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A congruence for the second factor of the class number
of a cyclotomic field*
by
L. CArrrrz (Durham, North Carolina)

1. Let [ = ¢/ where p is a prime >3. Put K = Q(Z), the
cyclotomic field generated by {. If h denotes the class number of K, it
is familiar that » = h,h,, where

(1.1) hy = (2p) "o (B)p () .. ¢ (B");

B is a primitive root of 4! =1 and

P(B) = 1+g:f+g2f+ ... +gpaf

where g denotes a fixed primitive root (modp) and g, is the least positive
residue of ¢°(modp).

To define %, let &, &,,..., &y_;, Where p = 2m-+1, denote a funda-
mental set of units of K; it is well known that we may assume that the &
are real and positive. Next define the real positive unit

_ (1_4-0)(1__&-—(7) 1/2.
(-2) e(c)‘{u—c)(l—c-‘)} :

then the units
g'm—Q

e(), e(t9), ..., e(¢ )

are independent. Put

A = loge(t™*™| (r,s=0,1,..., m—2)

and
R = [loge, (&™) (rys =0,1,..., m—2).
Then

(1.3) hy = |4/R).

* Supported in part by NSF grant GP-5174.
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It is known that i, is divisible by p if and only if p divides the numer-
ator of at least one of the Bernoulli numbers (in the even suffix nota-
tion)

By, By, ...y By s,

Vandiver [2] has proved that
m

(1.4) Jig =2 27y r] By gy (modp”),
Y]

where @ ig an arbitrary positive integer. Iasse [17] has recently given
another proof of (1.4). Also it is well known that h, is divisible Dy p if
and only if &, is divisible by p. For references sce [3].

In the present note we show that -

(1.5) ‘ ‘ ho@ == hy (modp),
where ¢ is a rational integer depending only on p. For the explicit defi-
nition see (3.9) below.

2. We shall use the fuller notation

(2.1) () &a(0)y ooey Enall)  (p = 2m--1)

for a'fundamental system. of units; as above we assume that the units
are real and positive. Smce e(f) as defined by (1.2) is real and positive
we may write

(2.2) 6(8) = &L (8 ea(0) ... e (M,

where the #; are rational mbegels Since (2.2) holds for ¢ and all its con-
jugates we have :

aPe(m)+ (L-+a+a’+.. .2 ) (@) = e (0) ey (@)2 ... £y (@)M-1,
where x is an indeterminate and f(«) is a polynomial with rational in-
tegral coefficients. Differentiate logarithmically, multiply by @ and then
put @ = {. We get

@) a2t 1))
(T N
-—-Irlc 81(& + zf (C) ‘{"'{ "’wm—lCm (1‘1'-10(1?)’

where

M= f()]e(d).
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Kummer showed that

e (L) 1

(2.4) i =g 1+2bsg !
where
(2.5) by = (9Gs_1—9s)p (s =0,1,...,p—2).
Since

D—2 P-1

_2 qu = Ct = —1,

8§=0 =1
(2.4) becomes

P—-2

D) 6’(:) _ _ g—1 S
(2.6) ‘:e(g)‘gbs )

It follows that

YIRS g—1
I g7 — s s R
@1 ¢ o —g(bs_, ; )gﬂ (G=0,1,...,m—2),
where by = bs,p.1- X
In place of (2.2) we now take
(2.8) e(C"j) =& ({) ey (E) P oy  ()Fm1 (= 0,1,..., m—2);

then (2.3) becomes

m—1

o e gits __ g GL(C)
(2.9) ¢ ng ) L 2 o Z,ké i (modp)

(j=0,1,...
where M; is an integer of K.
We now put
n-2
(2.10) ,cscﬂs (k=1,2,..., m—1),

C)

where the ¢, are rational integers.
‘We recall that

(#) = (1=
also gince
P—-1

1-0) ) st* = 25’*

=1 8§=1

—1) = —D,

, m—2),
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it follows that
n—=2
L]
(2.11) (1—4“)”‘212 g%
§=0

Hence if we put
My = d; (modl—{),

where d; is a rational integer, if follows from (2.7), (2.8), (2.10) and (2.11)
that

2 m—1 VIES ‘Z

2
Z(b“ ]___(/_.i)g'/s_i.d Z(f T e \ e > cul® (modp)
520 '=1 §e=0

(j=0,1,...,m—2).

Comparing coefficients we get

m—1

(2.12) be_j—g—1)+dig" ! = D rnors (modp)
T
G=0,1,...,m~j; §=0,1,...,p—2),

If we multiply both sides of (2.12) by ¢®*~* and sum over ¢ we get

p_2 = =
(213) g 3 gD —i(g=1) 3 a3
§=0 =0 8==0
-1
2 'r,kz ersg®™ M (modp)  (m=1,2,..., m—1).
8=0
Since
P-2 D32
2 g8 = 2 ¢ = 0(modp) (m=1,2,...,m—1),
§=0 8=0

(2.13) reduces to

D—-2 M1 D—2

(2.14) g%V 3T bgt 0 = By 3T 0 g®™ Y (modp)
§=0 fe=1 8=0
(n=1,2,...,m—1).
Now put
P2
(2.15) O =D ag®™ ™ (k,n=1,2,...,m=1),

8we()
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so that (2.14) becomes

m—1

(rm 1)7 Z b g(mﬁl)s 2 i Olm (modp)

(G=0,1,...,m—2; 2 =1,2,...,m—1).
It follows that

m—1 p-—2

(2.16) G(,H Z bsg®" Y == [rpl- € (modp),

where e

(2.17)  Go=1g""Y (j=0,1,...,m—2;n=1,2,.., m—1)
and

(2.18) C=|[Cw (k,n=1,2,...,m—1).

Moreover, by (2.8), we have

(2.19) hy =1l (j=0,1,...,m—2; k=1,2,..., m—1).

3. Returning to (1.1) we have

(3.1) (gB—1)p(8) = py(B),
where
(32) p(f) = D bef°

and b; is defined by (2.5). Thus

(g8 =) (") = pyp(F).

Since
n
[Ja—pm) =140m
we get
m
(3.3) (—1)™(g™ 1) ]’]q7 -1y 'm]_[’(lj(l,))gn,.l)'
=1 N==1

We agsume in what follows that ¢ iy a primitive root (modp?), so
that g™ -1 is divisible by p but not by p2. Substituting from (3.3) in (1.1)
we accordingly get

p 27— 1
(3.4) By = (—1ymemtt 2 T [y prmety.
rall
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Tn the next place, in the cyclotomic field @ (f) the principal ideal (p)
is a produet of ¢(p—1) prime ideals of the first degree:

e 1
=[] @84
(k,»ﬁffi)sl
If we put p = (p, f—g) it follows that
B = g(modp)
and therefore .
P (B =z (g™ ") (modp).

Hence (3.4) implies

(3.5) By = (—1)"2" (j,—,q—l—llw ¢ Y (modp).
The modulus is p rather than p since both sides of (3.5) are rational in-
tegers.
For # == m we have by (3.2) and (2.5)
-2
Pp(@®™ ) = > (91— e 9"

=
=

Since ggs_1— ¢s = 0(modp), it follows that

p—2o p-2 IR
pe(@™ ) = X (e 007" = 3 7 goi— N 470
§uml 0 ;‘-:1] 3-‘-‘-0

=g — " e = (G—0"" gps
= g7 (P = 1) g == 7T 1 (modp?)

and therefore

1
(3.6) w(g®™ ") :%za;;(g”“l——l) (modp).
Thus (3.5) reduces to
e |
By = (— 1)wz2m+1 ” 1/’ n 1 modg}),
Tewal
that is
Ma ],
(3.7) By == (—1)™Higmt? ” w(g™ ) (modp).
R=1

Comparing (3.7) with (2.16) we get
(3.8) (—=1)™1 2™, 0 == 4 h G, (modp),

h’l‘l@
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with @, 0 defined by (2.17) and (2.18). Hence if we put

(3.9) G = (—1y*" 9" 610 (modp),
we have
(3.10) Ry = Lk, (modp).

In view of (1.3), the ambiguity of sign in (3.8) and (3.10) is unavoidable.
Since by (2.17)

(3.11) G, = n (=1 — ¢g¥=1) (modp),

1gjwkam
it is clear that @, s 0(modyp). If we pub
(3.12) G=J] 7—¢"" (modp),

1<i<k<m
then, except for sign, G, is congruent to the difference product of the
quadratic nonresidues of p; hence &, is 1ndependent of g. Comparing (3.11)
and (3.12) we have

m—1

G, = Gnn (gzmvl_g'.’.y'—l).
j=1

Now
m—1 . m—1 . m-—1 Mm—1
I‘I (92111.1_!]21—-1) E” (gml_ 2f~1 =gy gmm 1“ (1— g°J = __g
j=1 j=1 .
since
Me—1 )
[] @—¢)y=a"—1,
j=0
it follows that
m—1
H =g =m= —
j=1
‘We have therefore
(3.18) G = 396G, (modp).

4. Tt is of some interest to show directly that & in (3.8) is independent
of the particular fundamental system of units. Let

7)) (G=1,2,...,m—1)
denote an arbitrary fundamental system of real positive units. Then we
have
17](:) = El(g)aﬂaz(é-)aﬁ b am-_l‘(é‘)aj’m—l (j = 1, 2, iy m—l) .
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Exactly as above this implies

(@) = ey () P e ()P ... gy () B0 (L4 2™ fi (),
where f;(x) is a polynomial with rational integral coefficients and the
determinant |a;| = 4-1. This implies

,('_) M- 1 I(Z:)
7506 €6 . N y
(£.1) I Aa = U E e A M (E 42824 - (p—1) 20 Y.
(0 AL;/ 1 ) J( (p—1) )
Now put
GRS
- il Kﬁ roepS
el I ON =1,2,...,m—=1).
o) = 2 BT U=

Then by (+.1) and (2.10) we have
Ni—1
#2)  gy= D aueytdyg” (modp)
=1
(J=1,...,m=1; g =0,1,...,p=9).

Multiplying both sides of (4.2) by ¢®™ ™ and summing over s we get

M- 1
P R
(4.3) Chu== D .0 (modp),
k=1
where

' »p-—-29
i’ T @en-1)s
Oy, = Z (’is!/( ”,
§=0

It follows at once from (4.3) that

(4.4) ¢ = |0 = +C (mod\p).
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L-functions and character sums
for quadratic forms (I)

by

. M. STARK (Ann Arbor, Mich.)

1. Let Q(x) be a positive definite quadratic form in n variables

& = (L1, X, ..., ¥;) with integral coefficients, and let y be a character
(modk). We define
l 8

ey Lis, 2, Q) = 5 ) 2(Q@)Q (@)™,

0

the series converges to an analytic function if Res > »/2. This general-
ization of the Epstein zeta function has been, in the case of binary quadratic
forms, closely related to class-number problems for the last thirty years.
Recently [5], a rapidly convergent expansion of L(s, y, @) at s =1 was
derived for a particular positive definite binary guadratic form with the

k . .
real character y(j) = (—,), k = 8 and 12. On the basis of this expansion
J

it was shown in [5] that the number of classes of binary quadratic forms
of diseriminant << —163 is greatér than one. Still, the functions L(s, x, @)
have not been sufficiently studied for their own sake. Even in [5], since
only two different L-funetions were studied with the corresponding char-
acters having relatively small moduli (8 and 12), arithmetic was some-
times able to take the place of a general theory. In this paper, we introduce
& general L-function for positive definite quadratic forms in n variables.
Under certain restrictions, L(s, y, @) can be extended to an entire fune-
tion in the complex s plane which satisfies a funectional equation. In
this paper we derive that functional equation and the character identity
on which it depends. In [6], we will show how an alternate form of our char-
acter identity leads, in general, to an expansion of L(s, x, Q) at s =1
similar to that in [5], but with the arithmetic eliminated. Much of the
difficulty in the following comes from allowing % to be even; buf if we
wish to apply these results to [57], it is clear that we must put up with
the extra difficulty.
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