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transcendental numbers which are algebraically independent. But such
questions appear to be very difficult. The first of the questions we have
asked is a generalization of a conjecture of Schneider and the second is
a generalization of a conjecture of Gelfond. In our notation Schneider’s
conjecture [10] reads dim(e® ¢*) <1 if @ is irrational, and Gelfond’s
conjecture [3] (partially solved by himself) is the algebraic independence
of &, o, ..., o™ " (where o is algebraic, loga # 0 and § is an algebraic
irrational of degree h).
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Errata. Professor A. Schinzel has kindly drawn my attension to some over
sights in my paper On the units of cyclotomic Jields (ibid. 12 (1966), pp. 165-173).
I take the opportunity of correcting one: In equation (21) on page 172 omit -1
in the exponent.
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The cyclotomy of hyper-Kloosterman sums
by
D.H. and EmMA Luamer (Berkeley, Calif.)

1. Introduction. In & recent paper [4] we presented some evidence
in support of the thesis that the Kloosterman sums

n—-1
1.1) 8(h) = D e(w+1z) (27 =1(modp))
where )
(1.2) e(v) = exp(2niv/p), p a prime

could be thought of as generalizations of the exponential function &(h).
A further support of this point of view is provided by the n-dimen-
sional exponential sums

(1.3) S™(R) = Sj e(jmi—l—hﬁ@)
BporeiBpy=1  i=1 i=1

discussed recently by Carlitz [3], which we shall call here hyper-Klooster-
man sums.
It is guite obvious from the definition (1.3) that

(1.4) SOMm) =e(h) and SY(R) = 8(h),
also that
(1.5) 8(0) = (—1)",
and that
pn=1
(1.6) 2 8™ (h) = 0.
h=0

Carlitz [3] finds that

»—-1
(1.7) D IO = " —ph—.. —p
h=0

and gives a formula for

21
> [8®(h))* which unfortunately is not quite
correct. h=0
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In section 2 we sghall derive a correct formula for the sums of cubes
and give a generalization of (1.7).

In section 3 we show that the hyper-Kloogterman sums in their turn
can be used to construet a cyclotomic theory in line with that developed
for Kloosterman sums in [4]. We shall feel free to make use of the results
obtained in [4].

2. Relations between hyper-Kloosterman sums. It follows from the
definition (1.3) that
D

Ze

=1

8= (

(2.1)

More generally we have the following

THEOREM 2.1.
p—-1

9. M (h) = ) () S~ () .
(2.2) 8 (h) 28 ()8 (hz)
Proof. By (1.3)
m+-1 n M- 1 n
8™ (h) = 2 (2 Jr,) ( Z J?ri-hn %; n E,)
..... 1=l T Mef-2 1=l T M3
Now let
L1 =T n Z;(modp),
g=1

then

p—1 P n-1 n "
80 (h) = 3 2 (me—l—mnxl) D e Y itz 1 =)

T=1 Ty, Ty =1 By pgaeeslpy =1 T=M+2 T2

which is the t‘heorem, by (1.3).

m@

In order to give a generalization of (1.7) we define the Kronecker

symbol modulo p ag
if @ = b(modp),
otherwise,

(2.3) &=

o ==

1
B

then we can state
THEOREM 2.2. For o # 0,

j 8 (R)S™ (ah) = p

h=0

(2.4) LI _pn g,

Proof. The theorem is true for = 0, since

o-~1 P—1
D e(hye(ah) = Dl e(h(1+a) = 67%p.
h=0 h=0
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It has also been proved for n = 1 in [4] formula (3.6). Suppose that (2.4)
holds for n—1, then by Theorem 2.1 with m = n—1 we have

p—1 p-1
2 8 (h) 8™ (@h) = Z 801 () 81 () &(h(Z+ ag))
h=0 z =1 =0
—1
= 3 50D () 80—z
Te=]
—p[p 5 1)" _’p"“-—p"’z—- ”_p_'(S(n—l)(O))z]
Pan l)"“‘ pn__pn—l__.“_py
by (1.5), which is the theorem.

As an adjunet to Theorem 2.2 we give
TeEOREM 2.3. For n > m,a # 0,

p-1

D) 8™ () S™ (ah)

h=0

(2.5)

— pm+1 S(n—'m«——l)(( _1)7n+1a-)__(~1)n_
Proof. By Theorem 2.1,

""" e )

p-1 p—-1 p-—-1

1

é 8 () 8V (ah) = E 8= () N1 ™ (hz) 8™ (ah).
h=0 ( ) ( ) Z=1 ( )h=0 ( x) (a )

Letting ah =%, Theorem 2.2 gives

2 8™ (h) 8 (ah)
n-1
= D) 80N @) [N . —p]
=
— P 1) (" ) 3 SO 0)
Bl

which yields the theorem using (1.5) and (1.6).

The special cage of Theorem 2.3 with m = 0 might be of interest.
This gives
(2.6) pS("_l)( )

2 8™ (h

h=0

This is an inversion of (2.1).
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In order to calculate the sumsg of the cubes of the S®(h) without
counting the number of solutions of various congruences, as in Carlitz [3],
we make use of formula (3.20) of [4] which is as follows:

=1 .
(2.7) 2 SO (1) 8O (ah) ST (bh) == 2p -+ p* g [(a—D)2—2 (a1 b)-}-1],
h=o0

N s
where y(n) is the Legendre symbol (;) This gives

THEOREM 2.4.

n-1
S ISOMP = p(p—2)(p +1P P [L+ 2(—3)].

im0

Proof. By (2.7)

p—1 p—1 -1
D 8Om)F = 8@ (k) 8P (yh) 8B (2h)
h=0 2Y,2=1 h=0
p—-1 p-1
= e (h(F+7+2) 8% (2) 8% () SV (=)
2,1,8=1 h=0
by (2.1). The sum over % is zero unless T+ 7 = —32, in which easo it is p.
Letting @ = zu, y = 20 this condition becomes % = — (1--7), so that
Z = —2z(1+9). Substituting these values after summing over h we obtain
-1 @ s p—2 P-1 o
2 -
g [8®(h)] _pé; ;‘ S(z)S(zv)s(l_M).
We can now apply (2.7) with & =9, b = —/(1+0), then
2[(@a—Db)2—2(a+b)+1] = 5(L+v4 o0
Hence
»-1 9
\ ' ‘ .
D ISP =p 3 [2p+ 2 (1+0+02) 1]
h=0 V=1

=p@—2)(p+12—p’[1+ 5(—3)].

3. Hyper-periods. Let p = ef--1 and let C; be the class of integers
h(modyp) for which indh = j(mode). We now congider the problem. of
summing the hyper-Kloosterman sums over a given residue class C;.
We define

(8.1) 7= Y8 (j=0,1,...,e—1).
th]-
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Then the usual cyclotomic periods are
P

h:C’j
and the Kloosterman periods studied in [4] are
= = D'8(n).
hsC’j

These hyper-periods enjoy many of the fundamental properties of
the cyclotomic periods, which we will consider next.
First of all it follows from the definition (3.1) that

e—1

(3.2) 2 ’7;") — (_l)n+17

7=0

since the sum in (3.2) goes over all non-zero values of I, so that by (1.5)
and (1.6) it is (—1)™*+%
Next it is well known that [1]

e-1
6 D) etlys = ep AP p 1
i=o
where
A — 1if k=7 (mode),
0 otherwise.
More generally Theorem 2.2 leads to the following:
THEOREM 3.1.

e—1
¢ Z "lv(ﬁn)"/g-}-)j — ep““ A:Su-f-l)(p—])/ﬂ __pn-H. +1.
=0

Proof. From the definition (3.1) we have
-1

¢~1 €

e D iyl = e ) DI8Mm) 3 s
P} i-:0 heQy kcci_,.;

Letting % = ah, implies o is in class ¢ and we can write

e--1 p-1
e D) A = e > D780 (h) 8™ (an)

10 aely h=1
= Z[p'n-l-l (S,(fl)"“—p“—:p““‘—...—~p——1]
a0y
n+1__1
—_ ep'n-H A}ﬂ-}l)(l’—l)/ﬂneffp_‘_ﬁ_
p—1

which iz the theorem since ef = p—1.
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Theorem 2.1 leads to its analogue, namely
THEOREM 3.2.

(n—m—1) (m
= 3o
i=0

Proof. By Theorem 2.1 we have

-1

I3
w = DSNm = 3 5 ST @k S )
heCyy T=1 heCy
~1
_ cj '1S(n mﬁl) (m Z ﬂ(n m--1) (m)
i=0 zeCy 4==0

Letting n = 2m+1 we have a useful corollary

e—1

,'77(.21714—1) — Z n(m) (m)

=0

(3.3)

One of the most fundamental properties of the periods is that the
product of any two periods can be written as a linear combination of the
periods with integer coefficients. This property is preserved for the hyper-
periods. In the cyclotomic case the coefficients are the so-called cyclo-
tomic numbers (¢, j) which are the number of solutions of the congruence
z-+1 = y (modp) where % is in clags C; and v is in class C;. The classical
formula is [1]

e—1
a4 Wt = 3 (G, K £
=0
Letting
(8.8) af®) = ay = (j, k)—faP-n
we can write
e—~1
(3.6) MiNigs = Z iy
=0

The corresponding theorem for hyper-periods now reads:

THEOREM 3.3. The product of any two hyper-periods is a linear
bination of the hyper-periods with integer coefficients. More precisely

com-

(3.7) (") = 2 aykﬂ uc
where
(3.8) o) = Z AV,

=1

icm®
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Proof. The theorem is true for n — ¢ by (3.4)
suppose that it holds for n—1 and show that it hold
with m = 0 we have

and (3.5). We now
8 for n. By Theorem 3.2

e—1
"
Il = Z: LT 2 % 0
8= t=0
e—1

— -1 —
= Z‘ngn I om; i

S0
e~1
(n—1)
773+/‘ [P/ .

2 a(n 1)
=0

8, 1=
e--1

e—1
(n—1) .
2 av,ﬂ a]'~v,t2 ﬂﬁrpl)ﬂ‘i—sﬂ
§=0

v phy=0)

e—1

(n—1 R
2 @y ) Hj—y,z 771(+);z+1 .

Popt,7=0

The theorem now follows if we let b+t =k
The coefficients a;; have some of the properties of i
nmbors, st properties of the cyclotomic
(4, ) = (e—j, k—j).
Hence also

(3.9) A == Ce_jr_j

since (p—1)/2 is congruent to either 0 or /2 modulo e. Similarly

(3.10) ) = al®, ;.

To prove this assume that (3.10) holds for n—1. Then by (3.8)

(n~1) — -1
2 al’; “f-v,k—/t = Z “g—v,,).-vﬂv_j,k_y~j+..
w,ymo ¥,u=0
— ('n.".
2 Ogt " Boegf oty = ag_’,,;c_j
Etmﬂ

Another property of the cyclotomic numbers is

&--1 e—1
é; (G, % X, m

f=0

= f—ap-m, — -4,

This makes

(3.11)

e—~1
Gy = — A5
7.,k ke

i=0

e-1
s = gt

kw0
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More generally, if we sum (3.7) over 4 we obtain by (3.2) and by Theorem 3.1
that

(3.12) e aj(r;c) (_1)n+1 [g:pn“ A}w,»u)(n«l)/z__pnﬂ 417.

k=0

Tn Theorem 6.1 of [4] we have shown thab 7 can be written ag
a linear combination of the classical »’s with integer coefficients, which
are closely related to the Jacobsthal character sums defined by

P—1
(3.13) () = ¥ x(@)z(a"+h)
and
p—1
(3.14) ve(h) = Y g(@®+h).

8
]

1

More generally we can state the following theorem:

TuEoREM 3.4. The hyper-periods are linear combinations of the periods
with integer coefficients. In fact

e—1
(3.15) W = 2k
k=0
where
e—1 e—-1
o) = Z 2 iy
1=0 k=0
with
1 .
| Lo—ag), o waa,
(3.16) o =

(=4 —f (YR, e even,
and the a; are defined by (3.5).

Proof. For n = 1 this becomes Theorem 6.1 of [4]. Weo next assume
the theorem to be true for n—1, then by Theorem 3,2 with m = 0,

e~1 e—1 ¢-1
) (- 1
) = 2 78 Ve = s Z G(m‘?k ”ﬂk"}k.\"(;,. k)
i=0 k=0 i=0

e—1 e—1 e—1

. (n—1 o

= 2 i,k ) Z Oj_fmis, s Mo -8
k=0 4=0 Sl

hl"l@
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by Theorem 3.3 with n = 0. Letting k+s =» we have

e—1

o1 _ o1
(O -
"77') = Z Ny Z a’j,..k—‘l:,l'A-kc’(l:’:’Lk Y= Z ngv)%
=0 3,k=0 =0

which completes the proof of the theorem.
We next prove a few properties of the coefficients c§",3 Summing
(3.15) over j we have by (3.2)

6:’1 e—1 e—1
D= (=1t = 3 > o
J=0 k=0 =0

THence, since the #’s are linearly independent, we have

(3.17) 0,1,...,e—1).
In what follows we shall need the following lemma:

Leva 3.1. If in the ewpression for ni™ we replace ¢ by &, with
o == 0(modp), then ni™ becomes 777("'-2(n+1)8 where s = indo(mode).

Proof. By (1.3) and (3.1) the expression for 77(,7” becomes

Z 28(0’62_} wi'HWﬂ Ei) = 2 25(621 ZIH—U%Hth?i)

© heCy i=0 v heCy =0

with y; = om;. But this is 7§ nys-
Applying the lemma to Theorem 3.4 with n =0 a8 well as n, we
have

e—1 e—1
91;1'4".)(%4-1)3 = 2 (/':%gﬂk—w = 2 G&@(nﬂ)s,k”k'
Ie=0 Ie=0

Since the classical periods are linearly independent we can identify coeffi-
cients of #,., and obtain the property
o) =

(3.18) nippre (8 =0,1,...,0—1).

This leads to a refinement of Theorem 3.4 as follows:
TrmorEM 3.5. Let 6 = (n-+1, ) and let 6 = deo'y n—+1 = dm, so that
(m,e') =1. Let ny be the hyperperiods of order ¢, then

61
(3.19) Wmss = Y, s (8 =051, ¢'=1).
Je=0

Proof. Letting s = te’ in (3.18) for t =1,2,..., §—1 we have
& =y (t=1,2,...,06-1).

Acta Arithmetica XIV.1
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Substituting this into (3.15) gives

e'—1 4! 1 e¢'—1

(3.20) g = 5 o kz_, Nhtter —2 AN

Ir_ 0 1=0

Applying the lemma to this expression the theorem follows.
It follows from (3.18) and (3.17) that

e—1

(3.21) D= (=1 it (41,0 =1.
k=0

In particular if ¢’ = 1, 5, = —1 and we have:

(3.22) W= —¢ (j=0,1,...,¢e—1)

is an integer, if ¢ divides (n--1).

J ¥ N P — av (D . 3

Next, if we let « = exp(2nife), then the generalized Causs sum,
or Lagrange’s resolvant, is given by [1] ‘

e—1

(3.23) o) = D' pid®.

T=0
The corresponding hyper-Gauss sum defined by

e—1

(3.24) () = Z 2™ o™

il

turng out to be the (n--1)* power of the Gauss sum, namnely
THEOREM 3.6.

r(n)(aa') —_ (T(av))n-u

. Pr(f)of T};e t};lemem is true for m = 0 by (3.23). Suppose that it
8 true 1or n—1. Then from the definition (3.24) and "heorem 3.2
with g The ( ) and by Theorem 3.2

e-1 01
My v __ ) i \ b )
Ny = Z ni o’ = _}J nf Doy
Fz0 'i,j, 0
e—1
— V”(n 1) v \ " taJ -ty
= 0 F= 0

— _L_(‘n 71)((;’)‘[((1”) e (T(al-))n.}.l
which proves the theorem.
As a corollary we have

‘2,- (n) » n| —_y v .
(3.25) @) a7 = (1 g (mode)).
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Thig follows from the well known relation
(@)r(e") = (—=1)"p (v = 0 (mode)).

4. Hyper-period equations. It is well known that the classical periods
satisfy a monic irreducible equation of degree e with integer coefficients
and that this equation is abelian.

Tt follows from Theorem 3.3 that the equation satistied by the hyper-
periods is also abelian, but not necessarily irreducible. In fact we have
the following theorem.

TusoreM 4.1. Let 6 = (n-+1,6) so that e = d¢' and n+1 = dm
with (¢', m) = 1. Then the h?/pe'r—pem?uds

(4.1) Wiy (r=10,1,..,¢~—1)

satisfy O irreducible monic equations of degree e' with integer coefficients,
one for each j ==0,1,...,6—1.

Proof. By Theorem 3.5 the hyper-periods (4.1) with j fixed satisfy
an equation of degree ¢’ with integer coefficients, since all the symmetric
functions of the hyper-periods in (4.1) can be expressed in terms of the
symmetric functions of the #;, which are integers. Suppose now that
any fixed hyper-period of the set (4.1) say 7§t satlsﬁes an irreducible
equation f(x) of degree less than or equal to ¢’. Then f( 17,+¢,,h can be written
as a linear combination of n; with integer coefficients

e'—1
(4.2) Flrf) = > Auri.

'L=«U
Since f(nf" Wai) = 0, all the coefficients 4; = 0. Applying Lemma 4.1 to
(4.2) we obtain

e’—1

f( +6(lc m.e Z’ -A’I'ﬂ11+3 = 0.
Ta=0

But since (m,e’) == 1 it follows that k- ms goes through a complete
regidue system modulo e’. Hence all the hyper-periods in the set (4.1)
satisty f(x) = 0. Thus the degree of f(») is indeed ¢’ and the theorem fol-
lows.

As a special case of this theorem with e = p—1 we have

TarorREM 4.2. The hyper-Kloosierman, sums SNy with indh
=j(modd) satisfy an irreducible equation of degree (p—1)/3, where
8 = (p—1,n+1) for every j=0,1,...,0—1.

In particular for n = 1, § = 2 the Kloosterman sums §(%) for & 0
satisty one of two irreducible equations of degree (p—1)/2 according as h
is a quadratic residue or non residue of p. This was noted by Salié [7].
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As an illustration of Theorem 4.2 for p = 7 we have the following
equations:

n Hyper-Period Equations

0 2+t ettt el =0

1 (0°+ 302 — do—13) (#* — 402 — 42+ 8) = 0
2 (@2 — 25+ 8) (25— 9w -+ 36) (22 +123+ 99) = 0

3 (0 — 2522 +1920 — 419) (2° + 242° — 5922 — 8896) ==
4 254 ° +14015"— 2405892° - 226198122 1152361712+ 4199299651 = 0
5 (&4 246) (— 6) (2 36) (. — 69) (—174) (v —34) = 0
6 %4 2°+ 686292" 4 654411672° —119118841792% — 36343872867 532 -
- 631587847585633 = 0
We now define (™ by
(4.3) 2™ = en{ 4 (—1)",
then by (3.2)
e—1
(4.4) D o =0,
=0

Theorem 3.2 can now be restated in terms of the 2's to read

e—1
(4.5) eaf) = > af""Daf",.
=0

Squaring (4.3) we have after summing over ¢

e—1 e—1 e—1
D @ = 3 ()4 20(—1)" 3 oo
%=0 Ge==0 t=0

Hence by Theorem 3.1 with §j = 0 we have

(4.6) 571 (o) — — ep™t! if n is even and f odd,
‘ e(e—1)p™"t  otherwise.

=0

Thus the hyper-period equations whose roots are z; begin

e
z°+ Ep““w“"z—}—... if » is even and f odd,
(4.7)

e

e .
zf— (9) p"a* ... otherwise.
9
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For ¢ = 2 the equation becomes
w?—(x(=1)p)**tt =0
so that
(4.8) af = LI (i =0,1).
The determination of the sign in (4.8) corresponds to the famous problem

of the sign of the Gauss sum for n = 0. Fortunately formula (4.5) enables
us to prove that this determination holds for all n:

THEOREM 4.3. For ¢ =2
m(om — (x(——l)p)(”"‘l)/?‘, m(ln) - (x(_l)p)(n+1)/2_
Proof. Sinee z,+x;, = 0 by (4.4) it suffices to prove the first state-
ment of the theorem. For » = ( that statement is

p—1

(4.9) @ =Vy(—1)p = D' (W)

=0

which is the well known formula for the Gauss sum. Many proofs of (4.9)
are available, the most recent elementary proof being that of Mordell [6].
To complete the proof by induction it suffices to show that

(4.10) #l = (@)™

Suppose that (4.10) holds for n—1, so that " = (2,)". Using (4.5)
with ¢ =2, m = j = 0 we have

22" = alVm,+a" Va, = 2 Va, = 2(m)"

This completes the induction.
For ¢ = 3 it was known to Gauss that the x; satisfy the irreducible
cubic equation

(4.11) o —3px—pL =0
where
(4.12) dp = L*++27M%, L= 1(mod3),

whose roots are given by (see for example [5])
(4.18) oVpeosp, 2Wpeos(p+2r/3), 2Vpcos(p—2m/3)
where

(4.14) cos3p = LJ(2Vp).
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Of the three essentially different values of ¢ satisfying (4.14) we choose
that one for which

By = 2V§Gomp.

Then with an appropriate choice of sign

1, = 2Vpeos(ph 2nf3)  and @, = 21@008({(}?2

w[3).

THEOREM 4.4. For ¢ =3, let

Ty = ”I/E(uosrp, xy = ”l/pjcos(q: ), @y = ’l/éo.cos(q — 1)

where « == 4 2n[3. Then

(--1)/2

™ = 2p cos(n-+1)gp,
" = 2V cos[(n+1)p+al,
wf") = 2p" I cog[(n+1)p— al.

Proof. The theorem ig true for n ==
it holds for n—1, then by (4.5) we have

0 by hypothesis. Suppose that
Smgn) — m‘()nv 1y m0+m(11a—1)m2_|_ mgn— 1) @,
= 2p" 9 cosnpcosp -2 cos (np+ «) cos (p— u) 4
+2cos(np— a)cos(pta)}
= 2p" R (3 cos (n4-1) g+ cosi(n—1) g+ cos[(n—1)p— a]+

- cos [(n—1)p + ]}
so that

2™ = 2p" Do (1 4-1)

which completes the induction for x{™. The other two cases of #{" and
25" follow in the same way.

By (4.7) the hyper-period equation for ; is of the form

.32)7& H ’Ii |1V a1 = 0

where
pnrHVn+ — msn) m(n) m(n)

= 8p* ™ cos (n +1) peos [(n+1) g+ alcos [(n-+1)p—a]
or

Vg = 4p™ P cos (n+1) g [00s2 (n+1)p— ':15

= 2p" P cos 3 (n 1) g,
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Using the recurrence
cos3(n-+1)g = 2cos3peosding —cos3(n—1)p
and (4£.14), we obtain the following theorem.
THEOREM +.5. The hyper-period equation for ¢ = 3 is

(4.15) w3y ", =0,
where
Vo =2, Vy =1,

Vapr = LVy—pVoy.

To the Lucas function 17, corresponds the function U, given by
U, =0, U =1, U, =LU,—pU,_,.

These functions are related by

(4.16) V42007 Uy, = 4p"

in view of (4.12). This enables us to give a simple formula for the digerim-
inant of (4.15).

THEOREM 4.6. T'he diseriminant of the cubic hyper-period equation is
D, = [2Tp" V" MU, ]
Proof.

1) — MW 1)3

27 ( ntl Vn+1)2

2(n+41) wRl o2 2(n41) 2
[‘lp r nkl = ‘P N -AI 71,(1

4(3p
27p*
by (4.16).

By Theorem 4.1 the 2% ave integers. By Theorem 4.4 these in-
tegers are

o) =PV, afY = —pH V- 9M U2,
afD = —pH V=9 M Uy)[2.
As ¢ varies the three roots satisfy the recurring series

P ()

= pLaf=V —p*aff

the initial conditions being

oY =2, afM =1, afh=-1,
o) =pL, o) = —(L+9M)p[2, of) = —(L—9M)p/2.

By Theorem 4.1, the roots i satisfy an irreduecible cubic equation
if m s 3t—1. An independent proof of this follows from Risenstein’s


Pem


104 D. H. and Emma Lehmer

criterion and its extension (see for example [2]). For ¢ = 4, the classical
period equation was first given by Lebesgue [1] in factored form and
can be written

(02— 2Vpw+ [1—21(2)]p + 20V p} (& + 2V o+ [1— 2 (2) Ip — 20V p} =

where

p = a?+b%  a=1(mod4)
and where the first factor has the roots x, and », and the second factor »,
and w,.

By (4.5) we have
4 = 22+ 22+ 0wy @y = AP — 2o @y 20, = dp—8aVp
so that
o) =Vp(Vp—2a) and o) =Vp(Vp+2a)
while », and x, are —l/]_)(}/;;j:%).
Letting —a,/l/; = cosy we can choose y so that
o) = —p(1+2siny),
o) = —p(1—2siny).

(1)

zy’ = p(l-42co8

(4.17) 01 ?( ¥)s

af) = p(1—2cosy),

In general, we have for » odd the following theorem.

THEOREM 4.7. For ¢ = 4

o = p*(1-+2costy),
@D = —p'(1 - 2sinty),

o = p*(1—2costy),
@Y = — pi(1 —2sinty)

where

(4.18) cosy = —afVp.

Proof. By (4.17) the theorem is true for 4. Assume that it holds
for 2~ then by (4.5) we have
) — wgzt—nwgl)_'_m(lzz-l)w(al) + m(zth)mg)_'_wgzt-l)mal)
= P [(1+ 2costy) (L2 cosy) 4 (14 2sinty) (1 — 2siny) +

+ (1 —2costy)(1—2cosy)+ (1— 2s8inty) (14 28iny)]
or

2™ = p™[14-2costycosy— 2sintysiny]
= p""'[1+2¢cos(n+1)y].

This completes the induction for «,. The remaining three cases are simi-
larly disposed of and the theorem follows.
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The following inequalities on the roots are an obvious consequence
of the theorem:

—p' < af, TV <3, —3pf <Y, oY < gt
It also follows from the theorem that
(4.19) m((,”‘l)—{—wg”_l) - 2pt, m(lzt—1)+m§2t—1) =—2%
while
(20~1) p(20—1) __ .2 o
@ @ = p“(1—4cos2ty)
(4.20) oo P v

oV = p*(1— 4sin?ty).

We can now give a general form of the quartic hyperperiod equation
for » odd as a product of two quadratics as follows:

THEOREM 4.8. The hyper-period equation for e = 4 and n = 2t—1
can be writien as

[ —2p" 0 — p' (' + Wy)] (224 20" — p* (9"~ W))] = 0

where
W, =2,

Proof. Let

W, =4a2—2p, Wyp= W, Wp—p*W,_ ..

W, = 2p'cos2iy

where y is defined by (4.18), then it can be easily verified that W, satisfies
the initial conditions and recurrence stated in the theorem. Therefore
by (4.20)

AV = —p (P WY, Ve = —ptp — W)
and the theorem follows using (4.19).

5. Congruence properties of the hyper-periods. In this section we
shall assume that ¢ is prime to n--1. Then by Theorem 4.1 the hyper-
periods satisfy an irreducible equation

e—1
PO = [[le—ni") =0
=0
of degree ¢ with integer coefficients.

We first consider the divisibility properties of the hyper-periods

with respect to the prime p itself. We let

(5.1) & = exp(2ni/p) = (1)

then the prime p can be written in the cyclotomic field R(e) as
21

(5.2) p=[]a-e).
y=1

We first prove the following lemma.
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LEMMA 5.1, There exist integers X0 gn the cyclotomic field I (e)
such that
(5.3)

S = (1—e)" X,

Proof. First of all for » = 0 we have

_1
mi=em—{—1=(,&e )
heCly

This can be written as

ZV[C

heCly v=1

)—e(g"h) ]

so that 1— e can be seen to be a factor of each of the differences [s(h)—
—¢&(¢"h)]. Hence the lemma is true for n = 0. Next agsume the lemma
to hold for n—1. Substituting the expression for #{~" and ;_, into (4.5)
with m = 0, we obtain

nwgn) - (1_ E)n+1_>j Xq(‘nv—l)Xj—i — (1—8)“"'1X§“ 11)

which is the lemma.
THEEOREM 5.1. If (¢, n-1) =1, the product

o e—1
P = H Orf? = f2s) = & [ [ (o — i)
i=0 =0

is a rational integer divisible by p"**.

Proof. Applying Lemma 3.1 to (5.3) we have

€ [mm+(nT1)s—9?m+)(n4 Ysik] = (1—¢° )MH[XF-;(M) HXW(WH)MJ;:[-

Since n+1 is prime to ¢, the produet P remains invariant: when & is
replaced by &” and is therefore an integer. Moreover

e—1 e~1

6("+1)GP$;"') — n (1— 8::)71.4—1 H (l(ﬂ) X( { )

o=1 Tl

is divisible by p"™*' by (5.2).
A similar argunment shows that every symmetric function of the
@’s is divisible by p"*'. In particular

e—1

Hmﬁ”) = 0(modp™).

1=0

(5.3"

We recall the usual definition of congruences involving the classical
periods, with respect to a prime modulus g.

m@
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DEFINITION. We say that N = M (modgq), where

e—1 e—1

. %

N = 2 wn;  and M = E My
=0 i=0

if and only if

;= m(modqg) (¢1=0,1,...,¢—1).

LeMMA 5.2. Ifr = indq(mode), then

[ = (—1)"f(modp),  [#) = 9 sry(modg) (g  p).

Proof. The lemma is well known for # = 0 and follows easily from
the fact that the gth power binomial coefficients are divisible by q. For
7 >0 and ¢ % p, we have, by Theorem 3.4,

(1" =[ 5,’?3%] = 2 oflint = Z offdmir(modyg).

But by (3.18), with s =» we have
o) = o™

Ok = Ciymyryr,kpr-
Hence

e—~1
1 = D syt = 7 pyr (000 g).
v=0
The second statement of the lemma follows in the same way.

Lumma 5.3. Al the hyper-periods 7" are incongruent modulo a prime
q #p.
Proof. Suppose that some two hyper-periods were congruent, say

7 =i (modg) (i # j).
Then it follows from Lemma 3.1 that
W ins = M mpns(modg)  for s=10,1,...,6—1.

Since n--1 is prime to ¢ this makes all the hyper-periods congruent
modulo g. By (3.2) their sum is (—1)" and hence we would have

077,&'"') = (—1)71(m0dq) (’Z == O] 11 vy 6—1)
8o that
of = egf")+ (—1)" = 0(modg) (i =0,1,...,e—1).
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But Theorem 3.1 for odd ¢ and j # 0 can be written
2 ofally = —ep"”

so that ¢ divides ep™'. This contradicts the assumption ¢ % p and the
lemma follows.

We are now in a position to prove the following theorem:

THROREM 5.2. If (n+1,¢) =1, the discriminant D, of the hyper-
period equation is divisible by p V"N, and only by those primes g % p
which are e-th power residues of p, where e is a prime.

Proof. The absolute value of the discriminant can be written

e~1
|Dn| = nPgL)

Te=1

Hence by Theorem 5.1 the discriminant is divisible by p@-H+1),

Suppose that contrary to the statement of the theorem some Pi
contains a prime factor ¢ which is not an eth power residue. Then
indg = r is prime to ¢. By Lemma 5.2 with ¢ =0 and ¢ =¥

(m_

(1 — ) =

kKl —_"7(“+1)? W(gkl)r-;-k(HlOdq).
Iterating this expression we get

() __

(no W(n))q = ’7(n+1)rt"‘ 7’](n+1)rt+k(m0d{1)

Multiplying these congruences together for all ¢ < ¢ gives

ﬁ m_ (”)

Since ¢ divides P{? by assumption it must also divide (n{"—4{™)% but
by Lemma 5.2

= (0 — )@= IN ““’—H () — i) = PP

(7" — )" = 0~ (mod ),
so that ¢ would have to divide (n{"— yf"), but all the »’s are incongruent
modulo ¢ by Lemma 5.3. Hence our assumption that # is prime to ¢ is
false and ¢ is an eth power residue. This completes the proof of the
theorem.

TaROREM 5.3. Let e be a prime not dividing n+1 and let qg#=p be
any prime; then the congruence
(5.4) F™(2) = 0(mod )

has e solutions or none, according as q is or is not an e-th power residue of p.
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Proof. Let indg = r(mode). Substituting z = 4™ into Lagrange’s
identical congruence
e—e =2(1—2)(2—2)... (¢g—1—2) (modg)

we obtain by Lemma 5.2

- (g=1—n{").
Multiplying these congruences together for ¢ =0,1,...

’7(")—"71 (L = 77(") (1—n n))
, e—1 we obtain

(5.5) Py =FP(O)FM(L) ... F§(g—1) (modg).

If r = 0(mode) 50 that ¢ is an eth power residue of p, then Py
vanishes and so the congruence (5.4) has a solution. Since the equation
I, (2) = 0is abelian, the congruence has ¢ solutions since it has one solution.
These roots are not necessarily incongruent.

Next suppose that r = 0(mode) and that (5.4) has a solution modulo g.
Then by (5.5) ¢ would divide the diseriminant D, of F,(2). This contra-
dicts Theorem 5.2.

As a corollary, we can state the following theorem:

THEOREM 5.4. Let ¢ be a prime not dividing n+1 and let N be an
arbitrary integer; then the prime factors of F,(N) are either p or e-th power
residues of p.

Ag to the divisibility by p, it can be seen from Lemma 5.2 that
F.(s) = (e—(—1)"f)* (modp)

so that (—1)"f is a root of multiplicity e.
As an example of the above for ¢ =5, p =11, n =1

Fi(2) = &°— o — 482" — 632”4 912 — 23

we have
D =11%-67%,
Fy(z) = (2-+2)° (mod11),
Fy(e) = 2(2—T)(2—11)(2—12) (2—17) (mod 23),
Fy(2) = (¢—1) (2 —6) (2 —14) (2 — 31) (— 35) (mod 43),

Fy(2) = (2—12) (2—18)*(¢— 26) (¢ — 61) (mod 67).

If we apply Theorems 5.2 and 5.4 to the cubic hyper-period
equations and their discriminants given explicitly by Theorems 4.5
and 4.6, we obtain an inferesting result about the prime factors of the
terms of some rather special Lucas sequences as follows.
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THEOREM 5.5. Let 4p = L2-27M2, let p be a prime and let L==1
(mod3), let

Vn+1 = LVn_an—l’

U,=1, Un-[-l =LU,—pU,_q,

then the divisors of U, and V, for n # 0(mod3) are cubic residues of p.
~ In particular, for p = 7, L =1, the terms of the series

0,1,1, —6, —13, 29,120, —83, — 923, —342, 6119, 8513, ...,
Un+1 = Un—7Un—1
which are odd have divisors of the form 14k-41 exclusively.

A similar theorem can be obtained by applying Theorem 5.2 to
P{™ for ¢ = 4, namely

THEOREM 5.6. Let p = a2+ b® be a prime, let

Wﬂ = 1: Wl = 4&2*—_’[), Wn+1 = (47‘1’2”‘2]9”4771,"7)21477»—17

then all the divisors of W, are quadratic residues of p.
For example for p = 5 all the divisors of the series

1, —1, —19,139, —359, —1321, 16901, — 68381, —12239, ...,

Upnpr = —6U,—25TU,_,

are of the form 10n--1.
For ¢ = 5 we may use the relation (3.25) to get

' 'r(")(a)r(")(a4) = ,(ﬂ)(az).,(ﬂ) (a®).

This with Theorem 3.6 and an identity from the theory of the quintic
equation apparently first given by Young [8] leads to

Ts(n+l)(a) + rs(n-;-l)(ag) + Ts(n+1)(aa) + Ts(-n+1)(a4) — m‘()n)wgn) wgn) mgn) wiu).

Hence the constant terms of the hyper-period equations for ¢ = 5 form
a recurring series of the fourth order whose scale of relation is the quartic
equation satistied by the v(c’). By Theorem 5.4, all the divisors of the
terms of such a series, whose subscripts are not divisible by 5 are either p
itself or quintic residues of p.
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TFor example for p = 11 we tabulate the series whose recurrence is

Viga = —(89V i3+ 3861V, ,+118459V,, , +1771561V,)

n Vn

0 4

1 —89

9 199

3 —29459 = 89-331

4 5310119

5 —224763804 = 22-32.29-41.59-89
6 2638752139 = 199-241-55021

7 56121135751 = 89630574559

8 2035092641759 = 1759-1156960001
9 —312208100506919 = 892-331-119079269
10 8606264257237604 = 22-192-199- 20813581 -4019

The prime factors of V,, are seen to be of the form 22k -1 except for
n =15 and 10.
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