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On the number of integer points in the displaced circles
by
" A. A, YupIN (Moscou)

Regu par la Rédaction le 22. 4. 1966

Let & lattice of points with integer coordinates be given in the plane.
Take a circle with the radius 1'%, Without loss of generality one can
assume the centre of the circle to be a point (u,v)e@, where @ is the
domain defined by the inequalities:

I<u<l, 0<v<l.

Let A(4, u, v) denote the number of integer points inside the circle
of the radins A** with the centre in the point (u,v). Then it is eagy to
show that

AR, u,v) = wA+P (L, u,v),

where P(, u, ) = 0(A%), 0 < 0<1/3.
Kendall [4] proved that

11 )
(1 ffpza, u, v)dudy = zzﬂﬁ(mfﬁ),

n

where 7(n) is the number of representations of the number n as the sum
of two squares, I,(s) being Bessel's function.
By well known asymptotic behaviour of I,(z) it follows from (1) that

11
[ [P, u, v)dudv = O (1),
00

We shall show below that

P4, u, v)

lim e P2, u, )
oveo (LI A7

lim -2 ™%
>e>0, I Ty <

(2)

where ¢ is an arbitrarily small positive number, ¢ is an absolute constant,
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LEMMA 1.

@ 21 D(n)
~2 1 (2 oV
W;Z (20 na),

n

(3) fP(A,'u-,q))dl =
0

where G(n) = 3 ) gad the sum is taken over all the representa-
a4 b2=n
tions of the number n as the sum of two squares.
The proof of Lemima 1 is analogous to the proof of a similar result
in [5]. PRI P
We introduce the following definitions: Let
given function, and let

a (@) be some real-valued

ala,f) = sup ofw)
L
and
cla, f) = int o(a).
- a=g<p
LeMma 2. Let 0229 >0, Xnt=e>1 and oft) =t 2P, u,0),
then
1
(4) a(w—n, o+n) < —8x(w)4+0{—] 40 (n:fm' ,
_ 1
(5) olo—n, o+n) > X((o)—}—() —] 4+ 01- .‘,1/4 ,
where

1 M\ D (0
Sx(0) =— Y‘ ( XJP) 41-(3“) o8 (znn m—}—u)

The proof of Lemma 2 iy analogous to the proof of theorem Rl
from [3].

We multiply both sides of (3) by y'(#), where x(w) is a function
having the continuons derivative on <a,b>, « < b. Integrating Dotl
sides of (3) over the range a to b and applying (3), we get by partial inte-
gration .

b
(6) f%(ﬂ Pz, u,n) v?ig”‘ {mlﬂx(')

1/’
o
N 1 “

TC]/’M’I‘ div.

Now let

K(’.’/)=(§i—gfﬁ)2 and zi:(‘m)z{z“(l—lfvl)

3 0 for || = 1.

for @) < 1,
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It is known from the theory of Fourier integral that

k) = [ K(peray.

]

Choosing suitably «, by (@) in (6) and replacing »

-1
~—

by #2 w¢ obtain

w5y @y

. ) - D(n) P ,
(8) f Ky (t—w)o(t)ydt :2-7 T , PRI (= o) I (et
W1 N==l n m'f.gl
where Ky(d) = UK(US), U > 0.
By the substitution t = w-+z/7 in (8), we get
Uy

[25] N Uy
2 D(n) 2\ ) .
f K(z’)a(w—l—w)(h = > o f(w—}—»ﬁ) K(z)Il(‘.ln / (mJ— ))d,.n
~Un N=1 Uy \

Using the asymptotic behaviour of Bessel’s functions we obtain

(9

Uy

K (z) a(m —}——i)
¥ ;

ki
dz = ——Z ﬂm f]x Oos(.ncn (a)~|— )+4)dz+

Uy
em 2\

+o( M ] B (@) [0+ ).

=1 " - I.Jq ll

Now we study the remainder term in (9) It is of order O(1/w) since
o)—}—z/ Uzo—nz}to and the series 2 [6(n)|/n*" and the integral

f I ()| dy are conver, gent.
Hence

Uy

(10) f K(z)o ( o+ %) e

-7y
IO
"V_ n " 2, f_ LAY 0 )
WZ R J K(z )cos( o (u—{— U) ) 2+ -
Ty

M=l

We estimate the ervor on the right-hand side of (10) if the integral
is taken over (—oo, o).

Denote

A, = —= Z gia/]i) j K(z (‘os( ﬂll/'((u—{——%—) —f—E) de

M=l
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and

oo ~Un
Lyt T A D P
Ay = =2 2 _£ K (9)cos |2mn™ |0+ ) + 7
Since 4, is not essentially different from 4, one can estimate only 4,.

The nth integral is of order O(1/Un). Integrating by parts and
using the trivial estimates

Ky) =0, K@y =00,

we geb another one namely O(1/n'’n)
Therefore
s=of "D(""min(_l_ _.1-)
1= e P ,ﬂll/z’7 7 on))

|<15(n)]_ 1 1 \(D(n)\) ( 1 )
= O( o i W+; s n* 0 U2
n< n,

Hence we obtain

Un 2
f K(z)a(m-{——)dz

—~Un

1
=~~A2¢gﬁ wa)cos(w (w-l— )+ )d +0( )+0(U17277)-

In view o (7) we have
+o00

f K (z)cos (.nm (w+ )+ )dz Re ¢l o) f K(z “”‘”“”/Udz
P
= 0§ (21:%1/2 o +—:—) Ic(—j—c;-;w»-) .
We have . '
Un
. 2 1 @ (n) nM ) ( ue 'n:)
e — O | L ———| cos | 2! @ 4~ ) -+
_}_0( ) H)(U”“ )

Now setting U2/4n? = X we get

f K(Z)U(CH- ) e = —= ZZn ( X_”"‘) QSZ) o8 (va w-+ Z;—E-) -+

—Un ng<xX
1 1
+0(3) +°(;3@74‘)'

icm®

Numbers of integer poinls in the displaced circles 145

In view of I (y) = 0, we have

Un Uy
alw—1, o+n) f K(z)dz < f K(z)cr(a)—i"—z;)dz,
) —Un —~Un U
and hence
Un Un
a(o—n, o-4n) é{ f K(z)a(m—}—wﬁ)dz}( f K(z)dz)
—Un -Un

Since k(0) = 2n we obtbain
Uy

T K@) = - .,m}_ ,‘,;M._L (L
(Jﬂ K () ds] i f S (14—()(77 ))

Further we get

1 '\ @ )
o< E S D s ),

iz
T NL X X

. 1 D (4
+0lm 200 +o3)+olm)

1 @) 0( 1 )
17Xl/i‘. & nS/ll- - 7]Xl“ H
we obtain

'\ b
glo—mn, w4y < —— Y( ‘_1/‘) (3/4) (os(.n-n “o-- )

'n< X

ol ol

Thus we get (4). It is clear that (5) can be obtained in the same way.
LysmwmA 3. Let f(x) be defined and measurable on {0,1> and

Since

1

1
[f@)dn =0, [P@aw=T>0, |f@) <M.

]
Then

A = max f(x) = I/M.
xe(0,1

Proof. From the conditions of Lemma 3 there follows
(11) [If@))de = [|f()ds
', E_

Acta Arithmetica XIV.2
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and ‘

(12) [f@)da+ [f2(2)de =
By B

‘where . ,
' B, o={e: fl@)>0}, E_={2: flw) <0},

» iy defined by the equality
(13) « [|f(z)ldw = [ f2(@)da
E_ E_

Multiplying (11) by » and adding it to (12) we get

dzo+ | filo)do =
xE{vw)l z r{

or
(14) wAu(By)+ B p(B,) 2 1

Let us get now the uppel estimate for u(F, ). From (12) we have
I= f Fr@)de < A2 p(B,)+ M2 (1— u(B,))
0

M2—12

(15) /"(E»l») <‘j[—2‘:_z‘2“-

Then from (14) and (15) we get
m-r , M-I

I<nd —A2+A W
As (13) implies = < M, we get
Mi—1
—_—A =T
M—4
or
4=1I/M.

Remark. The estimate of Lemma 3 cannot be improved. Tt is evi-

dent that
7
—M for ge <0, 7;{-:Mé.>,

I I
ﬂ for &re (—Ir—-{:-jii’ 1>

satisfies all conditions of Lemma 3 and

fla) =

max f(z) = I/M,

®e(0,1)

m@
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COROLLARY. Let f(2) be measurable on 0,1 and
1

[f@dz =0, [pwa=1, |f@) <
T}wn
min f(e) < —I/M. -

¢ 0,1y .
L]]i}VMMA 4. Let |yl =1 (j=1,2, -y N) be complex numbers, let
= Zz}“ and ky a prescribed integer with N [2 < ko < N. Then
j=1
max ISkI > 1.
1SESN
kstkgy
Proof. Let
(16) HME max |8,
v=1,,,.,N¥
vk
(we may suppose 0 < M < 1). Let flz) = zN+a AR .-+ ay be the
polynomial with 2’s as zerog. According to Waring’s formula

‘ 111++1Nshglz Sa\Av

e DB (s
el N1/ A2 N

where the summation. 1efers to the nonnegative solutions of

(18) I+22+...+ Niy = ¥,

Owing to N/2 < k, < N the possible values of Ay, are 0 and 1, hence
(17) ean be written as

(9 ay=Sn 37 SV i S
) PR Ako_vzk+1 !

A
l e ko_l k—oﬁ e N b
where X" is extended over the nonnegative solutions of

(20) D220+ ... 4 (Bo— 1) Ay 1+ (ko + Viggiat+. . +Niy = N—F,
and X" over those of

(1) At 220t A (hy— 1) Ay o+ (g 1) Ay 1+ o+ Ny =

Since |8,| < N, i.e. |8k, [Teol < N[y < 2 and |aN| 1, (16) and (19)
give
Fot Ay 1A et A
Mh ] 0 N
<2 Z ' Ty 1 Mgt 1 w
lko— 'lk0+1' Z-_N'l 1 (ko—l) o (700+1) LN
" M11+...+lko_1+4k0+1+..A+;'N
+ —

Ml drg y U g Ayl 14 (B — 1) %01 (g - 1) R0+1 | v
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The first sum in (22) is

s 2ot dot?
coeff 2% in exp (M(; 4.t - + Tkl
: g ot 2o
— coeff &M in exp (M (—I--Jrg l'---)—“ 'i&;‘)
&

1 A
— coeff 2N "Fo in (]T—_—(Sﬁ exp (-——.M —H)

Owing to ko > N /2 we have N—ky << N/2 and hence this i

u ko)

1
— GN=F e | L —
(23) coeff 2" ~" in (1*2)1»1 ( ko

1 —M
Noky o
< coeff z¥~*0 in (I_JM'_HN——RO)

3

] 1—M
- M (1_%_1{) (1—-l-1l—1:)...(1—- ~——~J-~—) <

The second sum in (22) ig

‘0“1 zkﬂ F1

(24) coeft ¢~ in exp (M( o L

Fo—1 | I+ 1

1 o, L
= coeff 2" in T P (— —Ez"") < eoeft 2V in

='(_%)‘ = M(1v_ 1_2]'[) (1— -1-%)< M.

(22), (23), (24) give
1<3M. Q.e.d.

LevmA 5. Let be given a sequence of veal numbers
1L,V2, ..., Vom,

where v, are squarefree positive integers and let w < m.
Then there epists T* < expe™ such that

— 1
HT*Vw}— gl < =i

where {w} is the fractional part of .

s
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The proof is obtained by the method of Bohr and Jessen [2] Let

i
m

Bty =14 ) emiVit-g;
and let
w
o) = (1) Ly
n i\ sin §t¢
be Fejér's kernel.
Now we construct the kernel of Bochner-Fejér

m
Ki( HK,, I/m‘—(/g))

It follows hence
n—1 _
POER(T) = 1—i—~‘-1\ +8(),

where S(1) is almost periodic polynomial. Fourier's exponent of S(¢)

are not 0 because Vu, v are linearly independent, as it was proved by Besi-
coviteh [1].
We have

1 . o W1
= fﬁ( L)t = 1+~ et A,
27 ) 2N

where .
1 (2ny+t

A A*

T ar mlnil +.. —[—l,,,l/vml

Lism

Let the minimum of |l,4-... -1, val for |l;| < m be obtained for I, ...
The number

))L
a =l LV v+ A+l v
belongs to the field R(V2, ... v ;7;) and ag it is easy to show
1N (@) = [ [leslot .-t bV | > 1,

where the product is taken over all the combinations of & = 4 1.

- Using the inequality for the arithmetical and geometrical means,
we get

ot UV2+ ..U ol = [ ] leali+ ..+ el o]
> {exp(exp (m-21nm))},
where the product is taken over all the combinations of &.
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Therefore if n < m” we have

c2m

T

4

A* < for  m=my=2(y+1).

Then in view of
T
o [ Kwa<ita,
o7 )

we geb

m "
max |[F(t)| =z 1+m———A"m.
Tl n

Putting here n = 2mw and T = exp(exp3m) we obtain the existence of
T* < exp(exp3m) such that

|F(T*) > 1+m+06, where |6<1l/w.
Hence the lemma follows.
THEOREM.
— A(A, u, v)—nd
@5) g7 > >0
and
— 7l
(26) AZ,u,v)—m c—6<0

for all (u,v)eG.

Proof of (26). Using Lemma 1 and Lemma 2 we get for sufficiently
large X, w, 7 and a suitable ¢, >0

12 .
(1 i ) o) Ccos (27‘:%1/2 w4 -}) .

olo—~n,0+9) < ~¢ T X T

1€n<X

In the sequel we ghall denote by ¢, absolute constants different in general.

Let .
n\ @(n) ™
Q (t) == (1 — ‘—Xm—) -,;;57;— €08 Bﬂﬂjlzt"‘- '1"
. 1<ngX
Y (g’ )'? ) D(»g?) ( 12 ﬂ)
= — — 2 b —

where the external sum is taken over all the squarefree » and the inner
sum is taken over all 1< ¢ < [VX pl.

iem®
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Let

(g () T
Qq(t) = 2 (1 T X (g 008 2mql,+ Z)’
a
where f, = Vot.
Parseval’s equality gives for Q. (1)

1

. 1 (5632 |0 (o)
Gt at, = — @_ﬁuﬁ__
f“ 32

o 7] gy

and it is obvious that

212\ | (pg2
194 (1,)] QZ(l_%%_)L(%
q

In virtue of Lemma 3 there exists 0 < ¥ < 1 such that

o o 1 (vg%)""\? |(vg2) 2 (a)") 10 (vg2)]\~*
0012 3 3 o= O o) (3 - 7)o

Using Cauchy’s inequality we get

s L7 )" (vg%)'P\* | D(g?) 2\
Qa(h)?g(y) (2(1_W) —(qu)alT) .

It v = p, p is a prime number, p = 1 (mod 4) then as it is well known
7(p) = 8, where r(p) is the number of Tepresentations of p as the sum
of two squares. Further it is known that

rnang)  r(ny)

(n)

4 & 4
if (g, ny) = 1.

Thus we get 7(k*p) = 8, 1<k <8 and k % 5 and it follows
P(k2p) = Z geik(atby,

afl,p.bgzp

where % =5, 1<k<S8.

Using Lemma 4 we get for some 1<k, <8, k, % 5 and for all (2, v) 6
and v =p =1 (mod 4), p << X/ow

%m>4

» "1
3

1
= 5 = t;k-

10/x

Now we apply Lemma 5 to k,l/;, <X and o =
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Therefore there exists 7' < exp(exp3X) such that
Loy

Hence
o (' —1y, T 1) < — ¢y (Indn e

for 1T > 14(e) and &> 0.

(26) is true, (25) follows by the same way, one has to use only the
corollary of this lemma.

Remark. If we estimate the degree of lincar independence move
exactly (Lemma 5) the term (Inln2)"~* in (25) and (26) can e replaced
b InlnA )M ‘ '

Y ('153%7 '

I wish to thank Professor P. Turin for reading the paper and making

some valuable suggestions.
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Some notes on k-th power residues
by

P. D. T. A. Brurorr (Nottingham)

Let k be a positive integer and p a rational prime satisfying p
= 1 (mod k). We then define n;(p) to be the least positive integer which
is not & kth power (mod p). For the remaining primes we define it
to be zero.

It is a long standing conjecture that the estimate ng(p) = O(p°)
holds for any fixed value of ¢ > 0. In an average sense this result is known
to be true since there is a constant ¢, for which

D m(p) ~ aaloge,

nLz

as @ —oo. For a proof of this result we refer for example to Elliott [5].
If we assume an extended form of the Riemann hypothesis then the
method of N. O. Ankeny [1] shows that

n(p) = O((logp)?).

In the other direction, Chowla showed that there is a positive constant
¢ for which n,(p) > clogp holds infinitely often. It is our present purpose
to show that a similar result holds for certain other values of k.

TanoreM 1. If k 8 an odd prime there is a constant d > 0 for which

np(p) > dplogp
holds infinitely often.

For the duration of this theorem, we agsume that k is an odd prime.

We need two lemmas.

For an integer & let ¢ denote the cyclotomic field obtained by
adjoining the %th roots of unity to the field of rational numbers Q. Let
Qr denote the ring of algebraic integers in this field. For any element a
of @, we use [a] to denote the principal ideal generated in @y by a. Fur-
thermore we take ¢ = exp(2ri/k) and 2 = 1— ¢ which are both algebraic
integers of Q.
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