

ACTA ARITHMETICA XIII (1968)

On sets characterizing number-theoretical functions

by

I. KÁTAI (Budapest)

1. A complex-valued function f(n) (n = 1, 2, ...) defined on the set of natural numbers is called *additive* if for all pairs m, n of relatively prime natural numbers,

$$(1) f(nm) = f(n) + f(m).$$

An additive function f(n) is called *totally additive* if (1) holds for all pairs m, n of natural numbers.

We use a terminology according to which a number-theoretic function f(n) is said to vanish on the set $\mathscr A$ of natural numbers if f(n) = 0 for all n belonging to the set $\mathscr A$. We call a number-theoretic function f(n) singular if f(n) = 0 for all natural numbers n.

It is evident that a totally additive number-theoretic function is uniquely determined by its values on prime numbers, because

(2)
$$f(p_1^{a_1} \dots p_r^{a_r}) = \sum_{j=1}^r a_j f(p_j).$$

From relation (2) it also follows that if $\mathscr P$ is a set of prime numbers and we prescribe arbitrary values a_p for $p \in \mathscr P$, then there exists (at least one) totally additive number-theoretic function f(n) such that $f(p) = a_p$ for $p \in \mathscr P$.

It is easy to prove that a set of natural numbers $\mathscr{A} = \{a_1, a_2, \ldots\}$ has the last property if and only if a_i, a_j are relatively prime for all $i \neq j$. Thus the structural survey of these sets is not difficult. But we cannot say this with regard to the first property.

DEFINITION 1. We call a set $\mathscr A$ of natural numbers a set of uniqueness (concerning totally additive functions) if the unique totally additive function which vanishes on $\mathscr A$ is a singular one.

It is easy to find an example, different from the prime numbers for a set of uniqueness. For example, if $l, k \ (0 < l < k)$ are fixed relatively prime integers, then the set $\mathscr A$ containing the prime divisors of k and the arithmetical progression $l+jk \ (j=0,1,\ldots)$ is a set of uniqueness.

The proof is almost trivial. Another example is the union of the set of the primes p in the arithmetical progression $p \equiv -1$ (4) and of the set of the numbers n^2+1 (n=1,2,...).

It seems very difficult to decide whether the set \mathcal{P}_1 , consisting of p+1 where p runs over all primes, is a set of uniqueness or not. Using simple numerical calculations we can prove that if f(n) is a totally additive function which vanishes for all p+1, then f(p)=0 for $p \leq 50$. See the following table:

$$0 = f(3+1) = 2f(2) = 0,$$

$$0 = f(5+1) = f(3) + f(2) = f(3) = 0,$$

$$0 = f(19+1) = f(4) + f(5) = f(5) = 0,$$

$$0 = f(13+1) = f(7) + f(2) = f(7) = 0,$$

$$0 = f(43+1) = f(4) + f(11) = f(11) = 0,$$

$$0 = f(103+1) = f(8) + f(13) = f(13) = 0,$$

$$0 = f(101+1) = f(6) + f(17) = f(17) = 0,$$

$$0 = f(37+1) = f(2) + f(19) = f(19) = 0,$$

$$0 = f(137+1) = f(6) + f(23) = f(23) = 0,$$

$$0 = f(173+1) = f(6) + f(29) = f(29) = 0,$$

$$0 = f(61+1) = f(2) + f(31) = f(31) = 0,$$

$$0 = f(73+1) = f(2) + f(37) = f(37) = 0,$$

$$0 = f(163+1) = f(4) + f(41) = f(41) = 0,$$

$$0 = f(171+1) = f(4) + f(43) = f(43) = 0,$$

$$0 = f(281+1) = f(6) + f(47) = f(47) = 0.$$

We formulate our problem as Hypothesis 1-5.

 H_1 . Hypothesis 1. The set \mathscr{P}_1 is a set of uniqueness.

H₁ would be a simple consequence of

H2. HYPOTHESIS 2. For every prime q there exists a prime p such that

$$(3) p+1=kq,$$

where k is a suitable integer no prime divisors of which are greater than q. Assertion in H₁ follows from H₂ by induction. It is evident that we must prove that f(q) = 0 for every prime q. This assertion is true for

q=2. Now let q>2 be a prime and suppose that f(q')=0 for every prime q' which is smaller than q. Then using (3) in H_2 we have f(k) = 0and so 0 = f(p+1) = f(k) + f(q) = f(q).

In the following we shall prove that H2 is true for all sufficiently large q if all the non-trivial zeros of Dirichlet's L-functions are on the critical line. It seems very likely that the Riemann-Piltz conjecture implies H_2 for all q, but the proof of this assertion requires extensive numerical computations.

The following well-known problem H₃ is deeper than H₃.

Let p(k, l) denote the least prime in the arithmetical progression $p \equiv l \pmod{k}$.

 H_3 . Hypothesis 3. $p(k, l) \leq k^2$ for every (k, l) = 1.

The following conjecture H₄ is deeper than H₁.

 H_4 . Hypothesis 4. If f(n) is a real-valued totally additive numbertheoretic function increasing monotonically on \mathcal{P}_1 , i.e.

$$(4) f(p+1) \geqslant f(q+1) if p > q$$

for all pairs of primes p, q, then f(n) is a constant multiple of $\log n$.

Indeed, supposing that H₁ is false, there exists a non-singular totally additive function g(n) such that g(n) = 0 for all elements n of \mathcal{P}_1 .

The assertion in H_4 follows from

H₅. Hypothesis 5. For all pairs a, b of relatively prime natural numbers the equation

$$5) ap - bq = 1$$

can be solved in primes p, q.

Indeed, from H_s it follows that for every natural n the equation n(p+1) = (n+1)(q+1) is solvable in primes p, q. Then p > q, and we have $f(n) \leq f(n+1), n = 1, 2, ...$ for the function f(n) defined in H_4 . Now by the theorem of P. Erdös [1], stating that if a number-theoretic function is additive and monotonic, then $f(n) = c \log n$, H_A follows.

Let $\sigma(n)$ denote the sum of all positive divisors of n. If for every prime q we can find a solution of the equation

$$\sigma(n) = q\sigma(m)$$

in square-free numbers n, m, then H_1 follows.

But we are unable to prove even the easier

H₆. Hypothesis 6. For every prime q there exist natural numbers n, m such that

$$\sigma(n) = q\sigma(m).$$

DEFINITION 2. We call a set $\mathscr A$ of natural numbers a set of quasiuniqueness if there exists a suitable set \$\mathscr{G}\$ of natural numbers containing finitely many elements such that the union of $\mathscr A$ and $\mathscr B$ is a set of uniqueness.

2. THEOREM 1. If for every sufficiently large prime q Dirichlet's L-functions mod q are non-vanishing on the halfplane res $> \frac{1}{2}$, then the set $\mathscr{D}_1 = \{p+1\}$ is a set of quasi-uniqueness.

For the proof we need the following well-known results, which we formulate as Lemmas 1 and 2.

LEMMA 1. Let $X \ge 2$ and suppose that all Dirichlet's L-functions $\operatorname{mod} q$ are non-vanishing on the halfplane $\operatorname{res} > \frac{1}{2}$. Then for every l relatively prime to m we have

(6)
$$\pi(x, m, l) = \frac{\operatorname{li} x}{\varphi(m)} + O(x^{1/2} \log x),$$

where the constant in O is an absolute one.

For the proof see Prachar's book [2], p. 251, Theorem 5.1.

LEMMA 2. For every even k, $2 \le k < x$, the number of solutions of

$$(7) p \leqslant x, p+1 = kq$$

in primes p, q does not exceed

$$c\,\frac{x}{\varphi(k)\log^2(x/k)}\,,$$

where c is an absolute constant.

The proof of this lemma follows from a standard application of Selberg's sieve method. (See Prachar [2], p. 51, Theorem 4.6.)

From these lemmas we obtain Theorem 1 very easily. Namely we shall prove the following stronger

THEOREM 2. If the condition of Theorem 1 is satisfied, then \mathbf{H}_2 is true for every sufficiently large q.

Proof. Let δ and ε be sufficiently small positive constants and let q_0 be so large that

(8)
$$\pi(x, q, -1) > (1-\varepsilon) \frac{x/\log x}{q-1}$$
 for $q \geqslant q_0, x = q^{2+\delta}$.

The existence of q_0 follows from Lemma 1.

Thus the number of solutions of

$$(9) p+1 = kq, k \leqslant q^{1+\delta}$$

for fixed q and varying p is greater than

$$(1-\varepsilon)\frac{x/\log x}{g-1}$$
.

From this we deduce that there exists a solution of (9) for which k has prime divisors which are all smaller than q.

For fixed j and q let us denote by N_{iq} the number of solutions of

$$p+1=jqq', \quad p\leqslant x, \quad q\leqslant q'\leqslant rac{x}{q}$$

in primes p and q'. We have to prove only that

$$(1-\varepsilon)\frac{x/{\log x}}{q-1} > \sum_{j\leqslant q^\delta} N_{jq}.$$

From Lemma 2 it follows that

$$N_{jq} < c \, rac{x}{arphi(j) arphi(q) \mathrm{log^2}(x/qj)} \, .$$

Thus using Lemma 2 we obtain

$$\begin{split} \sum_{j \leqslant q^{\delta}} N_{jq} &< c \frac{x}{\varphi(q) \log^2(x/q^{1+\delta})} \sum_{j \leqslant q^{\delta}} \frac{1}{\varphi(j)} \\ &\leqslant c_2 \frac{\delta x \log q}{(q-1) \log^2 q} = c_2 \delta(2+\delta) \frac{x}{(q-1) \log x} \end{split}$$

with a suitable absolute constant $c_2 > 0$. Now let δ be so small that

$$(10) c_2 \delta(2+\delta) < 1-\varepsilon.$$

Hence follows our assertion in Theorem 2.

Now let \mathscr{B} be the set of all primes not exceeding $q_0(\delta, \varepsilon)$. Then the union of \mathscr{A} and \mathscr{B} is a set of uniqueness (see the deduction of H_1 from H_2) and Theorem 1 is proved.

We remark that for the proof of Theorem 1 we do not need the full strength of the conjecture of Riemann-Piltz.

Let $L(s, \chi_D)$ denote Dirichlet's functions mod D and let $N(\sigma, T)$ denote all the zeros $\varrho = \beta + i\gamma$ of the function $h_D(s) = \prod_{\chi = \chi_D} L(s, \chi)$ in the rectangle $\beta \geqslant \sigma, |\gamma| \leqslant T$.

Then using the same arguments as those of Barban, Tshudakov and Linnik in [3] we obtain the following

LEMMA 3. Let $\vartheta = \{D\}$ be an infinite sequence of natural numbers and $\varepsilon > 0$ an arbitrary constant. Suppose that the following conditions (α) , (β) are satisfied:

- $(\alpha) \ \ N(\sigma,T) \leqslant b_1 T^A D^{B(1-\sigma)} {\rm log}^C D \quad for \quad T \geqslant 1 \,, \ D \in \vartheta \,,$
- (B) $h_D(\sigma+it)$ does not vanish in the rectangle

$$\sigma > 1 - \eta(D), \quad |\gamma| \leqslant \tau,$$

where

$$\eta(D) = b_2 (\log D)^{-a}, \ 0 < a < 1; \quad \tau = (\log D)^{M}, \ M > 0;$$

and b_1, b_2, a, M, A, C, B are constants, $B \ge 2$.

I. Kátai

From these assumptions it follows that

$$\pi(x, D, l) = \frac{\operatorname{li} x}{\varphi(D)} \left(1 + O\left((\log x)^{-M/2} \right) \right)$$

uniformly for $x \geqslant D^{B+\varepsilon}$, (l, D) = 1.

Using similar arguments as in the proof of Theorem 2 we obtain

THEOREM 3. Supposing that the assumptions (α), (β) in Lemma 3 are satisfied by $B=2+\delta$, $\delta<(1+1/c_2)^{1/2}-1$ (see (10)) for every sufficiently large prime modulus q, we find that for every sufficiently large q there exists a solution of the equation

$$p+1 = kq$$

in prime p, so that all the prime divisors of k are smaller than q. Hence it follows that $\{p+1\}$ is a set of quasi-uniqueness.

Let $\mathscr{D}^{(3)}$ denote the set of all natural numbers containing at most three prime divisors. A. I. Vinogradov in [4] proved that every sufficiently large even number is a sum of two elements from $\mathscr{D}^{(3)}$. Using his ideas we can prove that the equation

$$aP_3 - bP_3' = 1; \quad P_3, P_3' \in \mathcal{P}^{(3)}$$

is solvable for all pairs a, b of relatively prime natural numbers.

Hence we obtain

THEOREM 4. If f(n) is a totally additive function increasing monotonically on the set $\{P_3+1\}$, i.e.

$$f(P_3+1) \geqslant f(P_3'+1), \quad if \quad P_3 \geqslant P_3'$$

for every pairs P_3 , $P_3' \in \mathscr{P}^{(3)}$, then f(n) is a constant multiplie of $\log n$. Further the set $\{P_3+1\}$ is a set of uniqueness.

Acknowledgement. I am indebted to Professor P. Turán for several remarks concerning the paper.

References

- [1] P. Erdös, On the distribution function of additive functions, Annals of Math. (2) 47 (1946), pp. 1-20, in particular Theorem XI on p. 17.
 - [2] K. Prachar, Primzahlverteilung, Springer Verlag, 1957.
- [3] M. B. Barban, Yu. V. Linnik and N. G. Tshudakov, On prime numbers in an arithmetic progression with a prime-power difference, Acta Arith. 9 (1964), pp. 375-390, in particular Lemmas 1, 2, 3.
- [4] А. И. Виноградов, Применение $\zeta(s)$ п решету Эратосфена, Матем. сб. 41 (83) (1957), pp. 49-80.

Reçu par la Rédaction le 14. 2. 1967

ACTA ARITHMETICA XIII (1968)

Теорема о нулях дзета-функции Дедекинда и расстояние между "соседними" простыми идеалами

А. В. Соколовский (Ташкент)

Классическое доказательство Хохейзеля теоремы о разности между "соседними" простыми числами (см. [6], стр. 321) опирается на знание:

а) отсутствия нулей $\zeta(\sigma+it)$ в области

$$\sigma \geqslant 1 - \frac{c}{\ln^a t}; \quad t > t_0; \quad a < 1;$$

б) оценки $N(\sigma,T)$ числа нулей $\varrho=\beta+i\gamma$ функции $\zeta(\sigma+it)$ в области $\beta\leqslant\sigma; 0\leqslant\gamma\leqslant T.$

В настоящей работе с помощью метода И. М. Виноградова оценок тригонометрических сумм (см. [2]) мы доказываем теоремы 1 и 2:

 $T_{ ext{EOPEMA}}$ 1. Дзета-функция Дедекинда $\zeta_K(\sigma+it)$ произвольного поля алгебраических чисел K степени n не имеет нулей в области

$$\sigma\geqslant 1-rac{A}{\ln^{2/3}t(\ln\ln t)^{1/3}};~~t>t_0,$$

где A>0 зависит лишь от поля K.

TEOPEMA 2.

$$\zeta_K(\frac{1}{2}+it) \ll |t|^{n/4-c_1/n^2\ln{(n+2)}}$$

 $(c_1 - aбсолютная постоянная).$

Из теоремы 1 с помощью несложного обобщения метода Хохейзеля получаем теорему:

 $T_{ ext{EOPEMA}}$ 3. Пусть $\pi_1(x)$ — число простых илеалов первой степени поля K с нормой, не превосходящей x. Тогда из оценки

$$N_K(\sigma, T) \ll T^{b(1-\sigma)} \ln^{c_2} T$$

следует, что при $\Theta > 1-1/b$

$$\pi_1(x+x^{\Theta})-\pi_1(x)\sim \frac{x^{\Theta}}{\ln x}.$$

Acta Arithmetica XIII.3

320