N; a) < NO-4 7140,

This is Lemma 11 of Davenport [1], and of course is obtained by
partial summation using Satz 267 of Landau [5].

LEMMA 9. On m, we have
Ja(N/[8, N;a) < -Nl/a_‘flgy
where © is defined by (27).
Proof. Every real number o belonging to the unit interval (28
ging
can be expressed as

(39)  a=afg+f with 0<g<NPH, (g <gNT

The intervals for o such that ¢, § satisfy one of the conditions I
II, TIT below will be called the ‘Good intervals’.
Lo N g KNP, B <N
1L N<g< < NY3- a 1Bl <gq —1Nm2/a—-a;

IOL. 0<g< i, q‘l <18l < ¢

The points « belonging to (28) for which ¢, 8 do not satisfy any of the con-
ditions I, IX or III, will be said to form the ‘Bad intervals’,

We note that the ‘Bad intervaly’ ae contained in M, since if a be-
longs to a ‘Bad interval’, ¢, 8 satisfy

4

~1-2/3~4

0<g<A, BI<g o
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Thus, m is contained in the ‘Good intervals’. Hence in order to prove
the lemma, it is sufficient to consider the numbers a for which ¢, f satisty
I, IT or IIL .

Suppose that I is satisfied. Then by Lemma 8 (with % = 3), we have

(60) fa(N/S, N; a) <& N}(1‘1/4)+d',
Now let II be satisfied. Then by Lemmas 6 and 7 (with 2 = 3),

we have
e . - Pty o~ BN o NUAHS N3 < N
(61) . fo(N/8, N;a)<q +4q -+
Tinally, suppose that IIT is satisfied. Then, again by Lemmas 6
and 7 (with » = 3), we have
(62) fs(ngj N; a) < q3[4+s+q—1/3N1/8—1[ﬂ‘—-1< N37[4+6+N1/3—1(qIﬂ‘)-—lqws.
Now
(@B < @ < NH°

and ¢ < ¥*"; so that

Nl[s—l(qlﬂl)—lqg’a < NWS-USHO42M . HI-3/5+ 240 o Nl/a—r/.%,

(cf. (26)),

gince v < 1/5. Also trivially
Nar/4 < NJ/S-?/E}'

Thus the lemma follows from (60), (61) and (62).
LemmA 10. Let

(63)  6i(a) =fo(N[4, N; a)fy(N]16; N; o)fs(N[32, N; a)fon (1, N /4; a).
Then

1
[ 161(0) i < N,
Q

Proof. The integral is precisely the number of solutions of the
equation .

(64) oy + g+ w3+ o5 = Yz +yi-+yi+ v,
subject to
Nl/2/2 < @, < Nljz, N1/4/2 < @, < N][rl’
(65) N"*"/z <& < Nlls, 1<y < (N/4)1/20’
;N112/2 < 0, < NIIZ’ N”‘/Z < y&g < Nm’
ME2 <ys SNY, 1 <yy < (V]4)
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Equation (64) can be written as
-y = Yi— i+ yi—al -yl — il
(i) The number of solutions with @, = y, is -

1 1 1
2z+gtgg) +e
iT57 3 . AT+
<N = N'*,
since the number of solutions of #—y; = m (for a given m s 0) is < m".

(ii) Now consider the solutions with

— . 4.4 .5 5 90 9
By = Ya5  By—Yy = Ys— D5+ Yog— Xy # 0.

Since the number of solutions of o} —y} = m is <« m®, we get the required
number of solutions to be -
1 1 1
< J\TEAT2 (§+ﬁ) +e = Nl+e,
(iii) The number of solutions with

Do = Yoy By=1Ys B—Yi = Yao— o # 0
s (by a similar argument)
1.1 il
<N AN ¥ <¥.
(iv) Finally, the number of solutions with

T2 ="Yoy By =Yg, Xs=1Y5, Byy= Yy

is

1 1 1 '
+3tsta)

. ‘
<5N(§ =N.

This completes the proof of Lemma 10.
LEMMA 11. On M, 4, we have

0(a)—0(a, ¢, a) < NU119g-1+e,

where 0(a), @(a, g, a) and u, are defined by (19), (22) and (57).
Proof. From Lemmas 6 and 7, we have on 9,, (cf. (29))

(66) Tn( N2, N 0)—Fo(N[2", N; 0, q,a) < QS/H-';
(67) Fu(N[2" N;a,q,0) < g N’
for n = 2,8, 4, 5. ‘ £
Since ¢ < N™ (cf. (21)), it is an easy verification from these that
(68) fa(N[2", N;a) < ¢g"N* for n=2,38,4,5.
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Now
0(a)—0(a,q, a) = fofof fs—Fo Fa By Fs
= (fa_Fz)fst5+F2(fa—Fs)f4fs+
+ B, Fy(fa—F)fs +Fo s B o(fs—F),

where f,, F, stand for f, (N/2", N'; ) and F,,(¥ /2", N;a, g, a), respectively

for n = 2, 3,4,5.
Also from (66), (67) and (68) we have

—Fo)fafufs < ¢ N gtz
Fy(fa—Fs)fofs < q3/4+3.NlM1—1/3)q-,ul+l/3’
PP (fo—Fo)fs < ¢+ N igmeatii,
P P (fi—F) < e N lg=m+lis,
Again it is an easy verification from these that
6(a)—O(a, g, a) < @I N WlgmrtlE = Nla=tgmiite
proving the lemma.
LEMMA 12. We have
f 18(a)—6(a, g, o)[*da < NH1~1=2-30,
b}

Proof. By Lemma 11, the integral is

< 2 2 f {N2#1—2/5q~2/8+24}dﬂ

aSNT 4 Mg o

. —2[5+23N2y1—ﬂl5 a
<L)

< 2 q g"gla+2‘l\72"1_z/5q"1N‘4/5"d
g<N*

< N#—1-15-0, Nref3+d < Nﬂyl—l—-h,’s-loﬂ (cf. (27))

LeMMA 13. We have

[16(0)—0(a, ¢, a)] 12(a)|da < N1~1-%Q(0),
m

where Q(a) s defined by (20).
Proof. By Schwarz’s inequality, the integral of the lemma is

< {w{ 10(a)—O(a, g, a)izda}m {0]1 |Q(a)|=*da}"2.
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Also

1
[12(a)da = Q(0),
0
and by (50)
{Q(O)}”l < N-1+21[3~100.

Tence, by Lemma 12, we have

f 10(e)—0O(a, q, 19(a)|da < {Nul—llz—r/a—so} {A7~1[2+1/3—515Q(0)}
n
< 2\7“1_1_1069(0).

LevMA 14. We have
2 2 f |@(a’ 7, “sza < N1~
=N Wy,

Proof. By Lemma 6, the integral is

12

Sﬂ f {q_zlez;:l_sﬁ—s} ag < 2 q- q—z;:JINﬂul—-s (q-—lN—4.]5—d)—7
s

i <
¢<NT @ ¢ IN=45- a<N*

A

< NI—8+2/5+70 2 q(6~17/30) < N2 8+285-+78, Ny (1-17/30)%
P
Now

30

since 7r47/10 = 7/5 (cf. (27)); so that the result follows.
Remark 9. It is for Lemma 14 that the Farey dissection has been
designed artificially.
Lemya 15, We have
2 1018 08013 < o200,

a<N* a

17 2r
2py— 8285170+ (7-——‘) = 2,11—1——31~ +78,

This is deduced f1 om Lemma 14 in the same way as Lemma 13 was
deduced from Lemma 12.
LeMMA 16. We have

[ 1A(@)da < X" 2(0),

where A(a) and u (= 4/3), are defined by (21) and (57) respectively.
Proof. In the notation of (63), we have

(69) J14(a)|da < {max|fy(X[8, ; a)l} f 161(a)2(a)|da.

m
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Also by Schwarz’s inequality,

1 1
) ()| da < {f [01(a)|2da}1/2{f}Q(a)lzda}llz
NI/Z-(—B(Q( ))1/2 Nl/z be, 12473~ 1069(0)

(70) f 16,(

by Lemma 10 and (50).
Thus from Lemma 9, (69) and (70), we have

f[A(a)lda < N”HE”IM.Q(O) < N"'l"‘r"’!?(ﬂ)
m

gince p = 4/3.
Levya 17. We have

[ 66, ¢, a)e(—ua) = {[] a7 Snla, @)} &(—au) R(w),
0 N=2

where for N|2 < u << N, R(u) satisfies
Na1~' < R(u) <€ N4

This is a standard type of result proved in the usual way.
The next two lemmas correspond to Lemmas 28 and 29 of Roth [6].

LemuA 18. The series
S(u) = D A(u,q)
Q=1

is absoluiely convergent, and if w =3, there ewist positive constants ¢, ¢,
" such that
S(u) > e, (loglogu)~2.

LemMA 19. If X > 1, there ewists a constant ¢y, such that

DA (w, g)l < X,
>X
LemmA 20. If N2 <u < N, then
S(N*, u) > N

This follows frivially from Lemmas 18 and 19.
LevmMA 21. Let

() L=y f 0(a, ¢, a)fs(l, N/4; a)Q(a)e(—Na)da

g<N7 a

On additive number theory 255

Then
(72) I,(N) > N* 2 0(0).

Proof. We have

I(N) =

Z Zf@w,q,

e(z” at-uza— N
1< 0Ny T=1 4SNT i @)dn .

where the w,’s are defined by (16).
Thus by Lemmas 17 and 20, we have

L= Y 3 Z{Hq 80(a, )} gl — (N — 15— a™)a}

120 Y4 = 1 q<N’ a

XR(N—%,;'*WM))

2 AN —u;— %, ) R(N — u;— 2™)

I
|
Mo I«

12?0 Nya a<N*
> X NNl > N¥O. N0 N = Ne-100(0),

1< 0 Vs t=1
since u = u;+1/20 and U = Q(0).
§ 6. Proof of Theorem 1. We have

1+1je

[ Al))e(—Na) = L,(N)—L,(N)+I,(N)+I,(¥),

lje

where I,(N) is defined by (71) and

>N f@(a,q, Waall, Nt a)

<N a

(75) L) = [ {G(a—
m

(78) r(N) =

(14)  L(¥N) = a)e(—Na)da,

(@) 4; @)}foll, N/4; ) Q(a)e(—Na)da,
(76) I, (N) = f/l(a)e(——Na)da.

Using the trivial estimate f,,(1, ¥/4; ) < N**°, we have from Lem-
mas 15 and 13, respectively,
I(N) < N*1=%0Q(0), I,(N) < N*~ 1‘“".Q(O)
80 that from Lemmas 16 and 21, we get from (73)
(V) > N*“1200Q(0).
Thus »(N)> 0 for large N, proving Theorem 1.
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§ 7. Lemmas for Theorem 2. Using the frivial estimates
Q(a) < Q1(0), 9(a) < Q(0) (ef (20)),

we note that the next three lemmas correspond to Lemmas 12, 13 and 14
of Davenport [1].

LEMMA 22.

J16* (@)~ 6% (a, g, )| 19} () 2 (a)| da < NZ ! "Q10) 25 (0).

bires
LeMMA 23.

[ 16%(a, ¢, )12} (a) 25 (a) | da < 21(0) 2F(0).

qullﬂ a ﬁ*a’q
LEMMA 24. On m¥,

1 1

w4
Fo(N/16, Ny a) < N* 2
LEMMA 25.

J16% (@) 21 (a) 23 (@)l da < N1 6¥(0) 21 (0) 25 (0).

m*

Proof. By Lemma 24 and Schwarz’s inequality, the integral of the
lemma is

< {maxlt" (@)}, [ et 2 )lda}
<35 fararad® | f et wr ad
0 0

6 6 6 6 13
PSRN ot 68 ————
= M0 g 0" < ¥ E N0 21 0) N
from (54), (55) and (56). The lemma follows since
(17) N < 6°(0) < N
The following three lemmas correspond to Lemmas 16, 25 and 26
of Davenport [1].
LeMMA 26. We have
(78) f@ (@, ¢, a)e(—ua)da = g=*(8,(a, g)) e5(— ua) B* (),
where for N|2 < u < N, R*(u) satisfies

(79) NP < B*(u) < N'®,
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Lemya 27. If w=1,2,3,4,5 or 6 (mod 16), the series

() = D A4*(u, q)
g=1

is absolutely convergent, and S*(u) > ¢,, where ¢, is a positive constant.
LeMMA 28, For X > 1,

D 1A% (u, )l < we X,
=X
LEMMA 29. If N/2 <u < N, then
S* (VB u) » N°.
This follows from Lemmas 27 and 28.

LeMMA 30. Let

1
(80 LW = 3 ¥ [6"@, ¢, )0(a) G (a)e(—Na)da.
g<Nl8 a o
Then
(81) I (N) > N7'-26%(0) 9% (0) 25 (0).

Proof. From Lemma 26, we have (cf. (17) and (18))

i

M%

W) = y 2]@ a,q,a)e(at wja— Nayda

quUB a 0

.
Il
hA
<,
I
-

=~

I
\%E

2 Zq‘ﬁ Sa(a, ) eg{— (N —vi— o) a} B* (N —v;— ;)

Nl8 a

-,
i
-

<.
I
i

[+¢

N

I
D
D=

D ANV —vi—wj, ) B (N —v— ).
a<n1/8

.
]
ol

<,
I
-

Hence, from (79) and Lemma 29,
I¥(N) > VWNY-® > N-1-6*(0) 2} (0) 05 (0),
since
N> 0°(0), V> 0[(0), W<2(0).
§ 8. Proof of Theorem 2. We have
141/gs
(82) W) = [ 6*(a) 2} (a) 2 (0)6(—Na)da
1fe*
= I} (N)—L3(N)+I3 (M) + I (),

Acta Arithmetica XIIL3 b
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where Iy(N) is given by (81), and
®3) LN = DY [ 6% ¢u0@%@e(~Na)da,

qullﬂ a im 2

(84) .;‘(N)=f{e*(a)— @, g, @)} 2 (a) 25 () 6(—Na)da,

(85) ) = f(@*a).Q*(a).Qz( Ye(—Na)da.

It follows trivially from Lemmas 22 and 23, that
I3 (N) < N7 6%(0) 21(0) 23 (0),
I} (N) < N~ 6%(0) Q7 (0) 25 (0).
Algo from Lemma 25,
Ti(I) < N7 6%(0) 21(0) 25 (0).
Hence from (81), and (82), we have
(V) > N0 6 (0)25(0) 23 (0);
so that »*(N)> 0 for large XN.

This completes the proof of Theorem 2.
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ACTA ARITHMETICA
XIIT (1968)

Sur les nombres qui ont des propriétés additives
et multiplicatives données

par

A. 0. GELFOND (Moscou)

Soit ¢ > 2 un entier. Considérons la représentation d'un entier dans
le systéme de numération de base ¢ et posons

o) N =}, 0<C<g-1,

=0

o Pon suppose aussi ¢, %0, & =10,1,...,
C;, 8 7 v, sont nuls.

Admettons que la fonction f(v) soit additive dans le systéme de
base g, autrement dit que

(2)  FIN) =f(N)+F(N),

ol N, N;, N,, N; sont non négatifs, par exemple

s, tandis que tous les autres

N = N1+N,, ¥, <2, N2=2VN87

L) =N fuld)= D0 =0, 0<0<g-1;
1 0

Jo(N) = afo(N)+Bfa(N) = a D Oug"+8 D) Or-
Alors

(3) jf(%)=§ ajf(quqHZ Zf(Zakq+oq)

Q=0 Oy= ap=0 a,1=0

ou, en vertu de ’additivité de f(z),

(4) Zf(n = H FO+F(d)+.. +f( gD NIFO)+. .. +F( 0D )]+

¥1~1

+n[f )4 A {g=D PIFO) +.. . +F((C,—1) @Y F(C )+
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