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A theorem on linear forms
by
H. DavenreorT (Cambridge) and W. M. Scemrpr (Boulder, Colo.)

1. Introduction. In 2 recent paper [2] we proved a theorem on
approximation to real numbers by quadratic irrationals. This theorem
was an easy consequence of the following result on linear forms which,
however, was not stated explicitly in our paper.

Write @ = (v,y,2) and |2 = max(|z|, [y], |2|). Suppose & is real
and L(x) is the linear form

L(x) = E2x+ fy+2
and P(x) the linear form
P(x) = 2&x+4-y.
Then there are infinitely many integer points ® which satisfy
1L ()] < e, (8) [P ()] |22,
where ¢,(&) is a certain positive constant depending only on &.

Our proof of this result did not depend on the actual form of I(x)
and P (x). In fact the same conclusion holds if L, P are any two independ-
ent linear forms in «, y, z and if ¢,(£) is replaced by a constant ¢,(L, P).

In the present paper we shall prove the following more general the-
orem. We shall be concerned with integer points

T = (), By, .., Tn)
and we write
[] = max(|,], ..., |[@]).
THEOREM 1. Suppose m=1 and
(1) n=m+2.
Let L, Py, Py, ..., P,y be independent linear forms in 2. Then there are
infinitely many integer points 2 with
@) L@ < (L, Py, ..., Pr)max(|Py(@)], ..., |Pple)]) "™
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On the other hand, there exist independent linear forms L, Py, ..., P, such
that for every & >0 and every integer point @ one has
(3) u |L(x)| = 64(5)1113*‘(‘1)1(33)]7 ceny |Pm(w)|) jag| "2,

The case m = 1, n = 3 is that of our previou‘s paper, and as remarked
above, it sufficed to settle the question of approximation to a real number
by algebraic numbers of degree at most 2. For the corresponding question
with algebraic numbers of degree at most 3, it is natural to define the linear
forms

(4) L{x) = o+ 8285+ Exg+ 0,
and

(5) P(x) = 382, 4 2Emy+ 5.
Suppose that one knows that Fhe inequality

(6) IL(@)] < o5 (€) [P ()] ||

hag infinitely many integer solutions . Then one can easily show that
there are infinitely many algebraic numbers o of degree at most 3 which
satisfy

[§—al < ¢(§)H(w)7?,

where H(a) denotes the height of a. The case m = 1, 2 = 4 of Theorem 1
allows us to take y = 3. This result is rather weak, and we conjecture
that in the special case when L, P are given by (4), (5), one may take y
equal to 4 or at least arbitrarily close to 4. But it is plain from the second
agsertion of Theorem 1 that any proof of this conjecture must be based
on the special shape of the linear forms (4) and (5). ‘

As we shall prove in § 6, our theorem does, however, have the fol-
lowing application to approximation by algebraic numbers’.

CoROLLARY. Suppose h >1 and suppose & is real and not algebraic
of degree at most h. Then there is a number k in the range

(7) 1<k<h—1
and there aAre infinitely many polynomials f(x) of degree h with integer
coefficients and with roots a,, ..., o5 which can be ordered so that

(8) (§—a)(E— ) ... (E—aw)| < 6 H (™.

Here H(f) denotes the height of f, t.e. the magimum of the absolute values
of the coefficients of f.

Probably this result is true for every £ and for every k between 1
and h—1. When h = 2, (7) gives k = 1, and we obtain essentially the
theorem proved in our previous paper [2].
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2. An auxiliary theorem. The following theorem will be needed
in the proof of the second part of Theorem 1, but s perhaps also of inde-
pendent interest. .

THEOREM 2. Let y(t) be a positive function defined for t = 1,2, ...
Suppose that k >1. Then there esist k real numbers ap,y ..., o such that

(1) 1, a1y -, ap are Linearly independent over the rationals ;

(2) for every sufficiently large t there is an integer ¢ with

(9) 1<t
satisfying
(10) lazgll < w(2)

Sor each i in 1 < i<k with one possible exception i, = i,(2).

Further, the sets (ay, ..., ax) with these properties are everywhere dense
@ k dimensional space.

One has to allow an exceptional 4, if ¥(f) = o(1/t). For suppose (10)
were true for each 4 in 1 < 4 <k for every large ¢. Then for each fixed 1,
the inequalities

I<g<t and  flug <eft
would be soluble for every & >0 and every t >1,(¢). But by well. known
results in the theory of continued fractions (see e.g. Koksma {4], pp. 36-37)
this is possible only if a; is rational. )
The proof of Theorem 2 is given in § 8.

COROLLARY. Let n be an integer greater than 2. There ewist linear forms
L(x) = ay&t,+ ...+ ap 0y,

having L(x) % 0 for every integer point x = 0, such that for every suffi-
ciently large t there are n—2 linearly independent integer points a0 with

4

(11) o] <%
and ' )
(12) IL(@)] < w(t).

This extends a theorem of Khintchine [31, who proved the existence
of linear forms T such that for every large ¢ the inequalities (11), (12) have
at least ome integer solution @ = 0.

Proof of the Corollary. We may assume that (i) < . Put
k=mn—1 and let a, ..., a; be a k-tuple with the properties described in
Theorem 2 and satisfying |a <} (t=1,...,k). Set a,= —1 and
L(@) = aqyity+ ...+ oy 05— . Suppose now that (9) holds and that (10)
holds for ¢ =1, 2, ..., k—1, say. There are integers P1y +e-y Pr_, with
lasg—pi| < y(t) for ¢ = 1,..., k—1. Then

P <laugl+p@) < B+i<t (G=1,..,k—1)
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The points
2 =(g,0,...,0,0,p,),
x=(0,¢,...,0,0,D,),

@y =(0,0,...,4,0,D51)
are k—1 = n—2 linearly independent solutions of (11) and (12).

3. The sequence of minimal points. It will suffice to prove the
first part of Theorem 1 when

(13) n = m--2.
For in general, when »n > m+ 2, we may assume without loss of generality
that the restrictions of the linear forms L,Py,..., P, to the subspace
of peints

B = (X1, ..oy Bnyas 0,...,0)

are independent. We may then apply the case # = m -2 of the theorem
to these restrictions.

To prove the first assertion of Theorem 1 we may assume thatb
L(x) # 0 if & 5~ 0 is an integer point. We may further assume that the
linear forms

2y, L(x), Pi(2), ..., Pplx)
in @,...,%, are independent. Then if we put
(14) (x) = max (@], |L(@)], |Py ()], ..., |[Pu(x)]), -
we have
(1) x| < (x> < ||

Here and later, 4 € B will mean that 4 < ¢B, where ¢ is a constant
depending only on L, P,, ..., P,. In view of (15) it will suffice to prove
the existence of infinitely many integer points & having

(16) L ()] < max([Py(®@)], ..., [Pu(®)]) >~

For each real X > 0 we consider the finite set of integer points & # ¢
satisfying
ey < X,

Assume X to be so large that this set is non-empty. The values of L(x
at the points of this set are distinct, since L(x) does not vanish at an)
integer point other than the origin. We choose the unique point @ fo
which |L()| has its least value and the first non-vanishing coordinate a
is positive, and we call this the minimal point corresponding to X.
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It is obvious that if & is the minimal point corresponding to both X'
and X" it is also the minimal point corresponding to any X between X’
and X'". Hence there iy a sequence of numbers

(17) X <X,<...
which tend to infinity, and a sequence of points
(18) Lyy Xyy .eny

such that @; is the minimal point corresponding to all X in the range
X;< X < X;,, but to no X outside this range. We obviously have

(19) (@ = X;.

We write for brevity

(20) L; = L(x;)

and

(21) Qs = max(|Py(w;)], ..., |Pp()]).
Plainly

(22) [y > | Ly| > ...

By our construction of the sequences (17) and (18), there is no inte-
ger point @ £ 0 satisfying

(23) ®> < Xy, and | L(x)| < |Ly.

The inequalities (23) define a symmetrical convex set of volume
> Xi7'|Li|, and hence by Minkowski’s Theorem we have T L] < 1,
whence

(24) L < X = X
The first assertion of Theorem 1 is proved if we can show that
1Ll < @: X7™*
for infinitely many 4. The proof will be indirect; we shall assume that (1)
(25) Qi = o(|L;| X7,

and we shall eventually reach a contradiction.
By (24) and (25) we have

(26) Qi = o(XIP XY = o(Xy).

X (1_) Irf reality we assume an inequality with a constant factor and reach a con-
tradiction if the constant is sufficiently small. But the o notation is a convenience.
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Therefore by the definition of the notation { ), and since |L;| =_o( X,
we have oy = Xy if iis large. Since @ is non-negative, we have in fact
27 wy = X

4. Two lemmas. The supposition (25) implies, in view of (24), that
the m = n—2 ‘components’ Py(a), ..., Pu(%;) of a; are small compared
with X;. Thus in a sense the two most important components are &y = X,"
which is large, and L(x;) == L;, which is small. There is a limited degrée
of analogy between the sequence of points &, @, ... and- a sequencg.of
convergents in the theory of. continued fractions. It is this general idea
which underlies the two following lemmas.

LeMma 1. The signs of the L; alternate when @ is large.

Proof. Consider the point :

Y =T 1— ;.
It follows from (27) that

0 <y = Biprg— b = Xippy— Xy < Xy
Since |L(y)] <1 and since
max ((Py(y)l, -y [Pu(¥)l) < Qi+ Qi = 0(Xepa),

we have (y> < X;,, provided ¢ is large. Since (23) has no solytion, we

must have ‘
Ly — Ll = | L(y)]| 2 | L]
Since 0 << |Lyy,| < |Ls|, the numbers L;, L;,, have opposite si’gns.
TeMma 2. Suppose i is Zowge and

(28) Qi < %X
Then ! .
(29) _ Biyy = W02y,

where t 18 a positive integer.
Proof. Define positive integers ¢,'u by

(30) "~ t=[Xn/X,  w = [La|/IL4],
~and integer points y,z by
(31) Y = Xy —18y B = Xy Uk

Clearly a;,; and x; are mdependent and therefore y 5 0. Similarly
z2 # 0. We have .

max (IL(y), IPy(y)l, ..., [Pm(y)])
< max (| Dl -+ (Xiga [ X0) 1Ll , Quyr -+ (Xt X) Q).
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By (24), (26) and (28) this maximum is
< 34+ o (X X X2 XY < 32X,
if ¢ is large. By (27) we have
(32) 0<y = Xy — 11X < Xy,
and therefore
Yy < X;.
Since (23) has no non-trivial solution for any i, we have
(33) 1L () = 1 Li_y] .
Next, observe that 4
max(IL(=)], [Py(2), ..., [Pu(#)l) < max(Ze o]+ il 0y + Q).
By (24), (25) and (26) this maximum is
o( Xyl XP+2) = o (X, 1+|Ll | XY =0 (X)),

and is therefore less than Xy if 4 ds large ‘
Since L; and L;_ , have opposite signs, we have

(34) ()| = Loy uly < |Lyf.
Using again the fact that (23) has no non-trivial solution, we obtain
2y = X,

Since |L(2)|, |P,(#)], ..., [Py (%) are smaller than X;,1, we must have
(35)  lalz ‘
The inequality (33) yields
il < 1Ll +11L),

L+1

and therefore
|L7 ll/lLll t+ ILH_II”LLI < t_!'l
On' the other hand, (35) yields

Xl-(-l 'L— + ’H'XL H
and therefore

<< ’L+1/X U+ X;_ I/X <u+1.
Sinee t and » are integers, we obtain -
(36) t=wu.
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Consider the point
(37) W= B, — 10—, =Y~y = Xy —&.
By what we have said about y and by (26),
max(|L(w)|, [P (w)],..., [Pafw)]) < $X;+0(Xiy) < Xy,
if § is large. By (32) we have
fwr] = |y — Xia| < Xy,

and therefore

wy < X < Xy
By virtue of (34) and since L(z) has the same sign as L;_; and hence the
same sign as L;;, we obtain

[L(w)] = | L — L(?)] < |Lil.

The point 2o satisfies the inequalities (23), hence it must be the origin.
This proves the lemma.

5. The first assertion of Theorem 1. Suppose (28) is satisfied for
some large 7. Then by (27) and by Lemma 2,
[ XLy — X Ll = [ Xy Li— XLy
and
|Pi(%) Lipy — Py 1) Lil = [Py(@iy) Li— Py () Liy| (= 1,...,m).
Now suppose (28) is satistied for every 4 in the interval h < i < k. Then
(38) |Xth+1“ Xh+1Lh| = 1Xk~lLk"‘XkLk.-1|

and
1Py (aen) Ly — Pi(2n 1) Lyl = | Py (1) Lp— Py (o) Ly} (= 1,...,m),

whenece, on choosing j so that |P;(#;.,)| = @y, We obtain

(39) Qg 1Ll < QniLnga] + Qre 1 el + Qe L _a |-

These relations and inequalities remain trivially true if £ = h+4-1.

The left hand side of (38) equals |L(X;%,,,— Xj,17)], and there-
fore is not zero. On the other hand, by (24), the right hand side of (38}
tends to zero as k tends to infinity. Hence (28) cannot be satisfied for
every i greater than some i*, and so there are infinitely many integers @
for which (28) does not hold.

Now suppose (28) is satistied for every ¢ in the interval h <i <k
but not for ¢ =h or ¢ = k. Then @, > 1X;, and by (39) and by (24),
(25) we get

X0l < QnlLnga| 4 @y | L+ Q| L |

= 0( X In Iy + X Doy Tal) = 0 (X | Il + X ) -
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Therefore
X lLn| = o(Xx|Inl),
and if & and hence k is large, this implies
Xh |Lh| < Xk ILk] .
But this is impossible, since it leads to an infinite sequence of values
of » for which X,|L,| increases, whereas we know that X,|L,| — 0 as

v —> oo by (24). By what was said above in § 3, this contradiction proves
the first assertion of Theorem 1.

6. The corollary to Theorem 1. Let & be a real number which ix
not algebraic of degree at most b, and put » = h-4-1. Write

L(x) = o+ & a4 - g+ @,
Py(®) = h&" o+ (h—1) 8 myt ...+,

Ph 1(®) = h!én 4+ (h—1)!a,.

We may apply the first part of Theorem 1 with # = A+1and m = h—1
= n—2. There are infinitely many integer points a which satisfy (2).
There is an integer % in the interval (7) such that

(40) 1L ()] < () |Pr(ae)] o~
is satisfied by infinitely many integer points
For every such z, let g, be the polynomial -
9a(t) = a1 oyt Aty 2,
and let d = d(x) be the degree of g,. By (40) we have
(41) 0 < |6 (&)] < 00 (£)]987 (£)] 1] ™.

Therefore g is not identically zero and d = d(x) > k. Let ¢.(t) have
the roots ¢ = a,, ..., az. Then the identity

@0 _ k!

9o (%) rig<if S <t (t—ag) oo (—ay)

holds. We can order the roots aj, ..., az of g, in such a way that, when
1t = £, the term
k!

(E—a) ... (E—a)
is the greatest in absolute value. Then, by (41),

HE— o) ... (E—an)| < ea(&) || ™" = ey (§) H(g) ™"
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The polynomials f, defined by
Folt) = """ g, (1)
have all the properties described in the corollary.

7. The second assertion of Theorem 1. We are now going to prove
the existence of forms L, Py, ..., P, such that (3) holds for every integer
point x. This is very simple if n = m 2. For there certainly exist linear
forms L(x) = ey +... 4 a,@, with the property that

IL ()] = eyl ™4 = eqplae| ™™
for every integer point x (see, e.g. [1], ch. I, Theorem 8). For such forms I
and for any given forms P, ..., P, one has

v

[L(®)] > ey max(|Py(w)], ..., [Py x)]) o) =™ 2.
‘We may therefore assume that
(42) n>m-t2.
LeMMA 3. Let ¢ be real, e>0 and m>=>1. Almost every (2)

m-tuple fy, ..., B of real nwmbers has only finitely many integer poinis
Y= (Yo, Y15 -5 Yn) with ~ o ' i ' T
(Y1) oo Yum) # (0, ..., 0)
and o
(43) leyot+Bryat ..+ Byl < |y~
Proof. We may restrict 5, .i., Bm to the unit cube 0< ﬁilg 1

(¢ =1,...,m). For any particular y as above, the m-tuples fy, ..., fu
safisfying (43) form a set of measure < |y|~™~'~*. The number of points ¥

having |y| = », where ris any positive integer, is < ™. Hence for givenr’

the set of m-tuples By, ..., B, satisfying (43) for some y with |y| =r is
of measure < »~!~%, Since ' '
0

S

r=1
is convergent, the m-tuples Biy.os P which satisfy (48) for infinitely
many points y as above form a set of measure zero. This proves the lemma.
Now we apply Theorem 2 with
(44) ' ‘ k=n—m—1
and with

() = 8",
Note that ¥ >1 by (42). '

(*) In the semse of measure theory.
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Let ay, ..., ar be a k-tuple with the properties stated in Theorem 2.
By Lemma 3 there are numbers 5, ..., B such that (43) has only fi-
nitely many solutions

y=('.l/0;y1:-~'7?/m) Wlth (yl7"'}?/m.)#(O""’0)7

for each of the numbers ¢ = a;, ¢ = a, ..., 0 = a, and for every ¢ > 0.
Put . v o
Li®) = ay @+ ...+ ap@p+ B+ BrBryat - o o+ Bnlng
P (x) = /‘1(“15.171+ ot ak@c*}’mk.).l)+M11xk.+2+~v~‘-+/l1m$n7
P, (x) = (0 @+ ... 4 akwk+$k+1) -+ B Prg ot .. + Mmmmm V
where pyy ...y fmy fh1y - - -5 Ymm BT 2Ny DUMbers With gy, ..., 70, ..., 0
and such that the forms L, P,,..., P, are independent. In particular
one can choose the numbers f;, u;, ui; 50 that the coefficients of each
of the forms L, P,,..., P, are linearly independent over the rationals.

Obviously, an inequality of the. type (3) holds. when ., =...
... =&, =0, since:then L,P,,..., P, are proportional. We are. now .
going to show that : . -
(45) L)) > a2

if ‘ ) ‘ ;
(46) (wk+27'-~5wn)7é(07”':0)

and if [¢| > ¢;,(¢). This will complete the proof of Theorem 1, since
max(|Py ()], -.., |Pa(®)]) < |2].

Suppose x is an integer point satisfying (46), and set % = [Jx|**™].
If x| and hence t is large, there will be an integer ¢ with

(47) 1<g<t< Ja

and

(48) lasqll < p(t) = 7% < Ja) ="

for at least £—1 of the ¥ numbers ¢ = 1,2,..., k. This follows from our

choice of a;, ..., az. Let us assume that (48) is true for ¢ = 1,2,...,k—1.
Then . ;

lgL ()| > lgL ()| ; ‘ i
= llax g+ .+ @ 191 + o gor+ @y + Brg%psa - Bm gl
> 0g0kt By @iyt Bl leagall — .. — oz g

> lloe @+ B 4@+ - -+ B @l — o2, '
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By our choice of gy, ..., fn and by (46), we have further
L ()] > g~ (g |~ R
> |w|“’”‘1‘3”"-—k|m]""‘2 > |wl_m~1_e
if ja| is large, say if |®| > ¢1.(e). This proves the result stated earlier.

8. Proof of Theorem 2. To avoid a cumbersome notation we sghall
prove the theorem only in the case k¥ = 3, which is quite typical. We
shall write a, 8, ¥ instead of a,, a,, a3, in the enunciation of the theorem.
The numbers 1, a, B, y are linearly independent over the rationals if
and only if the point (a, #, ) of three dimensional space lies on no rational
plane II. Arrange the rational planes into a sequence I7,,I1,,...

Given an interval I:a <2 <b, let I~ be the interval a << o < a+t
-+3(b—a) and I* the interval b—§(b—a) <2< b. The length of an
interval I will be denoted by [I|. We shall employ boxes

IxJIx K

consisting of points (a, 8, y) with ael, fed, yeK, where I,J, K are cloged
intervals. Given a plane I7 and given any intervals I, J, K there exist
signs ¢, o, v such that I7 is disjoint from the box

I xJ° X K;

for IT cannot properly intersect all the 8 cubes obtained by bisecting
I,J and K.
Set

(49) o(t) = min(L, (1), p(2), ..., ().

Let 4,, By, C, be three closed intervals. It will suffice to prove the
exigtence of points (a, 8, y) with the desired properties lying in the box

AygX ByX 0.
We shall construct inductively rationals

Ug Wy Wy Uy Vg Wy Uy
TN T Ty Ty Ty Ty Ty e
G by’ 6 ay’ by e a,

(50)
and closed intervals
(51) Ay, By, Oy Ay By, Oy, A, ...
First, choose integers a,, by, ¢, such that
a0 =914, by > min(ag+1, 9IB™h),  eo= min(by+1, 9]0, 7Y,

The?e are 8igns ¢, o, 7 such that 43 x BY x C7 is digjoint from I7,. Choose
the integer «, such that the intérval |a— u, Jao| < 1/a, lies in 49, Similarly,
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choose vy and w, such that the interval |f— vy/bo| < 1/b, Les in BY and
the interval |y—awg/eo| < 1/¢, lies in Cf. Then the set of points (ay B, %)
having .
< 1
<=

Co

1 ‘ w,
y—20

2y
f— <=
by ’ | Go

< —
= bq

@

u

g

<

Yes in 44X By X €, and is disjoint from I7;.

Suppose now that the intervals A, Bp, C,, and the rationals —™,
Am
o w
;—m,c—m have alveady been constructed in such a way that the set of
m 'm

points (a, B, ¥) having

Upgy

oQ— —

(52) . ]y— o

b

< —

m Cm

1 Vo,
<= — g
L [i-2|e
lies in A, X By X 0y and is disjoint from 1T, .. Suppose Gy < by < Cpp-

Let Ay, be the interval

U
O

a— < ().

Choose @,,,; such that
Amyy 2 Min(e,+1, 9 [Am-;-l!_l)-
Let B,,,, be the interval

<w (a'm+1) .

Vi
ﬁ*b;

Choose by, such that
bm+1 = min(am+1+ 1,9 ]B7n+1]_1) .
Let Cpyy be the interval

wm.
— < (ban+1):

Cm
and choose ¢,,; such that

Oy = min(l’m+1+1; 9]Gm+1]—1)-

Since w(f) <1/t the box Amy1 X By X Cpyq is contained in the
box (52), and hence is contained in A, X By X O, and is digjoint from
Iy, Since a, +15 Dmy1; Gy Were chosen sufficiently large, there are
integers wm.1, Vmy1; Wmeq Such that the box

1

Om1

Uy

a <

<

<

1 I g1
, —

a’m-;-l

. Wi g1
; }7’_

Oy y biny1 bini1 Cm1

lies in Ami1 X Bmy1 X Oy and is disjoint from I, .
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This concludes our construction of the sequences (50) and (51).

The proof of Theorem 2 is now completed as follows. There is a u-
nique point (a, f,y) which lies in all the boxes AmX By X Cp (m
=1,2,...). This point lies on no rational plane 71.

Suppose now that ¢ lies in some interval

(53) al, <t < bl (m>0).

Sinee « is in 4,,., and y is in Cy, we have

a———| < olew) < 0(by),

[ U, [ ’ wm— 1
| (2

The number ¢ = ¢, &, satisfies 1< ¢<t and
max (lagll, [ygl) < go(bn) = gbz*min(1, p(1), ..., p(®), ..., w(bw) < p().
Next, suppose that ¢ lies in some interval
(A4) o<t<e, (m=0).
“ince ¢ lies in Ay, and f in By, one has
Oy

Ll ‘———'

; < 0{tpi1) < @{Cn).
m

The number ¢ = a,,b, satisfies 1 < ¢ <1t and
max (lagl), [1Bgl) < go(en) < geu®w(?) < p(1).
Finally, sui)pose t lies in some interval
(55) <t <ap, (m>=0).
Since g is in By, and y is in C,,., the inequalities
I

i Wi | -
< ('\)(("m 4,-1), Y= "é"' 1 S0} (bwu ]) = m(am»i,-l)
i m

Vm

ﬁ e

=

hold. The number ¢ = b, ¢, satisfies 1< ¢ <t and

max (|IBgll, llyall) < go{tmy) < ganiiv(l) < p(D).
Since :
by <¢p <o < b <...,

every integer ¢ > b, is in an interval of the type (53), (34) or (55). The
proof of Theorem 2 is therefore complete.

By a slight. change ‘of argument one could prove the existence of
continuum many ftriples (a, §, ¥) or in general of continuum many %-tuples
(ayy ..., a;) with the desired properties.
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) Note‘ added in proof. We have observed that the inequality (2), in the
first assertion of Theorem 1, can be replaced by a slightly stronger inequality of
the form ’

1L ()] < {le|= max [Py (@), ..., (Pu(@)])}? )1,

where y = p(m) > 1. Some modification of the proof is needed.
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