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Exactly as above this implies

(@) = ey () P e ()P ... gy () B0 (L4 2™ fi (),
where f;(x) is a polynomial with rational integral coefficients and the
determinant |a;| = 4-1. This implies

,('_) M- 1 I(Z:)
7506 €6 . N y
(£.1) I Aa = U E e A M (E 42824 - (p—1) 20 Y.
(0 AL;/ 1 ) J( (p—1) )
Now put
GRS
- il Kﬁ roepS
el I ON =1,2,...,m—=1).
o) = 2 BT U=

Then by (+.1) and (2.10) we have
Ni—1
#2)  gy= D aueytdyg” (modp)
=1
(J=1,...,m=1; g =0,1,...,p=9).

Multiplying both sides of (4.2) by ¢®™ ™ and summing over s we get

M- 1
P R
(4.3) Chu== D .0 (modp),
k=1
where

' »p-—-29
i’ T @en-1)s
Oy, = Z (’is!/( ”,
§=0

It follows at once from (4.3) that

(4.4) ¢ = |0 = +C (mod\p).
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ACTA ARITHMETICA
XIV (1968)

L-functions and character sums
for quadratic forms (I)

by

. M. STARK (Ann Arbor, Mich.)

1. Let Q(x) be a positive definite quadratic form in n variables

& = (L1, X, ..., ¥;) with integral coefficients, and let y be a character
(modk). We define
l 8

ey Lis, 2, Q) = 5 ) 2(Q@)Q (@)™,

0

the series converges to an analytic function if Res > »/2. This general-
ization of the Epstein zeta function has been, in the case of binary quadratic
forms, closely related to class-number problems for the last thirty years.
Recently [5], a rapidly convergent expansion of L(s, y, @) at s =1 was
derived for a particular positive definite binary guadratic form with the

k . .
real character y(j) = (—,), k = 8 and 12. On the basis of this expansion
J

it was shown in [5] that the number of classes of binary quadratic forms
of diseriminant << —163 is greatér than one. Still, the functions L(s, x, @)
have not been sufficiently studied for their own sake. Even in [5], since
only two different L-funetions were studied with the corresponding char-
acters having relatively small moduli (8 and 12), arithmetic was some-
times able to take the place of a general theory. In this paper, we introduce
& general L-function for positive definite quadratic forms in n variables.
Under certain restrictions, L(s, y, @) can be extended to an entire fune-
tion in the complex s plane which satisfies a funectional equation. In
this paper we derive that functional equation and the character identity
on which it depends. In [6], we will show how an alternate form of our char-
acter identity leads, in general, to an expansion of L(s, x, Q) at s =1
similar to that in [5], but with the arithmetic eliminated. Much of the
difficulty in the following comes from allowing % to be even; buf if we
wish to apply these results to [57], it is clear that we must put up with
the extra difficulty.
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9. Notation and statement of theorems. The letters , y, # and only
these letters will be reserved to be n-dimensional vectors of integers,

m:(ml,wz,...,mn), ?/=(.7/17?/2:"'yyn)3 2’=(21,22,...,ﬁn).

An inequality such as 1 <o < % shall be interpreted as 1 <ax; <k,
j=1,2,...,n and
k 1 k

Zk' shall mean Z 2

Z=1 Zy=1 tg=1 Tp=1

Similarly @ = 0(mod%) shall mean every z; = 0(modk), j=1,...,m;
2 = 0(modk) naturally means that at least one of the @ == 0(modk).
We will write the usual inner product of two vectors as (@, ) = #,¥:+
+...-@,Yn, or if necessary, as [z, yl

Unless otherwise stated, Q shall denote a quadratic form in n variables
with integral coefficients (not necessarily positive definite). We shall
now define the discriminant of Q. The various detinitions of the dis-
criminant differ in whether or not to include a factor of 2". Were it not
for our desire to include even k in our theorems, it would not make any
difference which definition we use. But for even k, our choice is made
for us. We write

(2) 2Q () = (oF, v)

where F' is a symmetric nxn matrix of integers. We define the dis-
criminant 4 of ¢ to be

(3) 4 = |F|

where |F| stands for the determinant of F. As is well known, if @ is positive
@eﬁnite then d > 0. It will be assumed throughout that (@, k) = 1. Define
Q(=) by

(4) G (o) = }(@wdF~" w).

If 4 is a character (modk), we put
k
(5) w(g) = D xldeld)
j=1
where for convenience we write
() = &,
or if necessary, ¢,[j]; in fact we will abuse the notation slightly and use

ex(w,y) when we mean ¢(=, y)].

hl"l@
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We now define three other characters:
, (—1)®DPE  if kis odd,
k '
1105 =(_j_), % :[—k if & = 0(mod4)

)
EY if & = 2{mod4);
' ) . x2(4) if » is even,
(6) 7 () = () ()" = o
ry PNl (Dl if mis odd;

the Kl'on@@k_gI_ symbol has been used in the first and third of these. Note
that (3)" = (x’), so that there is no confusion in using 7. Note also that

it k is odd, x,(j) = (%) (Jacobi symbol). We now pub

Il if k == 1(mod4) or if % is even and d =1(mod4),

) i if k= 3(mod4) or if %k is even and d = 3(mod4);
lxs(lc) it %k is odd,
L=

rs(k+d) if & is even.

Finally, we define
(e8)" 722() ¥’ (—d) T (%)
=(x)

By the well known result quoted as Lemma 1 below, if y and y' are
primitive characters (mod#%), then |a] = 1. We can now state our two
main results.

THuEOREM 1. Let (d, k) = 1 and either n be even or k odd (or both).
Suppose also that y and y' are primitive characters (modk). Then

k

(9) D2 (Q@)en®, y) = a7 (@)

=1

(8) a =

A stronger looking, but equivalent, form of Theorem 1 is

THEOREM 1’. Under the hypotheses of Theorem 1 and for any 7,0 <r < n,
and any z,

k ”
(10) E Q@1 oy Bry 2oy s zn))ek(ijz,)
Wyl g=1
i<r
k n
sr—ny2 N (7
= akf ) Z X’(Q(_ZU veay TRy Bpgay ey mn))ek( 2 ﬂ&'ij)-
=1 J=r-41

i>r
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TuporEM 2. Under the hypotheses of Theorem 1 and the added ussumip-
tion that Q is positive definite, L(s, x, Q) and L(s, ', Q) can be continued
o entire functions of s and

Id”" s kd(n-—l)/n nj2a-8 . " n I
(11) (-—%—~)]’(S)L(S,x,@)=a(—~ ) 1 5"“3 L ’E”“%ng .

A4TC 27

Remarks. 1. The form of (11) is particularly apt since the dis-
criminant of § is d" %

2. If % is even, then we must be sure that the coefficients of § are
integers and not just halves of integers. This detail is taken care of in
Lemma 4.

3. The hypothesis that either # is even or % odd assures that y' is
a character (modk) whenever y is. But further, the hypothesis that y
is primitive accomplishes the same goal. This is because there are no prim-
itive characters (modk) for & ==2(mod4). See for example [2], pp.
420-421, problems 10, 11.

4. Tf % is 0dd, then it is easily shown that d is even. Thus the hypo-
thesis that either » is even or & is odd follows from the bypothesis that
(dy k) =

—4

5. Let k=4, 2(j) = (—3‘—), Q (@) = 2% +a3. Then

E 2(Q () = 8 % constant -z’ (@(0))

L=1
no matter how %' and @ are defined. This shows that the condition
(@, k) = 1 is necessary and that further, the factor of 2" in d which enters
from (2)* cannot be eliminated.
In the course of the proofs we will need the Gaussian suws

k
Gola, ) = 3 a(oQ (@),

L=

2 O (a]

(12)

G(a, k)

and the theta function,

(13) '19(7/1’, 9, z) — 2 ewiy[(m-z)T,(x—z)]-}-Zni(:I:,y)«ni([/,e),

defined for symmetric matrices T corresponding to positive definite
quadratic forms (#7,x) and complex numbers y with Imy > 0. It will
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also be convenient to introduce a number d' defined by

dd' = 1(mod%)
d' = 0(mod2)

always

(1) (rveys),

(if d is even).

The second condition in (14) can always be fulfilled since % must be odd
when d is even by our assumption that (d, k) = 1.

3. Lemmas and known results.
Lemma 1 ([1], pp. 312, 313). If x if a primitive character (modFk)

then
() =VE  and me @) = zla)z(y) for all a.
Lemya 2 ([3], p. 41).
DT, y,2) = (—iy) "P|TI Y ( %T"I,Z’, —?/)-

Here (—iy)~ ™ is taken to be positive if y is purely imaginary and is given

by analytic continuation for other values of y in the upper half plane.
LemMMA 3 ([3], pp- 44, 43). If k is an odd prime and (a, k) = 1, then

Gla, k) = szl(a,)]"k‘

LemyA 4. If d is odd then @ has integral coefficients. Thus (k, d) = 1
implies that d'Q(y) is an integer for all y.

Proof. We note that dF~' = adjF is a matrix of integers. Thus,
it suffices to show that the diagonal elements of dF~' are all even. To
this end, put dF~' = (ay) and let

@ =ydF~' where j = (8, Sizy.rvy i) = (0,...,0,1,0,...,0).

Then dy = «F and since F is symmetric,
day = d(ydF~y) =
= (xFF, oF) =

(CZ'UF‘1 dy)
(wF, @) = 2Q(x

The second statement follows since either d is odd and {(y) is an integer
or d is even and d' has the factor of 2 necessary to cancel out the possible
denominator of 2 in Q.

LevMA 5. Let (d, k) = (a, k) = 1. If we define o' by ao’ = 1(modk)
then

0 (mod2).

k
)“emQ (@, )] = ex(— o' d'Q(y))Go(a, k).
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Proof
o2k
YPI [a@ (x)+ =27 ”Zez [aQ (z) +aa’ dd' (z, y)]
1—1
2k
= 2 o L6 (0 F ) )+ 2aa’dd' (v, y)]
Z=1
2k
= z—nazk[_“alzdﬂdlz(ﬂ.pml’ 7/)] 2025:[(w+a/(l'g/d'lf1“1) (,'LF, (er“/ d’:{/d}"”l)]
W=l

2k
= ek[—~(aa')(dd')a'd'(?(g/)]«2"”2@,;(%7?, ?) = ex(—a' A GW))Gyla, k)
g=1
since d'@(y) is an integer by Lemma 4.
We now turn to the problem of evaluating Gg(a, k). The proofs are
provided for completeness.

LevmA 6. Suppose that (k, d) = (k, a) = 1. Then

(15) Gola, k) = K" 5, (a"0) [e(a) ex (0) "
where :
1 if k=1(mod4) or if k is even and k+ a"d = 1(mod4),
e(e) = i if & =3(modd) or if k is even and k+a"d == 3(mod4);
(16)
xs (k) if & is odd,
& (a) = By s .
xs(k-+a*d) of k is even.

Note that when » is odd, the lemma does not apply for even & since d
is always even for odd n. It suffices to prove Lemma 6 for a = 1 since
the discriminant of aQ(z) is a"d. The proof of Lemma 6 with a =1 is
the subject of Lemmas 7 through 11. The proofs follow closely the method
of evaluating the ordinary Gaussian sum G(a, k) as given, for example,
in [3], pp. 44-48.

LevmA 7. Suppose that k = kiky with (ky, k) = 1. Then

Gola, k) = Golaky, kq) Golaks, ky).

Proof. Any vector z(mod#k, k,) determines unique vectors y(modk,)
and z(modk,) such that
@ = k24 kY
and convergely. Thus
kL Ry

Z 2 Chykey [aQ (%

Y=1 2=1

k1 ¥
) i [0Q (k)] Y 1, [aQ (l12)] = Grg(an, ) Gig(ahy, ko).
Y=1 . g=1

Gola, k) 1#+kay)]

i

It
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LemMA 8. Lemma 6 is true for a =1 and & = p” where p is an odd
prime.
Clearly Go(1,1) = 1 which agrees with the lemma when » = 0. We
next tackle the case » = 1. Here we may write @ as a symmetric matrix
of integers (modp) and .

d
Q1 = —;; (modyp).

Also ([4], p. 133), @ may be dlagonahzed (modp) by a nonsingular
matrix of integers M in other words MQM'is a diagonal matrix (modp)
with diagonal elements q,, ..., ¢,. We let | M} = m so that m = 0(modp)
and then

| MQ MY =

919 -+ Gn = (l’IlOdp)

thus (¢;, p) = 1 for all j. If we use M ' to denote a matrix of integers -
such that MM~ = I(modp), where I is the identity matrix, then

14

) »
Go(1,p) = D ep(@Q, z) = D ey (@M MQ, 2 M)
=1 r=1

2 k4
= Y e[ ) (MQIY), (221 1)) = e, (y QL )
=1

s}
= 7_[1 G g, p) = HI Cexs (a)VP]
= =
by Lemma 3. Thus
Go(l, p) = & 1 (Am?) 1, (2N 1p™2 = &% 4y (2)" 1 () p™"

. which is the lemma for r = 1 since here 21(2) = x(p).

We now assume that » > 2 and derive a reduction formula. For
1 <o <p', we may write uniquely

®=y+p 1<y <p™, 0<a<p—1
Thus
(17) (rQ Z Z ep"[Q ./+p'r— 2)]
Y=1 2z=0
pr= pr—1 po1
2 & [Q )]+ 2 2 er[Qy+p"2)].
wao(l_nodﬂ) z/—fo(m éd ) =
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In order to evaluate the second sum in (17) we write ¢ as a symmetric
matrix of integers (modp”), Q(x) = (2@, #)(modp”). Then

pr=1 poa
(18) Z Z e [Q(y+ " "%)]
z/ﬁol(/;gdw) =0

Pl n-1
= Z "'7;"(:’/(}; ) Z 01)(21'/{27 ) = 0.
Y =1 Ze()
l/ﬁl)(modj:]
»-1
This is because D ¢,(2yQ, z) = 0 unless 2yQ = 0(modp) which happens
2=0
only when y==(0(modp) since 2¢ is invertable (modp). From (17)
and (18),

pd
(19) o1, ) =" 3 ewlQ)]
= J(Eé Ap)

2,'r—2
= p* 2, Q)] =p"Ge(l, 7).
Lemma 8 now follows easily by induction on 7.

LeymMA 9. Lemma 6 is correct for a =1 and odd k.

Proof. Lemma 8 is the case of &k having only one distinet prime
factor. It therefore suffices to show that if & = &k, (b, k) = 1 and
the lemma is true for %, and k,, then it is true for k also. We note again
that Lemma 6 for ¢ = 1 is equivalent to Lemma 6 for all ¢ such that
{a, k) = 1. Thus by Lemma 7,

(20) Go(L, k) = Gqo(ky, ki) Gk, ks)
K K
0 () s (B2
1 Gy
wnl T\ [Ty n
i () i s
where
1 it i
&, == 2.
T it Ry == 3(mod4) ’

By the law of guadratic reciprocity,

o\ %oy
(21) (k )(7 )fl\ll‘ko =¢(1),

icm®

L-functions and character sums for quadratic forms (I) 43

as can be easily checked in each of the four possible cases. From (20)
and (21),

d
Go(1,k) = k™ (%)[e(l) xs (k) T*

which is the result of Lemma 6.

‘We now turn our attention to even k. To this end, it is convenient
to first prove a reciproeity formmula for Gp(1, k).

Leymya 10. If Q 4s positive definite (thus d > 0) then whether or
not (d, k) =1, '

kn/z
(22) Goll, k) = es(mZeﬂ — %G (o
Proof. Let
. 1 .
(23) v=—til, 2>0.
i
Then

H(7F, 0,0) = ) &,
We replace ® by y+2kz,1 <y <2k, — o0 < 2 < co. Thus

(24) 9(F,0,0) =

M‘:-

v a2k —mA)[(U-+2k2) F, (v +2k2)]
L5

T

zk( yF, y) v e—4k3ﬂz[(z+y/zlc)F,(z+y/zlc)]

z

I

Q
|K
-

i

9

I
N

ex(Q( )0(415%100 ‘:;b)

=

=1

by the definition of 9 in (13). We now make use of the transformation
formula in Lemma 2,

(25) @ (ucwﬁ’, 0, ~i/—) = (417 2)"™* | F|" " (———

Y
ok T ’““’0)

— ___1_._ 9 ’ -1 _i 0
onyn 2/ \ 4k2 ), DY
But

i3
4,20 "

a0t

lim 9 (
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< 1 and thus one can
Therefore by (24)

because the series converges uniformly for 0 < 2
interchange the limit and summation operations.

and (25),
2k
(26)  Hm AR, 0,0) = — o M a@) = = - Gall, ).
a0t 2"V £ ”I/

Now put

T o= — e = A
(27)

k22
o=
: 1+4iik

Where it occurs, it will be useful to remember that dF-' is a matrix of

integers. By Lemma 2,

9z, 0, 0) = (— i)\ PR (v B 0, 0)

" w0, 0).

— T
i/
Further,

S’ F,0,0)

i (e F— L
- g

T

and so replacing » by y+2dz,1 <y < 2d, —co < 2 < oo, we find that

2d
S F,0,0) =

Y=1 2

29') gl T~ mH[{2d2) Py 1-2d2)]

2d
2 ~rlk(E 1) 5’ — 4@ (2 yj2d) P L (21 7j2d))
Y=1

2d,

= ST Y
= D es(— kR (y)) ¢ (M Vil 0, — éd‘)'
Y=1
Again by Lemma 2,
: 20lm-1 o Y 2 37\~ 12 -~y i Ki
(30) ﬂ(4d ViFY 0, 201) (48222 7Y S =g )
As 21— 0%, Re 1 ~—L—>+oo and thuw
el VT R~ s

. i Y
31 lim 9 |——F, — —
1) Jim (e, — 2, 0) =1
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since the series for ¥ in (30) converges uniformly for 0 << 12 < 1. Since

Z, 'IL/2 1 , k n/z
im (—) = lim —ilz— =k ",
ot v 20 k2
we see from (29), (30) and (31) that
~ 2
(32) lim 2"29(x’ B, 0, 0) — —l/—d—Ze (— %G ()
< ot 2V = P a ¥y
Y=1

—nf2

‘We recall that for y in the upper half plane, (—4y)~"?is defined by ana-
lytic continuation from the positive value when y is purely imaginary.

Hence
—nf2 _
lim (—4z)™"? = lim [—1,( -I—M)] = iw] ¢
Aot A0t k|
where 0 = arg(—ifk), —4n <0< 4n. Thus 6 = —}x and

}ilﬁ.(-—h)—m = E"eq(n).

Therefore by (28) and (32)

2d
. " eg (1 —
(33) Tim 9 (eF, 0, 0) = — o )7T E ea(— Q1))
A—0T 2 d k y=1

Lemma 10 follows (26) and (33).

LeMMA 11. Lemma 6 is correct for a = 1 and even k.

Proof. We first note that it suffices to prove L.emma 11 only for
positive definite @. This is because every term of (15) remains invarient
if the coefficients of @ are changed (mod4k) and if the diagonal elements
of @ are sufficiently increased, @ becomes positive definite. For positive
definite @, we see from Lemma 10 that

2d

es(n) ) eal — (k+ DG (@)]

=1

(k-+ay">Vd

(34) i

Go(1, k+d)

I

(k+d)"Va “/%z

T s (1) >j e —

since for & even, (d, k) = 1 implies d is odd and thus {(z) is an integer
by Lemma 4. Thus from (22), (34) and Lemma 9,

*Q (z)).

9 d ’I'L
(88)  Go(l, k) = i Go(l, k+ad) = k"° (k+d)[6(1)61(1)

(+ay™
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Now when % = 2(mod4), d % k-+d(mod4) and hence

d k+d (k _(i“i) W,
(/;]l“d) ( d ) (z)_ a)= "

while if & = 0(mod4), d = k+d(mod4) and therefore

(7%5) ('Tl )(l—gd) - (jd‘k“) = 1a(d).

If we insert this into (35), we get Lemma 6 for & even and a == 1.

4. Proof of Theorems 1 and 1'. We begin by assuming ounly that
(d, %) = 1 and that y is a primitive character (modk). This last condition
means that if & is even then k& = 0(mod4) (sec remark 3 after the state-
ment of Theorem 2). By Lemmas 1, 5, and 6,

k k 14
(36) gx(0<m>)eﬁ.<m,a/> =—T~}77 2 ‘y‘(cw;ek[ao(w-(m,.u)il
(@h)=1

(0«)6‘7.:(—' (L'd'Q(?/))GQ(“; k)

,
3
N:;‘*“
Y

(t,k)=1
72 k
¥ o 2 700) 720" Te @) ex(@) x| — o @ T )
(a,k)=1
) L
_F Tf%(d) Z 7 (@) [e(a) e ()T e (— 0’ Gl)
(ct,k)=1

where o' is defined for (a,%) =1 as &' = 1(modk). We now include
the hypothesis that either n is even or % odd (which is derivable from
the condition (d, k) = 1, see remark 4 after Theorem 2). Then we see
that

e(a) = e, (@) = &

and thus (36) becomes

k k
B2 g, () ™™ - o
(37) Zx(@(w)]ék(w, y) = Law UL 2 7' (@) er(—a'd Q1)

=1 T(X) =1
{ak)=1
k /‘x (d Ye"ey
- Z 7 (B)ex —bd W)
b=1

=1
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By Lemuma 4, d'Q(y) is an integer and thus if we make the final assumy-
tion that y' is also a primitive character (modk), then by (37), Lemma 1
and the definition of d’ in (14),

k

gz(@(.ﬂ))ek(m, y =l )( ) ‘)i'(—'d'@(y))
3 n X d ’ —d o=y |7 2 0
e s >T( ) D) pon s @) = k5 (@)

which is Theorem 1.
It follows from Theorem 1 that for 0 <r < n,

k I
Z ZX(Q(J’))ek(*F; Z/)F];( v )/,..,) = ak™? S‘x ( ) (__ 2 g/’.zj)

1/-:1 v= i= r» yj=1 Fe=t+1
J' for
or
x r
— 1 !
k 2X(Q(‘I"l?"'7‘177’72)‘-}-17"',371))ﬂk(‘,§:‘rfyf)
=1 j=1

i<r

= qk™? 2 x (’/15 e Yry —Yrray oey "yn))ek(.z ?/}zj)

1/]——1 J=r41
isr
n
— ok y‘/ A -
=on 20X (Q(_!/u cevy T Yry Xryay -~-7“‘n))ek( Z m.i“i)
Tj=1 i=r+1
Jr

which in a slightly different notation is &"" times both sides of (10).
This proves Theorem 1’. An interesting special case of (10) is the case
r =0,

(38) 2(Q2) =ak’"/2275 ) e, 2).

5. Proof of Theorem 2.
Lemma 12. Under the hypotheses of Theorem 2, we define for t > 0,

(39) t 1, Q) = %2 ) e (td= i@ (2)).
Then for t> 0,
s (1 -, =
(40 vt 10 = a9 (3, 7,)
and

=]

[, 1, @dt

1
is an entire function of s.
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Proof. The series in (39) converges absolutely and uniformly for
t=1,>0. By (38) (Theorem 1’ with » = 0) and Lemma 2,

29(t, 1, Q) = (‘k_nlz

Ze,ﬁ [td~"iQ (2) + (@, 2)]

i

ak

~ UM, 2y 2mt (3,5
2 2 2 o wtd™ Mk(al,8)+ 2 (z, ]l,)

rm e atmer @
= ak""””g;x (@) (tk tgmunip, - O)

k

-, g1 g1 — 2 — \ 1- kl/n —
= el R S (@) (<0, —

Z=1

~af”’°2 7 (@) e I (R R |

P==1

= at“”’zzzx (@ (w4 Foy) )exp[———-«—d =0 G (- kv/)J

X=1

= w7 @) (il- cz—<"~1>/w@(z>).

Since the discriminant of § is @"*, this last equation is equivalent to (40).
It is easily seen that for any real o,

J ey, 2, Q)lds
1

converges and therefore the integral

[ ey, 1, @Q)d
1

converges absolutely and uniformly for Res < o,. Thus this last integral
represents an analytic function for Res < oy, and in fact it represents
an enfire function since ¢, is arbitrary. This concludes the proof of
Lemma 12.

icm®

L-funciions and character sums for quadratic forms (I) 49
From this point on we assume that the hypotheses of Theorem 2
are satisfied. By a familiar formula for the gamma function, for Res > 0,

( Ld™

2%

o

)s rs)Q@)=° = Jn e (td " iQ (x)) dt

1]

and thus for Res > n/2,

L LT\ S [-5)
) (T Pz, 1,0 = 8 3 ale@) [ el i)
=i L0 0
= [ 73 Y 2(Q () exlta"iQ (@) at

J Fly(t, g, Q) dt.
0

The interchange of the order of integration and summation in (41) is
justified by the usval uniform convergence argument. It is not necessary
to justify the interchange for all s with Res > n/2, for example
Res > n-+2 is perfectly sufficient, analytic continuation takes care of
the rest.

We now use Lemma 12 and replace t by 1/u to get

1 1 00

" i 2 1, = /2 - A
J Py, 2, Q)AL = a J $$ M1y (—z" 7, Q) dt = a f w5y (u, 7, Q) du
0 o 1

and thus (41) becomes
kat™
-

AT

(42

) P(&)L(s, 7, Q)

=0 j WPy (u, 7, @)du—{—f (t, x, @) dt.
1

1

The right hand side of (42) is an entire function by Lemma 12 and thig
gives the qnwlytic continuation of the left hand side of (42). Now for
Re(n/2—s) > n/2, we replace ¢ by 1/u in the last integral and get
Ty
( 27

o

) I'($)L(s, x,Q) = af wB "y (u, 7, @) du

kM- \nR=E g n .
:(Z(T) I‘(E‘—S)L(?—S,Z',Q)

by the analogue of (41) for §. This gives the analytic continuation of
the right hand side of the last equation. The coefficient of L(s, y, @)
has no zeros and therefore L(s, x,Q) is itself an entire function, the
same is true of L(s, ¥', @). This concludes the proof of Theorem 2.
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Some concluding remarks might not be amiss. It is easily seen that
Theorem 1 and as a result its logical corollary Theorem 2, can be relaxed
to include forms @ with rational coefficients, the only proviso being
that the denominators of the coefficients are relatively prime to k. In
particular Theorerns 1 and 2 hold for @ and y replaced by @ and %'. In
fact since 7' = y and the diseriminant of § is @"~* which is relatively
prime to k if and only if (d,%) =1, under the original hypotheses of
Theorems 1 and 2 the conclusions are valid not only as stated but for
@, % and o replaced by @, 7' and ag as well (g is defined from (=7 ) and (8)
except that d is replaced by 4"~ and x is replaced by ¥'). Since @ = 4**¢
and the diseriminant of § is d®~Y", 4

Theorem 2 for @ yields
kd-Dm s o kd(""’l)zm nr-s g " -
(0 )F(S)L(S:XI: o) =a§(——0“——) F(k"s)L = 7% Ld"Q

9 27 2

kA= g "
= ag (A" (T) F(__S)L(—f?*s’ X’Q)‘

T

If we compare this with Theorem 2 with s replaced by n/2—s we see that
(43) @ = agy(d"?).

There is unfortunately no new information in (43) although it talkes
considerable algebraic manipulation to prove (43) dirvectly from (7)
and (8).

There is always more than one way to derive a functional equation.
Theorem 2 can be easily derived from Theorem 1 and the functional
equation for the general Epstein zeta function in much the same way
that the functional equation of Dirichlet’s L-function is derived from
Lemma 1 and the functional equation of the Hurwitz zeta function.
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ACTA ARITHMETICA
XIV (1968)

On certain additive functions (II)
by
P.D. T. A. Erurort (Nottingham)

A function f(n) which is defined on the set of positive integers is
said to be additive if for any coprime integers a, b, we have the relation

flab) = f(a)+F(0).

Let 0 < @y << @y ... be a set of integers, and let 4 (x) denote the number
of these not exceeding x. It was shown recently [4], that if A (z) is not
too small, then in the usual terminology f(a;) has a normal value. How-
ever, in order to prove this result a weak but inconvenient condition
was introduced. It is our present purpose to show that this condition
can be removed. More especially we prove the following:

THEOREM 1. For any drreducible polynomial g(y) with integer coeffi-
cients, and any integer u, we define o(u) to be the number of residue classes r
for which g(r) = 0(modu).

Let f(n) be an additive function assuming only non-negative values,
and for any positive value of % let w, = max f(p*) taken over the prime
powers not exceeding x, and

o

Then if A(w) > wexp(— z(2)u; " Sa) for some function e(x) which tends to
zero as x —> oo, whilst uz; = 0(8;), we have the asymplotic relations:

) D (e ~A@)8E, k=1,2,...
<z
COROLLARY. f(g(a)) is normally Se,.
We first show that the corollary is satisfied.
It is clear from the theorem that we have

D (flo(an)— 8a) = o(4(2)82),

<
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