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This paper applies the general method of approach developed in [2]
to obtain further results about the diophantine approximation of values
of certain functions. We shall repeat the theorem demonstrated in [2],
calling it Theorem I here; state and prove Theorem II, which is a gen-
eralization of Theorem I; and obtain as a special case of Theorem II the
principal result of this paper, Theorem ITI. Since all three theorems are
quite abstractly stated we begin with a proposition which is a special
case of Theorem III, followed by two detailed examples.

Section I Let D denote differentiation with respect to the complex
variable z; let I be an integer greater than one; and let each gi(z) (1<ji<g)
be a polynomial of degree less than j with coefficients in the Gaussian
field. Suppose that we are in a simply connected region X where ¢ (z)

is analytic and that g, ..., 7, are n > 1 solutions of
1
(1) v = Do) Dytaf)
j=1

which are analytic in some open disk N < X with center 2. Suppose
2, belongs to N, 2, is a Gaussian rational, and 0¢gi(N). Let  be a dif-
ferentiable path in X with endpoints at 2y which does not pass through
any of the zeros of g;(z). Suppose that 7, Yy --vy Yn 7 UYn are the function
elements analytic on & obtained by extending y,, ..., 4, respectively
about ¢ and that the y; —4; are linearly independent. Let

4 — . VEGE)
. t—degy;(a)

Let [lull, for « any complex numnber, denote the distance from o to the
nearest Gaussian integer. Let (4,,..., A,) denote any nonzero element
of the cartesian product of the Gaussian integers with themselves n times.

* This paper was supported in part by the National Science Foundation contract
number GP 54-78 and in part by the National Bureau of Standards where the author
is presently a postdoctoral fellow.
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PROPOSITION. For each e > 0 there exists o ¢(g) > 0 such that
n
max A;DYy—7,) ()|} > e(e)min{| 4~ *}
o<z‘<l{”,-_2: 1D ys— ) (% H} > ;
for all (A4, ..., 4Ay).
The proof of the Proposition is located after the proof of Theorem III.
Examere I, Suppose that (1) is of the form
@) y = Dp(2D)y,
where zDg(2D) is a polynomial in 2D with coefficients in the Gaussian
integers of degree I > 1 no two of whose roots differ by a rational integer.
In this case the I—1 linearly independent non-entire solutions of (2) are
Yy = 2 n
= [Hp(ketr) (k)

2

1<j<i-1),

where each #; is a zero of ¢(m). (See [3] for results about the entire solu-
tion of (2).) Now let ¥ be a circular path winding once in the positive
direction about the origin. Bach y,—¥; = (1— ¢*™")y,; thus, the y,—,
are a linearly independent set of functions over (. It would appear that
we should apply the Proposition to the y;—;. However, it is more inte-
resting to apply it to the functions ¥;— f,-, defined below.

Let
-1

y = >0y~
=

be such that Diy(z) = B; (0 <4 <1—2) where each B; is a Gaussian
integer. It must be possible to find such a ¥, since otherwise the Wronskian
of the I— 1 functions y;— ¥; would vanish at #, and then we could construct
a linear combination (over O) of the y;—¥; which has a zero of order I—1
at #z; and whose (I—1)-st derivative at 2, iy a Gaussian integer. This
would violate the Proposition for 4, =1 and 4, = 43 = ... = 4, =0.
Therefore the C; exist and by Cramer’s rule

0y = 4;(4)7,

where A iy the Wronskian of the y;—¥; at 2, and 4; differs from 4 in
that the matrix of which it is the determinant has

B,

B,

hm@
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in the jth column. Then y = ;’Aj-(A )"+ (95— ¥;). Bxpanding out each A4;
and writing y as a linear combination of the B; we have

l-2

Y= ZBf(yi_ ),
=

for some set of functions ¥ each of which satisfies (2). Since (B,, voy Biy)
is an arbitrary element of the cartesian product of the Gaussian integers
with themselves I—1 times we must have that

DY X~ ¥;) () = 8.

Therefore the Y,——f’,— are linearly independent functions over ¢, We now
apply the Proposition to the functions ¥; and replace each B; by Ay,
where (44,...,4:_1) % (0,...,0). Our conclusion is that

-2
H 2 B, D" (Y— Xj) (=) ” > G(a)nlin{[_/j:j}—(l—-l+z)};
7=0 7
whence, for any Gaussian integer 4,

| 2 41—y n) + 44| > o(e) |4 | min {1,049
7 7

Dividing out by a nonzero factor, we obtain the result that for an appro-
priate ¢,(¢) >0

| X 4D ye) + 434" | > oy (e)min 14,1 0-149,
7 E)

where 4; and A" are determinants which differ from 4, and 4, respec-
tively, only in that y;(2,) has been substituted for

Yy () = (r) = (1—e"™"7)y;(21)
throughout.
Thus

Ay yi (=) e Yra(&)

| > o1(e)min 4,01+,
Ar D) e D (a) !
as may be seen by expanding the above determinant by minors along the
bottom row. Note that our condition that (4i,..., 4;,) #(0,...,0)
may be replaced by the condition that (4, ...,.4;) # (0, ..., 0), if we allow
¢1(e) to be possibly smaller than above. If the D'y (z) are all real then
for rational integers A; this is a best possible statement.
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BxampLe II. Consider a function of the form

-1

y =z~ "exp (Z ﬂ-z’i)

i=1

(3)

where a and the »; are each rational, a > 141, a is not an integer, and

11 #* 0.
Now
, 1—2 ]
) Lo g (i — (1= Dy
Y i=1
or
-2 .
(5) dy = (_az1~1+ z{‘ (—)rdt= " — (l—~1)11_1)_q/.
1= .

It is easily shown that the integrals
14-foo

dy(e)eds = ji 1 f (=) de
Y as' \2rmi | J

1+1ic0

2mi J
1100

exigt for all real s if j = 0,1,..., or I—1, a8 does

1+ieo dl 1 1--too
1,1 ] ' ]
- [ Areen -l [ vee)
VRN ds* \2ni e
14100 -
dl 83
= —|—s y(z)e¥dz).
dS ( 1—%00 )
Set
1+4-oo
Tis)= [ y(e)e¥de,
1—ic0

which is the inverse Laplace transform of y(2). Then

-1
6)  D'(—8)¥(s) = (—aD"" D (—i)r D (1)1 X ().
tel
We may put (6) in the same form as (1), then we ghall apply the
Proposition to a colleetion of functions congisting of the one function
KY(s), where K is some appropriate nonzero number. The curve ¢ will
be a circular path once about the origin in the positive direction. First,
however, we shall caleculate Y (s) explicitly and show that it may be de-
fined as a multiplevalued function in the plane with ¥(s)— I?(s);é(]
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Clearly
y(s) = n (= Nexp (rsdh)).
1
Note that each factor on the right side above has an inverse Laplace
transform. An inverse Laplace transform takes an ordinary product of
functions into the convolution product (denoted by =) of their inverse
trangform. Thus the first step is to calculate the transform of each factor, i.e.
X —n—af (I 1
n!
=0
We may transform the above series term by term. The only fact then
about inverse Laplace transforms which we need to know ig that ¢
(a > 0) goes into s*~*/I'(a). Thus
Z ,r.;{zsn—t-a/(l— 1)1
e w1l (n+ af(1—1))

is the inverse Laplace transform of #~%¢~Yexp (16", Using the identity

st gh-t Fls—trt P seth-1
T " T0) =f @ TH = Tatp
we obtain k
l—lm-
Y(s) = g = 7*}”1...7"?1313"‘5.‘ ’ .
i oM Loy W Y ing+q)

‘What we have shown then implies that

11
3 ing

o0

N PP pggt=t

St o gl g M0 Y gt a) [T (a) ™

is a solution of (6) if a > I. By analytic continuation with respect to a,
if @ is not zero or a negative integer, I'(a) ¥ (s) is always a solution of (6).
‘We therefore drop the restriction that o > 141 and assume merely that o
and the r; are rational numbers, o is not an integer, and r,_; # 0. Set
83 =1, % 0. Then one of the numbers

DT (a) (¥ (r)— ¥ (),

I(a) XY (s) = st

0g<p <11,
is nonzero.
We apply the Proposition to the function

I'(a) Y (s)
I'(a)D(¥ (r)— X (1))

_ Y(s)
(=D Y ()
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As d = (I—1)7 we obtain

4 DYy
T DPY(r)

} > o(e)| s~ W=+,

-
J#p

7

Notice that the numbers being approximated are all real. Khintchine’s
transference principle (see [1]; p. 80) enables one to say (see [3]; p. 80)
that

DY (r)
(8)

DY ()

> o(e)min{| 4y~
4D

7D

for all nonzero (4,,..., 4p_1;,4ps1y...,47.;) belonging to the cartesian

product of the integers with themselves I—2 times, i.e. 22 Multiplying
by 77 *I'(a) D*y(r;) we obtain

-1
| D A D I(a)y(r) | >

=1

(9)

¢, (e)min {4~ (=119}
7

for all nonzero (4., ..., 4; ;) belonging to Z"%. Line (9) is a best possible
statement. Further, the numbers r,““D"I’(a)y(rz) may be replaced
in (9) by the mumbers r;* D'I'(a)y (1), i.e.

Z"’ TS T S T R G A )
S, wytec g W (g4 oA =)+ a—g) {D(a)) ™’

where j = 0,1, ...,1—1 for a new constant ¢(e).

Section II. Now we present Theorem I, which was proven in [2].

Suppose that: (I) ¥ is a function from a set § to B™ (the m by one
matrices over R); (II) U is a vector space of functions from S to R™ over
the field B; (III) T is a linear operator and U, 2 U,=2...2 U; (1>2)
are subspaces of U such that 7% is defined from U; to U 1<l (IV)
9 belongs to U; (V) M is a vector space over B of functions from § to
the m by m matrices over B; (VI) @ is a function from M to M; (VII)
if f belongs to U, and g belong to M, then gf belongs to U, and Tgf = gTf-+
+@(g)f; (VIII) we have

1
(10) y=Dal
i=1

where the g; belong to M and each &'(g;) = 0; (IX) there exists a subspace
W of U, and a linear operator 7~*, defined from TW to U such that

T TIW = I|W;

hm@
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(X) &' (g:) T'='~*y is defined and belongs to W for each 1 < ¢ < Liz=o,
and k > 0, ag does each T "y for n > 0; (XI) there existy a § >0 such
that

6(@,)

né
Ty ()] < (T ) n

where ¢(a) is positive and independent of #, for each @, belonging to 8;
(X1II) we are given @, belonging to § such that each entry of each & gi(24)
belongs to @ (the rationals) for 1 <4 <1, 0 <j < 7; and (XTIIL) gy(y) is
nonsingular.

Now set
degg = min{j 18" (¢;) = 0}
and
d
d = mx{__‘i’%ﬂ_} >
Izizo | t—degyg;

DerinrrioN. By the absolute value of o matriz we mean the maximum
of the absolute values of its entries.

TeEOREM I. Under conditions (I)-(XIII) either

(a) each Tiy(w;) = 0 (0 < i < 1—1)
or

(b) for each & > 0 there exists ¢(e) > 0 such that

(11) max {|T%y (@)~ Pyfql} > e(e) |g|-C+%+9

0igl—1

for all m by 1 matrices of integers P; and nonzero integers q.

Levma. If we assume in Theorem 1 Shat y takes values in the m by 1
malrices over €, that U is o vector space over %, that M 4s a vector space of m
by 1 matriz valued functions over €, that each Py is an m by 1 matriz with
Gaussian integral eniries, thet q is a nonzero Gaussion integer, and that
each &' (g;)(w;) has Gaussion integral entries, then (11) still holds.

Proof. The change to complex valued functions throughout the
proof of Theorem I, along with the substitution of Gaussian integral q
for integral q and Gaussian integral entries for integral entries in the
&' (g)) (#,) and the P;, gives a proof of (11) under the conditions stated
in the Lemma. (The only property of the integers which was used in the
proof of Theorem I was that if » is an integer and # is not zero then |n| > 1.)

DErFINITION. By |laf, where a = (a;4) is a matrix, we mean ms;ux{ua,;,-“}.
%
Suppose that y,,..., y, are n linearly independent m by 1 matrix

valued functions over the complex numbers which each satisfy the con-
ditions of Theorem I, as modified by the Lemma, for the same set §;
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the same operators T, T~%, and @; the same operator equation with the
same coefficient functions g;(#); the same spaces M, U, U; (1 <14 <)
and W; and the same constants ¢(x,) and d.

Let (44, ..., 4,) denote an arbitrary n-tuple of Gaussian integers.

TurorEM II. For every ¢ >0

(12) max{”ZA Ty () H} mm{lAI @+

o<ict
emcept for o finite collection of (4y, ..., 4g)-

Proof. Obviously the Lemma follows from Theorem IX. On the
other hand there does not seem to be an easy way of going from. the Lemma,
as stated, to Theorem II. However, we notice that in demonstrating
Theorem X in [2]it was first shown that

(13) max {2 (0)— Pifgl} > g1+

oigcl—1

for all ¢ such that lg| > ¢(¢). Examination of the steps involved reveals
that ¢(e) is uniform for all y satisfying a fixed set of hypotheses (I)-(XIIT).
(After deriving the above inequality ¢(¢) was dropped in favor of a state-
ment involving e¢(s), where ¢(e) depends upon how well the particular
numbers Tiy (#,) can be approximated by fractions with denominators
having absolute values less than ¢(g). Hence ¢(¢) depends upon y.) Changing
now to the hypotheses of the Lemma we again obtain (13) only with y(x)
an m by 1 complex matrix valued function and each P; an m by 1 matrix
of Gaussian integers. Suppose that vy, ..., ¥, satisfy the hypotheses of
the Lemma. For each nonzero (4, ..., 4,), then

n

g = (g;Ajyj) (mniux{ifljl})—

also sabisfies the hypotheses of the Lemma and — hence — satisfies (13).
‘We have for each Gaussian integer A4,

ma.x|2A Ty () (nmax{]A,]} —Ao(ﬂnmax{mf}} l

i=1
> n—(1+d/a+a)mm{IAfl—(1+d/a-|-s)}
7

or
n
maie{| 34,7 (o)} 2 14+ min (14,049} > min( 4,040,
i =

if max{|4;|} is larger than some number depending on & but independent
?

of ¥1, ..., ¥ This proves Theorem II.

hm@
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We now present the hypotheses of Theorem III. Suppose that (1)’
Yiy.--s Yn are n functions from a set § to the m by 1 matrices over 0;
(2) U= U, =2... 2 U; are vectors spaces of functions from § to the m
by 1 matrices over ¢ with ¥y, ..., ¥, belonging to Uy; (3) T is a linear
operator from. U, to U and T is defmed (1 <4 <17) from U; to U; (4) M
is a vector space over ¢ of functions from § to the m by m matnces over (';
(5)" @ is a function from MM to M; (6)" if f belongs to U, and g to M then

gf belongs to Uyand 1'(¢f) = gLf+P(9)f; (1) 9y = 2(/11"?/,-\— a;(1 <j <m),
=

for functions a¢; in U,, where the g; belong to M and each ®'(g) = 0;
(8) there exists a linear operator o from U to U which is homogeneous
with respect to elements of M (i.e. o(gf) = go(f), if g belongs to M) and
which commutes with 7'; (9)" there exists a linear operator T°': U — U,
such that 77! = I; (10)’ there exists a subspace V of elements of U,
which are left fixed pointwise by o such that V o KerT, each a; belongs
to V, and V is an invariant subspace under 7™*; (11)’ there exists 2 6 > 0
such that for each x, belonging to S there is a

with

e(y) >0 |~ "y (9) — 0T~

¢ né
Pt (o) <( (::0)) for n=1,2,...;

(12)" the functions y;— oy; are linearly independent over ¢/; (13) each
T’"l””g/,- (0 < k< o0) belongs to U,; each #*(g;)(2;) has Gaussian rational
entries for y = 0,1, ...; and ¢(2,) is nonsingular.
Set
deg g; = max {y|®""(g;) # 0}.
v

ad = mam‘ deggs }
Imis0 4 —degg;

Set

TurEOREM III. Under conditions (1)'-(13)', for every & >0

T oy ()

(1" y {m,) —

> min{| 4"+
0(!«! , b

with the exception of at most a finite collection of (A4, ...,
upon e&.

Proof. We wish to satisty (I)-(XIII) of Theorem II. Since the same
letters are used in a number of cases in the statements of both theorems
we ghall place a bar over any symbol which is meant to refer to Theorem ITL.
Thus (I) § is the set § given in (1)’ above. (II) We set

U - U+V
and U; = - 7

A,) depending
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under the definition
{0}(2) = 6 (2)— ou(e)
where {u} denotes the coset containing u. This is well defined as ¢ leaves

elements of V fixed. (III) 7{u} = {Tw}. This is well defined since if {u}
= {u,} then w, = u,+», where v belongs to V and

Ty — 0Ty = Tuy— oTuy+ (Tv-— o).

The lagh term is zero ag o leaves elements of V fixed. Then 7% is defined
from T; to U for 1 <4<l (IV) The funetions 7 = {y;} (1 <j < n)
belong to Uy (V) Let I = M. If j = g belongs to M and § = {f} belongs
to Uy = (U +V)V =T,V (a8 V = Uy), then gf = {gf} which belongs
to U,V =T, (VI) & = &. (VII) We note that Tyf = ®(g)f-4-¢Tf im-
plies that

Tgf—Tolgf) = B(g)(f—of) +g(Lf—Tof) ov  Tgf = &(5)f+gTF.

above. (IX) Set W = U,. Suppose {u} belongs to U, We define T by
T {u} = {T~'u}. This is well defined, as if 4, = %,--v then

1
(VIIL) 3; = 3'3,T'g; from (7)’ by the same type of argument as in (VII)
i1

Ty = T -1
where T~ *v belongs to V. Since I'T~* = I, by (9)’, we have for % in U,
that T7'Tu = u+v, where v, belongs to ker” = V. Thus 77 = I.
(X) U, = W is closed under multiplication from M and T¢~~"7, belongs
o U, by (13)" for each nonnegative integer k. (XI) By (11)’ we have

6 (@,) )”"’.

n

TG o)l = 17"y, (0)— oT~";(a0)| <(

Now (XII) and (XIII) follow from (13)'.
By (12)’ the y;— oy, are linearly independent funetions. Thus the 7
are linearly independent. Then by Theorem II we conclude thab

n
max H Z ATy () — T oy () “ = min {| 4, @+
=1

with but a finite number of exceptions depending upon & bub independent
of 91, ..., Yn. This proves Theorem III.

Proof of the Proposition. Let us apply Theorem IIT. Let & be N.
The space U is the space of all functions which are analytic in N and which
can be extended analyticly around % any positive integral number of
times to be defined again (possible differently) on N. Let U; = U (1 <

hm@
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<4 <1). Let I' = d/de. Let M beall polynomials in z over . Now @ = d/dz.
Clearly ¥y, ..., ¥n belong to U;. Parts (6)’ and (7)' hold trivially. If f belongs
to U by of we denote the analytic continuation of f once around %. Thus
(8)" holds. We set

— -1
207w,

= f -

where the path is the ray from z, to 2. By analytic continuation of the
above expression we obtain

d ", F
oI "y (2) = f~~—f~~

where the path is once around % followed by the ray from z, to 2. Now
(11)" follows easily (using Sterling’s approximation) with § = 1. For (10)’
we let the subspace V consist of all functions analytic on X. Parts (12)’
and (13)’ were either explicitly assumed or are obvious. The conclusion
obtained from Theorem IIY is the Proposition, so we are through.

‘We conclude with the remark that, in the case of vector differential

d
equations where 7' == 1/:1(t)71? -+, (t) for possibly nonanalytic m by m

matrix valued functions v, and y, (see [2]), it should be possible to apply
Theorem III if y, and v, are periodic functions of period +. Then we would
wish to set oy(t) = y(t-+7). If we translate the procedure for complex
scalar differential equations into 2 dimensional real vector notation with
an appropriate parameter ¢ this is what our procedure would amount to
anyway.
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