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1. A complex-valued function f(n) (n =1, 2,...) defined on the set
of natural numbers is called additive if for all pairs m,n of relatively
prime natural numbers,

1) Flam) = f(n)+f(m).

An additive function f(n) is called totally additive if (1) holds for all pairs
m,n of natural numbers.

We use a terminology according to which a number-theoretic function
f(m) is said to vanish on the set &/ of natural numbers if f(n) = 0 for all »
belonging to the set =7. We call a number-theoretic function f(n) sin-
gular if f(n) = 0 for all natural numbers n.

It is evident that a totally additive number-theoretic funection is
uniquely determined by its values on prime numbers, because

»

@) Flo%.. pir) = > af(p).

j=1

From relation (2) it also follows that if & is a set of prime numbers
and we prescribe arbitrary values a;, for pe#, then there exists (ab least
one) totally additive number-theoretic function f(») such that f(p) = ap
for pe?.

It is easy to prove that a set of natural numbers & = {1 Ggy -}
has the last property if and only if a;, ¢; are relatively prime for all
4 = j. Thus the structural survey of these sets is not difficuls. But we
cannot say this with regard to the first property.

DErFINITION 1. We call a set o7 of matural numbers a set of umque-
ness (concerning totally additive functions) if the unique totally ad-
ditive function which vanigshes on & is & singular one.

It is easy to find an example, different from the prime numbers for
a set of uniqueness. For example, if 1, % (0 <1 <'k) are fixed relatively
prime integers, then the set & containing the prime divisors of & and
the arithmetical progression I-+jk(j == 0,1,...) is a st of uniqueness.
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The proof is almost trivial. Another example is the union of the set of
the primes p in the arithmetical progression p = —1 (4) and of the get
of the numbers n2+1 (n =1,2,...).

It seems very difficult to decide whether the set 27,, consisting of
p-+1 where p runs over all primes, is a set of uniqueness or not. Using
simple numerical calculations we can prove that if f(n) is a totally ad-
ditive function which vanighes for all p-1, then f(p) = 0 for p < 50.
See the following table:

0 =f(3+1) =2f(2) =0,

0 =f(5+1) =f(8)+f(2) =f(3) =0,

0 = f(19-+1) = f(4)+f(5) =f(5) = 0,

0 =f(13+1) = f(1)+f(2) = f(T) = 0,

0 = f(43-+1) = f(4)+f(11) = f(11) = 0,

0 =f(103+1) = f(8)+f(18) = f(13) =0,

0 = f(101+1) = f(6)-+f(17) = f(17) =0,

0 =f(87+1) = f(2)+f(19) = f(19) = 0,

0 =f(137+1) = f(6)+f(23) = f(23) =0,

0 = f173+1) = f(6)+f(29) = f(29) = 0,

0 = f(61-+1) = f(2)+f(31) = f(31) = 0,

0 = f(73-+1) = f(2)+f(37) = f(87) = 0,

0 = f(163+1) = f(4) +f(41) = f(41) = 0,

0 =f(17141) = f(4)+f(43) = f(43) = 0,

0 = f(281+1) = f(6)+f(47) = f(47) = 0.
We formulate our problem as Hypothesis 1-5.

H;. ByrormESTS 1. The set &, is a set of uniqueness.
H, would be a simple consequence of

H,. HyroTEESIS 2. For every prime q there ewists a prime p such
that

(3) p+1 = kg,

where & 48 a suitable integer no prime divisors of which are greater thawn q.

Assertion in H; follows from H, by induction. It iy evident that we
must prove that f(g) = 0 for every prime ¢. This assertion is true for
¢ =2. Now let ¢ >2 be a prime and suppose that f(¢') = 0 for every
prime ¢’ which is smaller than g. Then using (3) in H, we have f(k) =0
and 80 0 = f(p+1) = f(k)+1(g) = f(g).
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In the following we shall prove that EL, is true for all sufficiently
large ¢ if all the non-trivial zeros of Dirichlet’s L-functions are on the
critical line. It seems very likely that the Riemann-Piltz conjecture
implies H, for all g, but the proof of thiy assertion requires extensive
numerical computations.

The following well-known problem H; is deeper than H,.

Let p(%,1) denote the least prime in the arithmetical progression
p = l(mod k).

H,. HyrorHEsis 3. p(k,l) < k® for every (k,1) = 1.

The following conjecture H, is deeper than H,.

H,. Hyroruesis 4. If f(n) is a real-valued totally additive number-
theoretic function increasing monotonically on Py, i.e.

(4) flp+1) 2f(q+1) o p>q
for all pairs of primes p,q, then f(n) is a constant mulliple of logn.

Indeed, supposing that H, is false, there exists a non-singular totally
additive function g(n) such that g(n) = 0 for all elements # of Z,.

The agsertion in H, follows from

H;. HYPoTHESIS 5. For all pairs a,b of relatively prime natural
numbers the equation
(8) ap—bg =1
can be solved im primes p, q.

Indeed, from Hj it follows that for every natural » the equation
n(p+1) = (n+1)(¢g+1) is solvable in primes p, ¢. Then p > g, and we
have f(n) <f(n+1),n =1,2,... for the function f(n) defined in H,.
Now by the theorem of P. Erdos [1], stating that if a number-theoretic
function is additive and monotonic, then f(n) = clogn, H, follows.

Let o(n) denote the sum of all positive divisors of n. If for every
prime ¢ we can find a solution of the equation

o(n) = qo(m)

in gquare-free numbers #, m, then H; follows.
But we are unable to prove even the easier
H. HYPoTHESIS 6. For every prime q there ewist notural numbers n, m
such that
o(n) = qo(m).

DEFINITION 2. We call a set o of natural numbers a set of quasi-
uniqueness if there exists a suitable set # of natural numbers eontaining
finitely many elements such that the union of & and & is a set of u-
niqueness.


Pem


| iem®

318 I. Kétai

2. TuREOREM 1. If for every sufficiently large prime g Dirichlet's
L-functions modq are non-vanishing on the halfplane res > %, then the

set P, = {p+1} is a set of quasi-uniqueness.

Tor the proof we need the following well-known results, which we
formulate as Lemmas 1 and 2

LEyMmA 1. Let X =2 and suppose that all Dirichlet’s  L-functions

modq are non-vanishing on the halfplane res > &. Then for every 1 rela-
tively prime to m we have
liz
g (m)
where the constant in O is an absolute one.
For the proof see Prachar’s book [2], p. 251, Theorem b5.1.
Leya 2. For every even k, 2 <k <, the number of soluttons of

(6) w(®, m,l) = + 0(z"*logx),

) p<=z, p+l=1hg
in primes p,q does mot exceed
@
¢ k) log (@]k)’

where ¢ is an absolute constant.

The proof of this lemma follows from a standard application of
Selberg’s sieve method. (See Prachar [2], p. 51, Theorem 4.6.)

From these lemmas we obtain Theorem 1 very easily. Namely we
shall prove the following stronger

TeEOREM 2. If the condition of Theorem 1 is satisfied, then H, is
true for every suffzcwntly large q.

Proof. Let ¢ and & be sufficiently small positive constants and let
g, be so large that
z/logw

(8) n(®, g, —1) > (L—8)
q—1

for  g=q, o =g"

The existence of ¢, follows from Lemma 1.
Thus the number of solutions of

(9) p+1 = kfl: k< Q1+d7
for fixed ¢ and varying p is greater than
afloge
-1

Frf)m this we deduce that there exists a solution of (9) for which &
has prime divisors which are all smaller than q.

(1—e)
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For fixed j and ¢ let us denote by N;, the number of solutions of

., , @
p+1=jg¢’y, p<®, g<(¢ <E
in primes p and ¢'. We have to prove ouly that
1
(1— w/ ogx 2 N
j<a®
From Lemma 2 it follows that
@
.Z\T' < c —‘:""-_‘_‘_‘“.'A .
T p(h)elg)logX/gj)
Thus using Lemma 2 we obtain
1
Ny < 0——-————— —
Z; T p(g)log (2/g") 2,92(})
J<g <
éxlogyg &
2 = (3 0(2 4 8) ————
G (¢—1)logq 262 )(q——l)logm

with a suitable absolute constant ¢, > 0. Now let § be so small that

(10) 6, 8(2+0) <1—e.
Hence follows our agsertion in Theorem 2.

Now let # be the set of all primes not exceeding ¢,(4, £). Then the
union of o and 4 is a set of uniqueness (see the deduction of H; from H,)
and Theorem 1 is proved.

We remark that for the proof of Theorem 1 we do not need the full
strength of the conjecture of Riemann-Piltz.

Let L(s, xp) denote Dirichlet’s functions modD and let N(o,T)
denote all the zeros g = ,ﬁH—w of the function hp(s) =[] L(s, g) in

1=%D
the rectangle g > o, |y| <
Then using the same arguments as those of Barban, Tshudakov

and Linnik in [3] we obtain the following

LemmMa 3. Lot & = {D} be an infinite sequence of natural numbers
and ¢>0 an arbitrary constant. Suppose that the following conditions
(), (B) are satisfied:

() N(o,T) < b,T*DP*~og’D for T >1, Ded,

(8) hp(o-it) does not vanish in the rectangle

c>1—nD), W<
where
M1 M >0;

n(D) = by(log D)™, 0 <a<1; 7= (logD)

and by, by, a, M, A,C, B are constants, B = 2.
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From these assumptions it follows that
iz
#(D)
uniformly for & > DB+ (1, D) = 1.
Using similar arguments as in the proof of Theorem 2 we obtain
THEOREM 3. Suppos'ing that the assumptions («), (B) n Lemma 3 are
satisfied by B = 248, 6 < (1-+1/cs)—1 (see (10)) for every sufficiently
large prime modulus g, we find that for every sufficiently large q there ewists
a solution of the equation

w(w, D,1) =

(1—}— O((logm)‘”””))

p+1 =ky

in prime p, so that all the prime divisors of T are smaller than q. Hence it
follows that {p-+1} is a set of quasi-unigueness.

Let #® denote the set of all natural numbers containing at most
three prime divisors. A. I. Vinogradov in [4] proved that every sufficiently
large even number is & sum of two elements from £®. Using his ideas
we can prove that the equation

aPy—bP) =1; Py, Pje®

is solvable for all pairs a, b of relatively prime natural numbers.
Hence we obtain

TarorEM 4. If f(n) is o totally additive function increasing mono-
tonically on the set {Ps-+1}, i.e.

F(Ps+1) = f(Pi+1), if PPy

for every pairs Py, PyeP®, then f(n) is a constant multiplie of logn. Further
the set {P3+1} is a set of uniqueness.

Acknowledgement. I am indebted to Professor P. Turdn for
several remarks concerning the paper.
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Teopema 0 Hyasx A3era-(yHKUmH JenexunHna W pacCTOSHEE MeMXIY +»COCETHAMHE"
HPOCTHIMH HIeaaMu

A. B. Coxonosckuit (TamxeHt)

KiraccHuecKoe NOKA3ATEILCTBO XoXeliseld TEOPeMBl O PasHOCTH
MEHLY ,,COCeTHAMU’’ IIPOCTHMH YHCIAMI (cM. [6], crp. 321) ommpaerca
Ha 3HAHME:

a) orTcyrcTBUA mymeil {{o+it) B obmacT

G>1_E“€; t>1; o<l

6) ouenwn N (o, T) uucua Hymelt ¢ = B-+iy $ymrwun {(c+it) B 06-
pacte f < o;0 <y <T.

B macrosmeil padoTe ¢ IMOMONIBIO METONA 11. M. Bunorpaposa OLEHOK
TPUTOHOMETPHYECKIX CyMM (CM. [2]) Mu moKashBaeM TeopeMbl 1 1 2:

Trorswa 1. Jsema-gynryus Jedekunda (g (o-+it) npoussombHozo noti
anzebpauneckuy wucea K cmenenu n He uMeem Hyaeil 8 06aacmu

A

¢ 21 o Gty

20e A > 0 sasucum auwn om noaa K.
TrorEMA 2.
CK(%“‘it) < iiln/4—clln21n(n+2)

(¢, — abcoqlomHas NOCMOAHHAR).

Wz Teopemsl 1 ¢ IOMOWBIO HECIOKHOIO oGofuienna MeToRa XoXel-
3eIA MOIy4aeM TeOpeMy:

Tropsua 3. IIyemb my (%) — 4UCA0 NPOCMBIL UAEAL08 nepeoil cmenenu
noas K ¢ Hopmoil, He npegocrodaujell . Tozda us oyeHKU

Nglo, T) < T°0~n*T

caedyem, wmo npu @ >1-1[b
(4

j'51(5'74‘97@)'—7'51(41’) ~ Tz
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