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ACTA ARITHMETICA
XIV (1968)

On the twin-prime problem III
by
P. TurAx (Budapest)

L. In their fundamental paper [6] Hardy and Littlewood gave in
1922 the first quantitative form of the Goldbach- and twin-prime con-
jectures (among others). Denoting by 4, the constant (1)

1
. 2 I I ——
Ly D52 (1 (p—l)‘)

they announced the

CoNTRCTURE A. If Ry(n) stands for the number of Goldbach decompo
-itions of m then for even n’s for m — oo the asymptotic representation

¢

n p—1
(1.2) Ra(m)~d, log®n nm
P2
nn
holds.
Equivalent forms of (1.2) are
p—1
(1.3) Z logplogp, ~ Aonnp—:é—
Py +Pg=10 1;]}"?
or
p—1
(1.4) 2 A(ny) A(ng) ~ Aonnﬁ-
Ty Ny =10 1177|>7142
Further

CoNJECTURE B. If Py(n) stands for the number of such primes p < n
for which p+d is also a prime then for fived even d and n — oo the asym-

(*) The letter p will be reserved for rational primes, 4q, 4, ... specified, ¢ unspec-
ified positive numerical constants. Empty sum means 0, empty product 1. The

complex variable is 8 = o+df, >* will stand for a summation with respect to
¢ modk
primitive characters only, k* for the conductor of k.
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plotic representation

~ 0 p—1
(1.5) Pan) ~AO@[ =
holds.

Their paper became fundamental though it confained either con-
ditional or heuristical results only; the conditional results used unproved
assumptions on the nontrivial zeros of the Dirichlet L (s, &, x)-functions (%)
and when even the strongest assumption, the assumption of the truth
of Riemann-Piltz conjecture did not help, they worked boldly with main
terms only. In the frame of a different method (a sketeh of which I gave
in [12]) I worked out in [13] the theorems corresponding to these con-
jectures. If

(1.6) o =o(k,x) = f+iy

stand for the nontrivial zeros of L(s, k,y), then they run as follows
(in a slightly specialized form).
THREOREM A. For M2 <n < M and even n the representation

o R 1+ 0(logl 1[—1}A>77J p—1
(1.7) 2(1) = {140 (loglog }) °log®n iap—2
m
1+ 0(log™"* M) w (k) log(M/k) 7, k) X
- 2 1 J ’
log*M IagM(k) (k) Zmodgc
. (eiy=1
70— Q100

" Z () PR
wi<log® o(1-+oflogh)y e H

holds unconditionally. The O-sign refers to M — oo uniformly in n.
THEOREM B. For even d < n/log'®n the representation

(1.8)
Py(n) = {1+ 0(loglog M)} 4

n ]— p~1  1+4+0(log™**n)
- X

*logn ot p—2 log®n
»id
u(k)log(n/k) — 0 — /100
X Dt DR D ST
ot xmodk Wi<loe®n  o(14-gflogm) 1EIE"

holds unconditionally. The O-sign refers to n — oo uniformly in d.

(%) The usual notation L (s, y) of these functions was good for fixed k. Here k
will be variable.
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These formulae seem to play the same role in the additive prime-
number theory what Riemann’s “exact” prime-number formula played
in the theory of distribution of primes and show at the same time they
depend only on “small” zeros of L(s,k, y) functions. The aim of this
note is to show that using the “large-sieve” method of Linnik [7], the range
of nonfrivial zeros can considerably be narrowed as to “width”; it is
enough to retain zeros “near” to the line ¢ = . More exactly we assert
the

TuEOREM I. The formulae (1.7) and (1.8) remain unconditionally
true if for an arbitrarily small & > 0 the range of summation is replaced by

(1.9) <A< pI<logM, MP<E< I,
respectively
(1.10) I<B<E lyl <logen, wc <E<m.

The O-sign depends also wupon e.

‘With little extra trouble, using properly the inequality (b) of Lemma T,
we could replace by £ (even a bit less). Using an inequality of Bombieri
(Le. [1], p. 225, without detailed proof) the range in (1.9) e.g. could be
replaced, as indicated in [12], by

(1.11) F<A<E+e,  yi<logtd, MP LM,

The proof of Bombieri’s density hypothesis (l.e. [1], p. 205) would
even lead to the range
(112) P<h<E, Iyl <logtM.

I did not work these further reductions out from two reasons. Firstly
it is not desirable to obscure the simplicity of the basic ideas by more
technical improvements. Secondedly I do not think quite impossible
to avoid the necessity to enter into the half-plane o < ¢ at all. To this
or other possibilities I shall return in the subsequent papers of this series
with my usual low speed however.

Further I mention without proof a further reduction of the domain
of summation as to its “height”. This runs for the simpler case of the
twin-primes as follows.

TumoreM II. For even d the formula

1oga(ﬁ/p2)}
—8J41 0 o 1/2, % 2 VR
n~log™ " n Z logpllogpaexp{ Togn
Dy —Dg=d
p1<n .
5 p—1 p()logh v i
= 7V24,(1+o(l + 2(—d, k) > n?
prem ][5 2.5 a g
vid (k,d)=1

kolds unmconditionally; here D, means the rectangle: < p <3, |y| <}.
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In Theorem I (and could have been done in Theorem II too) only
zeros of L-functions belonging to “large” k moduli occur; the fact that
for the binary Goldbach problem only the zeros of L-functions with
large moduli are relevant (in contrary to the ternary Goldbach-problem)
was previously remarked by Linnik on a completely different way
(see [8]).

© 2. Tt will be enough to prove Theorem I for the Goldbach case.
Important role is played by the following theorem of Bombieri-Daven-
port-Halberstam-Gallagher (3) (see Davenport [3], p. 160) proved by
the large sieve method of Linnik.
Denoting by N(a, T, %, x) the number of zeros (according to multi-
plicity) of L(s, %, x) in the parallelogram

(2.1) oza, [T
the inequality

(2.2) Ha, T, ) > 3" N(a, T, %, )

k<X yx*modk
4{1—a)

< ¢T(X2+XT)™ log(X+T)

holds for $<<a<l, X>1, T >1.
Putting

aet 1 |@(F)]
(2.3) 8(a, T, X) ™ Ié'm_xmzmlv(a,m,k, )

we assert the
LeMMA I. The inequalities

(a) 8(a, T, X)< elog®X for i<axi,
5-Ga
(b) 8(a, T, X) <eX** 10g®X for }(<axt

hold for T <log"®X.

() That sort of theorems oceured at first in Rényi's paper [9]. Essentially
the inequality (2.2) occured in Bombieri’s paper [1], however with a factor very
inconvenient near the line ¢ = 1.' The elimination of this factor was made possibl
by the work of Davenport-Halberstam and Gallagher on the large sieve; the actue
inequality (2.2) appeared in Davenport’s booklet [3].
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TFor the proof we remark that from (2.3)

Sta, 1, 1) = S0

*
N(a, T, 5, 4%
= 97(76) b b H

I*|k x*modk*

=Y Swwre,n 3 k@

I*<X gvmod ke =X (k)
k=0mod k+
k%) * 2
_ ZIM(I 2 Nia, T, 5, ) Z lia (k)]
<X (k") g+ Inogd kv [ Xg 8 o (%)
(Fy,f0)=1
lia (%)

*
N(a, T, k*y X*)
kX (P(‘l ) zrmod kx

< ¢log X loglog X " Na, T, 5", o
g g10g y 4 72)

b<X zt mod k*

< clog X

X
1
= c¢log X loglog X f —dG (e, T, 9)
1j2
and hence

X
©4)  Sla, T, X) < clogrxH& LX) Gl Ty) ayl.
X y2

172
Applying (2.2) we get
5—6a X 4(1-q) y
S(a,T,X)<010g1zx{X3~2a + f(y LTy Zz-}

172

The last integral is for a >3

4(1—q)

T x
f+f<c(1‘3”2“ f -+ fya 2"‘dJ)<c=log X
172 I 12 172

which proves (a). Similarly with (b).

3. We ghall need the following special case of more general results
of Gronwall [6] and Titchmarsh [11].

For real # the functions L(s, k, ¥} with k¥ < # which can vanish in
the domain

A .
(8.1) e>1—-, |t <log’s
logz

can only have real zeros.
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We shall also use Siegel’s theorem [10] in the weaker form that
L(s, %, %) # 0 on the segment

(3.2) 1—B k"M <o
with a suitable B, (ineffective) constant (as later B,,...).
Hence if
1— 4y >1_Blk—1/10007
logz
ie.

k < B,logtotty

then the rectangle (3.1) contains mno zeros of L(s, k, x). Choosing

Ay log M
= 21, e 2
@ eXp{loo 1og10gM}’ >0
we get
LemMA II. No L(s, k, x) functions with

A 1000 1 1600
(3.3) k< By{—~ _ﬂgjl[__

100 loglog M

can vanish in the domain
loglog M
(3.4) oglog

> 1-100
7z logM '’

[t < log* M.

4. Next we assert the

Levwa III For S(a, T, X) in (2.3) we assert the inequality

loglog M
logM

For the proof we use the inequality (2.4), using also the fact that
owing to Lemma II

3(1—100 , log2 M, M) < Bylog=™" M.

loglogl
G(l—lOO °_1g0g°_§_1£, log* M, X) =0
it A, \100 ooy 1000
X < By[-2L) (28
= 100 loglogM| '’
and also (2.2). These give
loglog M
8{1—-100 ——— 2
( g2 108 M,M)
M
1 ~ 2480008108
< cloghM {7—: + f y TogH dy}< Bylog™"" M
M o 1ooo( Toght )moo
indeed. 2(%) Toglog e
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5. Now we turn to the proof of (1.9). First we consider the contri-
bution of the L-zeros in

loglog

5.1
(5-1) loghf ’

o >1-100 [t <logzM

to the critical sum in (1.7). As one can easily see its absolute value cannot
exceed (with the notation (2.3))

Mo loglog M P
which is
M
5.2 —
(5.2) ¢ (logZM )

owing to Lemma III.
Next we consider the contribution of the IL-zeros with

5 loglog
—< o< 1-100 < log* M
-<L o< Togl |t] <log?M
to the crifical sum. This cannot exceed absolutely
loglog M
_z}[l—mo oliggl 5
———— 8|, log? M, M
Y (6’ 087 )
which is
M
(5.3) o|l———
log2 M

owing to the inequality (a) of Lemma I
Next we consider the contribution of the L-zeros with

0<p<t,

to the critical sum. Since here the inequality

lv| <log*M

ne — ot
< eM"logM

holds, we get, using the functional equation, for the absolute value of
this contribution the upper bound

cM"8(%,log2 M, M)
which is, owing to the inequality (b) of Lemma I,

M

(5.4:) 0 (W) .
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Finally we want to estimate the contribution of the &’s with & < M-,
We shall split first the range

(5.5) P<o<g, U <logrM

into parallelograms
1 y—1 1 Y det 1 )
4 = = 1] < log2 M
st gl <3 TTogur 2 T Mslogtl,

K,:

The contribution of the zeros in K, absolutely cannot exceed

._i_ 7246 _1_ T log:M, MYE-¢
logM S 2 + logM’ 08
which is, owing to inequality (b) of Lemma I,
1, 1 1-3¢
¢ 5+¢ 5—8
— M (M® ) F log® M.
< log ( ) o8
Since the exponent of M is
& 1-3¢ e
1 el
1—¢ 1-¢°
the total contribution of the zeros in (5.5) belonging to K, cannot exceed
M
ek =
(5.8) clog?22 M -M'~**¢clog M = o (1og2M)
and analogously for the range
I<o<y, |t €log2M.

This together with (5.2), (5.3), (5.4) and (5.6) proves Theorem I
(for (1.9)).
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