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ACTA ARITHMETICA
XIV (1968)

The Diophantine equation z*+7* =1
in algebraic number fields
by
L. J. MorpELL (Cambridge)

An interesting extension of a classical result is to discuss the solution
of the equation
(1) syt =1
in an algebraic number field K. When K is the rational field @, it is well
known that the only solutions are given by
(2) z2=41,y=0;, x=0,y= +1.

‘When K is a quadratic field, it has been recently shown by Faddeev (1)
that solutions other than (2) occur only when

K=, z=4t,y=0 z=0,y=d4i,
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(3) E=QV=h, w- A+ —7) ! 621/—7),
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where & = & = & = 1.

Further when K is a cubic field, he has shown that the only solutions
other than (2) and (3), are those given by the intersection of (1) with
arbitrary rational lines through each of the points (2), e.g., for one set,
with rational #, ¥ = 1+4tx and
(4) (B 1) 4P+ 68 n 4t = 0.

The proof depends upon very advanced principles and requires
considerable technique. It seems desirable to give a very simple elementary
proof depending upon first principles.

On putting 1—a* = ty?, a solution of (1) is given parametrically by

1—¢ . 2%
—_—— f L p———
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Then if # and y are elements of K, so is &

(5) -2

() D. K. Faddeev, Group of divisor classes on the curve defined by the equation
2*+y* = 1, Amer. Math. Soc. Trans. Soviet Math. Dokl. 1 (1961), pp. 1149-1151.
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Suppose first that ¢ is rational. Then #* and y? are rational, and
on excluding (2), K is a quadratic field, and so x2|y? or y2|x? is a perfect
square. Tt is well known on noting (5), that this occurs only when ¢t = 0,
+1, o0,

This gives apart from (2),

2 =1,y =0; =0,y =—1,
and this is in accordance with part of (3).

We now consider the case when K is a quadratic field. We may

suppose that ¢ is a non-rational element of K.

Put
(6) X =Q1+ay, Y=(1+)y.
Then
(7) X' =2(1—#), T =2a(1+5).
We may suppose that ¢ is a root of the quadratic equation
(8) F(t) =4+Bt+C =0,
where B, (' are rational constants and so K = Q(z). Then
(9) X =a+bt, Y =a,-+0bt,

where a, b, a;, by, are rational constants. From (7), we deduce the two
identities in & variable z,

(10) (@-+b2)2—22(1 —22) = F(s)(P+Q2),
(11) (a;+0,2)2—22(1 +22) = F(2)(P1+Q;2),
where P, ¢, P, @, are rational constants. Clearly @@, == 0, and so the
left hand sides of (10), (11) must vanish for rational values of z. For (10),
this is possible only when z = 0,z = 41, and for (11), only when z = 0,1.
On combining these, we have six possibilities for the linear factors in
(10), (11). These correspond to cases (z,, 2,) where 2, refers to the z = 0,
+1in (10), and 2, to the 2 = 0, 1 in (11). We consider the cases in turn.
(I) (0,0). Here P =0, a=0, P, =0, a, = 0, and
bz—2(1—22) = QF(2),
Ble—2(1+22) = Q,F(z).

The two left hand sides are the same except for a constant factor and
this is obviously impossible.

(II) (1, 0). Here P+Q =0, a+b =0, P, = 0, @, = 0, and
@*(1—2)—2z(1+42) = PF(z),
biz—2(1+2%) = Q,F().
On subtracting, 2 = —2 which is impossible.
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(II1) (—1,0). Here a—b =0, a;, = 0, and
a?(1+-2)—22(1—2) = PF(z),
biz—2(1422) = Q,F(z).
Addition gives a*—2 = 0.

(IV) (0,1). Here P =0, a =0, P,4+Q, =0, (a;+b)*—4 =0.
Sinece the sign of a, is at our disposal, we may take @;+b, = 2. Then

b22—2(142%) = QF(z),
(2—b;+D,2)2—22—22% = P, (1—2)F(2).
Multiply the first equation by 1—z. On comparing constant terms and
coefficients of 23,
—2 2
(2—b):  —2°
(V) 1,1). Here a+4-b =0, P+Q =0, a,+b, =2, P,+Q, = 0, and
(1 —2)*—22(1—22) = PF(z)(1—z),
2—0b,(1—2))2—22(1+e?) = P, F(2)(1—7).
On comparing the constant terms and coefficients of 2®
a2
@—b) -2
and 80 ¢ = 0, b, =2 and can be rejected.
(VI) (—1,1). Here & =b, P—Q =0, a,+b;, =2, P,+Q, = 0.
a(1+4-2)—22(1—z) = PF(2).
From the second equation in (V), on dividing out by 1—z,
(2—0.)2+(2—b)e+262 =P F(z).
Since the coefficients of 22 are the same,
a? = (2—0)2, a*+bi=4.

Then either ¢ = 0, b, = 2 which is obviously impossible since F(2) is
irreducible, or & = +2, b, = 0. Then b = 42, a; = £2. This gives
F(e) = 22+2+2,

and so

tz.ll‘fb;/—_i and K =Q(l/ji).
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Then
X = 4201418, Y= +2,
and from (6)
' AR
y==4 e’ U7 )
with independent signs. Hence
-7 1—e/—7
m:alg—iz/——‘—)-, —62-(———65—-—-2, =g =g =1

We now consider the case when K is a cubic field Q(?) where ¢ is
a root of the irreducible equation

P(t) = #+Bi+Ct+D = 0.
We have now in (7),
X = a+bt+oct2,
and then the two identities in 2,
(12) (a+bes4-c2?)2—22(1—22) = F(2)(P+Qz),
(13) (@ + b2+ 6,22)2—22(1+22) = F(2) (P14 Q1)

We have as before six cases to consider, namely (0, 0), (1, 0), (—1, 0),
(0,1) (1,1 (—1,1).

There is now however the further possibility that @@, = 0. Sup-
pose first that ¢ = 0. We have then three cases which we can write as
(_’ ”“)7 (_’ 0) (—al)'

(I) (—, —). Here ¢ =¢, =0, @ =@, = 0. Then

a2 2

Y = a,+bit+e 2,

=

—2
and 80 a = a; = 0, obviously impossible.
(IT) (—,0). Here ¢ =0, @ =0, @, =0, P, = 0. Then
(a+b2)2—22(1—22) = PF(z),
2(bi 40,22 —2(1+2%) = Q, F(2).

a3

Hence
az
—2

(IIT) (—,1). Here 6=0, @=0, a;+b,+¢ = +2, P,+Q, =0.
Then

S| 10

(1—2)(a+be)2—22(1—2) (1 —2%) = P(1—2) F(2),
(8,424 6€,2%)2—22(1+22) = P (1—2) F(2).
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Hence
a? 2
@ &

and ¢ =0, =0 or a; = ¢; = 0, and then F(z) is divisible by =.

Suppose next ); = 0. We have three cases 0, =), 1, =), (=1, —).

(IV) (0, —). Here

2(b+e2)*—2(1—22) = QF(z),
(@,+b,2)2—22(1+422) = P, F(z).
Hence
—a =2 _ 2mb—2 B

2 e b 2bet2

(14)

From these two equations, replacing z by ¢, and multiplying, we deduce
another identity,

(@1+0,2) (b+02)' — 4 (1—2*) = F () (Py+Qy2).

Hence the left hand side vanishes for a rational value of z. This can only
be ¢ =0, +1.

When z = 0, a,b = +2 and since a,¢ = 42, and a, # 0, we have
b4e¢ = 0, and then F(z) is not irreducible. When # = 41, (a,-4b,)(b4¢c)
=0 and s0 a,+b;, = 0.

Then from (14), be = —2 and

2

02
= (+24-2)—,

—a = (iai—l)jzl-{
and gives no value for a,.
(V) (1, —). Here
(@4 bz+ c2?)2—22(1—2%) = P(1—2)F(2),
(@14 D12)*—22(L+2%) = P, F(2).
Divide the first equation by 1—z. Then

and go a4 = 0, and this is impossible.
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L}

(VI) (-1, —). Here
(a+be+c2?)2—2e(1—2%) = P(14-2)F(2),
(@ +Dy2)2—22(1+27) = F(2).
Divide the first equation by 1-+2. Then

o

¢
2

als

This disposes of the cases when @@, = 0.
We now consider the six cages when @@, # 0.
(I’ (0,0). Here ¢ =0, P =0, a; =0, P, = 0. Hence
2(b+e2)2—2(1—22) = QF(2),
2(b,+¢,2)2—2(1+2%) = @, F(2).
The two left hand sides must be equal. Hence
=0, =0d, b—be=—2,
and so
b= 4b, ¢=Fe¢, b=-—1
Then
F(z) = c22® b2z —2.
Then from (6),
bt— et? b+ct

— s = be = —1.
V=21 7 b—at’
It suffices to take the -+ signs. Then z-1 = by since this gives

20 b(b—oat)t
b—et 1422

?
or
2(1412) = t(b—ct)?,
and this is F(t) =0.
(I'y (1, 0). Here at+b+¢=0, P+Q =0, a; =0, P, = 0, and so
(—b—c+bateer)2—22(1—22) = P(1—2)F(2),
2(byt 022 —2(1422) = @ F(2).
Dividing out by 1—=z, we have

Btop _ —e
—2 = &

Hence either b =¢ =0 or ¢ = ¢, == 0 which are obviously impossible.
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(II1") (—1,0). Here
(b—e+be+ e2?)?—22(1—22) = P(1+2)F(2),

(by+6,2)2—2(1+22) = Q, F(z2).
Now

(b—c)? c2
5

—2 0
and this is impossible.
(IV') (0, 1). Here
2(b+c2)2—2(1—22) = QF (2),
(a2 46,222 —22(1422) = P, (1—=2) F ().
Dividing out by 1—=z, we find
@ —d

= ’
—9 2

and 80 a; = ¢; = 0 or ¢, = ¢ = 0 which are both impossible.
(V) (—1,1). a—b+c =0, a,+b;+c¢;, =0,
(a4 bzt c2?)2—22(1—22) = P(1-+2)F(2),
(@y+ b2+ 0,222 —22(1+22) = P (1—2)F(z).
On dividing out by 142 and 1—=z, we have

0:2 — cZ
Hence ¢ =a, =0 or a =¢=0 or a; =¢, =0 or ¢ =¢, = 0. These
are all impossible since F(z) is irreducible.
(VI') (1,1). A solution arises in this ecase. Here a-+b-+e¢ =0,
P+Q =0, a,+by+¢ =2, P,+Q, =2 by choice of sign for a,. Hence

(15) (—b— ¢+ bz c2?)t—2z(1—2%) = P(1—2)F (=),
(16) (2—b,— ¢+ b2+ 0,222 —28(1+22) = P, (1—2) F(z).
In (15), (16), compare the constant terms, the coefficients of #*, and
ingert the values 2 = —1, and z = 1. We find
(17) (b+e)2 & 1 _ b2

(bt —2) & bit20—-2 (1)1
Then

¢ n ¢ b _((1)1-1)24—1)”z

bfe T bhte—2" bte  \(Bite—2)
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Hence
1 Cq )2 _ (b,—1)2+1
( Thta—z) T hita—2r
(18) (by+e,—27F ¢))® = (by—1)2+1.

Take first the — sign. Then b; =1 and from (17),

1 b2+4-1 o bl
B T e T E T
Further
(b+c)? c? (M—c)z_(_lb_?—l)2
(6,—1)2 &’ b 2p |
b2+1 . .
We cannot have ¢ = TS for this would give
s+l (b2-1)
2b: 2r

and gives no value for b.
Hence ¢ = —(1-+02)/2b. Then from (6),

b2—1 b1\ /
y=(—m+z+ o z2)/(1+z2),

1—b2 b1 br—1 b1 2)
”z( 5 TrETT zz)/( 5 T T P

Hence

o b2—1 b241
-b——|—1=2z/( oh +24 b z2)=y

from equation (16) provided # satisfies the equation derived from (15),

namely,

-1 b4l
26 20

(1—z)( 2)22—25(1—{—2) =0.

‘We now take the + sign in (18) and show that no solution arises. Now

(by+20,—2)2 = (b,—1)2+1,
and so
(263 — 40, +1)
20,—1 '

by = —
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Then
b (by—1)241 _ 263 —2¢, 2+1 —2ci - 4e;,—1 4962
b, +20,—2 20, —1 20, — !
(261 —20,)* + (20, —1)? _ 2¢]—2¢,+1
(261 —2¢,+1)(2¢,—1) ~  2¢,—1
: . (2, —1)241 .
Since 2b2 = - —;—c*zr—, the only rational solution is given by ¢, =1,
2¢,—
b= +41,b, =1. Then 2 is a factor of F(z) in (16). This completes
the proof.

The present method fails when K is an algebraic number field of
degree n >3. There is a possibility that solutions of a*+y* =1 exist
in many fields.

When n = 4, obvious solutions are given by
¢ =a+bt, y=a,+b,t,
where @, b, a,,b;, are rational, and X is defined by
(a+bt)* +{a, 4 b, 1)* = 1.
On noting (7), it is suggested that solutions are given by
¢ = a+bi+et?, y=a,+bi+e i,

where ¢ is a root of the equation F(f) = 0 below.
For instead of (10), (11), we have now

(@+bz+ 622 —22(1—2%) = PF(z),
(@14 b2+ 0,222 —22(1+22) = P F(2).

It is not difficult to impose conditions on the constants such that these
two relations are consistent.

Addendum (April 22, 1968). Professor Ljunggren informs me that the result
for quadratic fields is due to Aigner. His proof is different from mine and is con-
tained in his paper, Uber die Méglichkeit von zi+y* = 22 in quadratische Korper,
Jahresbericht der deutschen Math. Verein., 43(1934), pp. 226-228.

ST. JOHN’S COLLEGE,
CAMBRIDGE, ENGLAND

Regw par la Rédaction le 16. 8. 1967
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