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Unified spaces and singular sets for mappings
of locally compact spaces

by
R. F. Dickman, Jr.* (Coral Gables, Fla.)

1. Introduction. This paper may be considered as a continuation
of the research started by G. T. Whyburn in [13], [14] and [15]. The
results stated in this section are due to him and may be found in these
papers.

Let X and T be disjoint Hausdorff spaces and let f: XY be a con-
tinnous map of X into Y. In [13] and [14] Whyburn defined a unified
gpace for the mapping f as follows:

Tet W denote the set-theoretic union of X and ¥ and define a set ¢
in W to be open if is satisfies:

(i) @-X and @-Y are open in X and Y respectively; and

(ii) for any compact set K in @-T, FUR)- (X—Q-X) is compact
in X.

The set W together with the collection of open sets so defined is
a T,-topological space which is called the unified space of f and which
we denote by Z. (Actually in [18] Whyburn did not require X and Y
to be disjoint, but took disjoint copies of X and Y for his construction.
He did, however, require that f be an onto mapping. In [14] he simplified
the treatment by assuming that X and ¥ were disjoint and by allowing f
to be an into mapping.)

The injections of X and Y into Z are open and closed respectively,
thus X is embedded in Z as an open set and Y is embedded in Z as
a closed set.

Associated with Z is a retraction r: Z—>Y of Z onto Y defined by
7(2) = f(2) for 2 e X and r(z) = # for 2z« ¥. This refraction is continuous
and compact. A mapping ¢ from a topological space W into a topological
space V is said to be compact provided for every compact set K inV,

* The research represents a part of the author’s dissertation at the University
of Virginia. The author wishes to express his sincere gratitude to Professor G. T. Why-
burn for suggesting this topic and for his advice and encouragment. The author also
wishes to thank the referee for his helpful suggestions.
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¢ YX) is compact in W. Thus when Y is (locally) compaet, Z is also
(locally) compact. Furthermore, whenever f is an open mapping, so
also is 7.

In [13] it was shown that when X and ¥ are both locally compact
Hausdorff spaces, so also is Z and that when X and ¥ are both locally
compact separable metric spaces, Z is also a locally compact separable
metric space. Henceforth we shall assume that X and Y are at least locally
compact Hausdorff spaces and thus Z will be locally compact and Haus-
dorff.

We adopt Whyburn’s notation and use  to denote the closure in Z
of any subset Z of Z. For any subset 4 of X (or ¥), the closure of 4 in X
(or in Y vespectively) will be denoted by A, the interior of 4 by int A
and the boundary of A by FrAd. Thus, since ¥ is closed in Z, for any
set 4 in ¥, 4= 4.

The restriction 7| X of » to X is topologically equivalent to f and thus
7 Xisa compact mapping which extends f. Furthermore, since ¥ is loeally
compact, r and )X are closed mappings ([19], Section 4, p. 106).

Heinz Bauer in his study of conservative maps in [1] showed that
for every mapping f: X—¥, where X and Y are locally compact Haus-
dorff spaces, there exist a locally compact Hausdorff space X, and
a mapping f, satisfying:

(i) X is a dense subset of X,,

(i) folX =7,

(ili) fo is @ compact mapping,

(iv) fo 48 1-1 on X— X.

Furthermore, he showed that every space satistying (i)-(iv) is home-
omorphic to X, under a homeomorphism that leaves points of X fixed.
Thus his X, is homeomorphic to Whyburn's X and f, is topologically
equivalent to r|X.

Momentarily leaving the unified space Z, let us consider the mapping
f: X~7Y and define @ to be the union of the.interiors of sets in ¥ having
& compact inverse under f. Then if P = (@), f|P: P—Q is a compact
mapping. The complement § of @ in ¥ is closed and contains all of the
points of ¥ at which f is not compact, i.e. S is the set of those points in ¥
which are not interior to any set with a compact inverse under f. The
seti S is called the singular set of f in ¥ and the set T = f(S) is called
the singular set of f in X. We see immediately that f is compact if and
only if § is empty.

The singular set S of fin Y is the boundary X.Y of X in Z. In order
to see this let y ¢ ¥ and suppose that 4 ¢ X- Y. Since Z is locally compact
and Hausdorff, there exist conditionally compact open sets U and V
of Z containing y such that ¥ C U C Z— X. Then y is an element of the
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interior relative to ¥ of the compact set ¥V (=¥) and since U is open
in Z, f(V)=f(V)-(X— U-X) is compact in X. Thus y ¢ 8. Now suppose
that y ¢ 8. Then there exists a compact set K of ¥ such that y e int K
(relative to ¥) and fY(K) is compact. But this implies that int K is open
in Z and since intK misses X, y ¢ X-¥. Thus X-Y = §. This equality
provides a clue to the relationship of the mapping properties of f and
the topologieal properties of Z. For example we have that when X and ¥
are connected, Z is connected if and only if f is not compact. Whyburn
has shown in [14] that the mapping f: X —>f(X) is compact if and only
if r(#)=a=1r"Y(2) for every 1eX-Y or equivalently if and only if
x. f(X) is empty.

A fundamental aim of this paper is to relate the topological properties
of X and Y and the mapping properties of f to the topological properties
of Z. In Section 2 we show that Z is paracompact if and only if ¥ is
paracompact. In this same section we give necessary and sufficient con-
ditions for the metrizability of Z and obtain a bound for the covering
dimension of Z in terms of the strong inductive dimension of ¥ and the
covering dimension of point inverses of f. We also show that the domain
of any compact retraction is a unified space of a mapping.

In Section 3 the local connectedness of Z is investigated and we give
a necessary and sufficient condition for Z to be locally connected in terms
of a mapping property of f. Several interesting maps are shown to have
a locally connected unified spaece. In Section 4 we give the definitions
of two topological properties and show how they are related to
unicoherence. Necessary and sufficient conditions for the unicoherence
of a compact and locally connected unified space are then given in terms
of the topological properties of X and Y. In the last section of this paper
we investigate the compactness and the connectedness of the singular
sets § and T in Y and X respectively.

Summary of notation. As stated above f: X—¥ will always
denote & continuous map of X into ¥ where X and Y are at least locally
compact Hausdorff spaces. When f is an onto mapping it will be stated
explicitly. The singular sets of f in X and ¥ will be denoted by T and 8
respectively. We shall always use Z to denote the unified space of f and
use r: Z—~Y to denote the retraction of Z onto Y induced by f.

A region is an open connected set, a continuum is a compact connected
set and a generalized continuum is a locally compact, connected and
separable metric space. By a mapping we will mean a continuous transfor-
mation.

2. Metrizability, dimension and characterizations of the
unified spaces. In this section we show that Z is paracompact if and only
if ¥ is paracompact and prove a theorem giving a necessary and sufficient
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condition for the metrizability of Z. The covering dimension of Z is shown
to be related to the covering dimension of point inverses of f and the
strong inductive (imension of Y. Finally we show that the domain of
any compact refiraction is homeomorphic to a unitied space for a mapping.
In this section we assume that X and Y are at least locally compact
Hausdorff spaces. _

(2.1) Lenma. Let g be a closed mapping of the topological space W
onto the topological space V' such that point inverses of g are compact. Ifv
is paracompact, so also is W.

Proof. Let {U,} (ael) be an open covering of W. For each yeV
select a finite union H, of elements of {U,} («eI') that contains the
compact set g~Y(y). Since ¢ is closed, Gy = V—g(W—Hy) is an open set
containing ¥ and {Gy} (y ¢V)is an open covering of V. Since V is para-
compact, there exists a locally finite open cover {K;} (8 ¢ 4) of ¥V which
refines {Gy} (¥ ¢ V). We note that for each y € ¥, g=*(@y) is contained in H,.

- Thus for each fe A we may and do choose a finite subset I} of I sueh

that ¢~Y(Kg) C Y U. (eelp). We pow assert that {g=YKj) U} (
and a € I'y) is a locally finite covering of W. In order to see this let « ¢ W
Since {Kj} (B € 4) is locally finite, there exists an open set P of V con-
taining ¢(x) such that P meets only finitely many Kj. Then g—*(P) is an
open subset of W containing « that meets only finitely many of the sets
§'(Kp) and thus meets only finitely many of the sets g=Y(Kj)- Us, a € I;.
Thus every open cover of W has a locally finite open refinement and W
is paracompact.

(2.2) TeEMOREM. A necessary and sufficient condition that Z be
paracompact is that Y be paracompact.

Proof. Since ¥ is locally compact and Hausdorff, #: Z— ¥ is a closed
mapping ([19], Section 4, p. 106). Thus the sufficiency is a consequence
of Lemma (2.1). The necessity follows from a well-known result of
E. Michael [9].

(2.3) Remark. Note that whenever Z is paracompact, the closed
set X is also paracompact. Thus in this case even when X is not normal,
X iy embedded as a dense subset of the paracompact, locally compact
Hausdorff space X on which f has a compact extension.

TreOREM. Suppose that ¥ is a metric space. A necessary and sufficient
condition for Z o be a metric space is that inverse image under f of amy
compact set in Y be a separable metric space.

Proof of the necessity. Let K be a compact subset of ¥; then
r~Y(K) is a compact subset of Z and as such is a separable metric space.
Hence FHK) is also a separable metric space.

Proof of the sufficiency. By a result of A. H. Stone, Y is para-
compact. Thus there exists a locally finite covering {K,} (e ¢ I') of ¥ by
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compact sets. By our assumption each H, = f (K,), a e I, is a separable
metric space. Whyburn has shown that when the range and domain of
2 mapping are both separable metric spaces, so also is the unified space [13].
Hence the unified space Z, of the mapping fiH,: H,—~K, is a separable
metric space. One ean easily show that for each a e I, Z, is homeomorphic
to r~Y(H,). Thus {r*(K,)} (e el') is a locally finite closed covering of Z
by metric spaces and by & result of Nagata [10], Z is metrizable.

(2.5) Remark. As an immediate consequence of Theorem (2.4) we
see that when Z is a metric space, X is separable if and only if ¥ is separable.

V. V. Proizvokov in [12], Cor. 1, p. 154, has shown that the domain
of any mapping whose point inverses have weak-inductive dimension
zero is a metric space whenever it is locally connected and locally compact
and the range is a metric space. Thus if we consider the case where f
is a light mapping (i.e. point inverses are totally disonnected) of X onto ¥
and X and Y are metric spaces, Z is also a metric space whenever it is
locally connected. This is because the weak-inductive dimension of f'(y)
is not increased by the addition of the point y in Z, so that the weak-
inductive dimension of r *(y) = y-+f ‘(v) is still zero. The local connec-
tedness of Z is studied in Section 3.

(2.6) DeErmxiTIONS. The empty set and only the empty set has sirong-
inductive (covering) dimension —1. A space W has strong-inductive di-
mension < # (» > 0), written Ind W < n, provided every pair of disjoint
closed sets in W can be separated by a closed set of strong-inductive
dimension < n—1. We say that the strong-inductive dimension of W is #
written Ind W = n, if Ind W < » is true and Ind W < n—1 is false.

The order of an open covering is the largest integer # such that there
are n -1 members of the covering with a non-empty intersection. A space W
has covering dimension < n (n > 0), written dim W < n, provided every
open covering of W has an open refinement of order < n. We say that
the covering dimension of W is =, written dim W=, if dimW<n
is true and dim W < n—1 is false.

(2.7) THEOREM. Suppose that Y 1is paracompact and that there is
an integer k=0 such that for every point ye ¥, dimf (y) <k Then
dimY < dimZ € Ind Y+ k.

Proof. By theorem (2.2), Z is paracompact and hence normal and
by Theorem (2.3) of [3], dimf (y) = dimr~*(y) for every y ¢ ¥. Since Z
is locally compact and Hausdortf, the compact map r: Z—Y is a closed
map ([19], Section 4, p. 106). Thus applying Theorem VIL 7 of [11],
p- 106 we have dimZ < Ind ¥+ k. Furthermore, since ¥ is closed in Z,
dimY < dimZ and this completes the proof.

(2.8) Remark. If we knew that dimX < dimZ, Theorem (2.7)
would extend Theorem VII. 7 of [11] which considers closed maps on
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normal spaces to continuous maps on locally compact Hausdorft spaces.
However, there are not any theorems in dimension theory that will insure
that dimX < dimZ. In fact there are examples of compact Hausdorff
spaces B with subsets W where dim W > dimR; this is due to the lack
of complete normality. The best we can say at present is that X is im-
bedded as a dense open subset of X where dim ¥ <Ind¥Y+% and r[i‘
is a compact extension of f with dim+ (y) < dimf™(y) for all y ¢ Y.

(2.9) TemorEM. Suppose that g: WY is a compact retraction where W
is a locally compact Hausdorff space and Y is a proper subset of W. Then
if X denotes the set W—Y and f is the restriction of g to X, the identity
transformation i: Z—>W of the unified space Z of f: X—~Y onto W is
a homeomorphism. Thus the domain of any compact retraction onto proper
subset is a unified space for a mapping.

Proof. I first wish to show that ¢ is continuous. To this end let U
be any open set in W. Clearly U-X and U-Y are open in X and ¥ re-
spectively. Now if K is any compact set in U- ¥, ¢"(K) is compact in W
as is g7Y(K)- (W—T). But ¢ {(K)-(W—T) =fB) (X—X.U) and so
U is open in Z and ¢ is a continuous map.

Since W is a locally compact Hausdorft space, every compact mapping
onto W is a closed mapping ([19], Section 4, p. 690). Thus in order to
show that ¢ is & homeomorphism it suffices to show that 4 is a compact
mapping. To this end let K be a compact set in W. Then g(K) is a compact
set in ¥ and since i|Y is a homeomorphism, i "g(K) is a compact subset
of Y considered as a subset of Z. The retraction r: Z—Y is a compact
mapping, so H=r"%""g(K) is a compact subset of Z. Furthermore,
since 4 is continuous, s Y(K) is a closed subset of H and is compact. Thus ¢
is a compact mapping and is a homeomorphism.

(2.10) Remark. Note that the unified space of any constant map
on a non-compact, locally compact Hausdorff space W is homeomorphic
to the one-point compactification of W. This fact together with the fact
that the retraction of any unified space it a compact mapping yields:
A necessary and sufficient condition that a non-degenerate topological space
be a compact Hausdorff space is that it be homeomorphic to the unified space

of @ mapping of a locally compact Hausdorff space into a compact Hausdorff
space.

3. Local connectedness of the unified space. In this
section necessary and sufficient conditions for the local connectedness
of Z are given in terms of a mapping property of f and certain interesting
maps are shown to have a locally connected unified space. Throughout
this section we will assume that X and Y are locally connected and con-
nected in addition to being loeally compact and Hausdorff.

(3.1) TowOREM. Suppose that X and Y are locally connected and
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conmected and suppose also that Y satisfies the first axiom of countability.
Then a necessary and sufficient condition for Z to be locally connected is
that for every point y € X and every open set U of Y containing y there is
a region R of Y containing y such that EC U and f*(R) has just finitely
MANY COMPAct components.

Proof of the sufficiency. Suppose that Z is not locally connected.
Then f is not compact. For if it were, Z would be the sum of two disjoint
open and locally connected sets and would be locally connected contrary
to our supposition. Hence Z is connected. By theorem (2.1) of [22], p. 102,
there exist conditionally compact open sets U and V of Z where VC U
and infinitely many components {C.} (e eI} of T~V such that for each
ael, Co(U—T) 20+ .- (F—V), limsupC, =L’ meets both T— [
and V—V and the component C of U—7V that contains I' does not meet
any C,. If follows that Z is not locally connected at any point of I'- (T— 7))
and hence since X is locally connected and open in Z, L'- (U—¥) must
lie entirely in Y.

Let P and @ be open subsets of Z such that FCPCPC QCcgcu.
For each a e I', let K, be a component of G’,,~(Q~——P) such that K, (P— P)
#0 # K, (§—0Q) and let L =limsupK,. Then L meets both P—P
and Q—@Q and LCIL .

‘We assert that K,- ¥ = @ for all but finitely many a e I. For suppose
that K- Y # @ for all §«d where £ is an infinite subset of I'. For each # e 4,
let ys « Kp- Y. Then 3 y; (8 € A) would have a limit point y in Y- (@=P).
Let W be a region of ¥ containing y that is contained in U— V. Then W
must contain infinitely many y; and hence intersect K; for infinitely
many f € 4. But this is a contradiction for W must be a subset of C, the
component of U—V that contains I’, and hence W cannot meet any
of the Kj, § e A. Therefore we may and do assume that K,- Y = @ for
all ael

Let s e L- (Q— f). By hypothesis there exists a region R of ¥ con-
taining s such that RC ¥-(Q—P) and (&) has only finitely many
compact components. We note that only one component of r—1(R) meets ¥
since 7~}(R)- ¥ = R is a continuum. Furthermore, if B is a component
of r"Y(R) that misses ¥, B is a compact component of f~(R). Thus since
F7(R) has only finitely many compact components, r (&) has only finitely
many components, say Ay, 4,,..., Ay. Since r is continuous and since
s elimsup K., 7(s) elimsupr(K,). Also since se¢ Y and each K,CX,
7(s) = s and r(K,)= f(K,) and so selimsup f(K,). Therefore B must
intersect infinitely many of the sets f(K,.) and some A;, say 4;, must
meet infinitely many of the sets K,, aeI. Let x be an infinite subset
of I" such that K,- 4, # O for each o ¢ ». If follows that 4, is not a subset
of @— P. For if it were, 4, would not be connected.
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Let F denote the set (§— Q)+ (P—P). For each oex, 4, K, # 0
# A,- (Z— E,) and 4, must meet the boundary of K,. Since each X,,
¢ € %, i3 & subset of X and X is locally connected, the boundary of each K,
is the set K,-F. Thus for each o e, A K, F +# @.

For each cex let @, edy K, -F. Then X a, (cex) is a subset of
FUR)-(X—X-(Q—P)) and the latter set is compact in X by the def-
inition of the topology in Z. Thus >, (¢ € ) has a limit point wmin X.
But this is a contradiction since 2 would then be in X-L'- (U—V) and
this set is empty. Hence Z is locally connected.

Proof of the necessity. Suppose that Z is locally connected
and suppose that there exists a sequence {U;} (¢ = 1, 2, ...) of conditionally
compact regions of ¥ closing down on a point 4 ¢ ¥ such that for each 4,
U1 C U] and f7(U;) hag infinitely many eompaet components. Since
every compact component of f~{(U;) is a component of »~(T), each
=Y T;) must have infinitely many components.

Since r~1(T,) is compact and every component of »~}(T,) is open
in Z, r~Y(T,) is covered by a finite collection of components of =Y T,).
Let C; be a component of r~1(T,) that misses r—1(T,). Note that ¢, must
lie entirely in X since U, = =} U,)- ¥ is a continuum that intersects
rYT,). Let K, be a component of r~(T,) that misses r—1(T,) and let ¢,
be the component of »~(T,) that contains K,. Since ;- r~XT,) = @,
C; # C,. Continue in this manner and select a sequence {C;} (4 = 1,2,..)
of distinet components of »~Y(T,) such that for each =1,
#YTy)- O; + @,

For each i=1,2, .., let a; er(T,)- C;. Since 7—*(T,) is compact,
Dmy (6= 1,2, ..) has a limit point p and since r is continuous, p € r—(y).
But this is a contradiction since Z is locally connected and p is interior
to some component of ¥~%(T,). This component must intersect infinitely
many 0; ({=1,2,..) and this is absurd. Thiz completes the proof.

(8.2) Remark. We note that in the proof of the necessity of The-
orem (3.1) we only used the fact that for some sequence { U;} (i=1,2,...)
of regions closing down on y, f'(U;4,) has a compact component that
missed f~ 1(17;), 1=1,2, .., in order to obtain a contradiction. Thus if Z
is locally connected, about every point y ¢ ¥ there is a conditionally
compact region K such that if U and ¥ are any regions in ¥ containing y
where 7 CV CV C R, then every compact component of fX(V) contains

a component of fY(U) and thus every compact component of f (V)
meets f(y).

g seny

Exavrie. In this example Z is locally connected and Y contains
a point y such that for every positive integer n there exists an open set U
of Y such that the inverse under f of every region R of ¥ containing v
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with B+ U has at least n compact components. Thus there is no upper
bound on the number of compact components of f }(R) in Theorem (3.1).

Let L, be the segment in the plane joining the origin and the point (1, 1)
and for each positive integer ¢, let L; be the segment from (0,1/i) to
(1/é,1/i). Let X be set YL (i = 0,1,2,...) minus the origin and let ¥
be the interval [0,1] on the z-axis. Define f: X by flz,y) = x.
Then the unified space Z of f is merely the set X ¥ with the usual
topology induced from the plane. The inverse image of the set R =
[0,1/(n+1)) in ¥ containing y = 0 has exactly » compact components.

Exampre. We cannot weaken the hypothesis of the necessity of
Theorem (3.1) to that of Z being locally connected at a point y e Z. In
this example every sufficiently small region R of I about y has infinitely
many compact components in (&) and Z is locally connected at y. We
construct this example in the plane.

Let I, and M, denote the line segments from the origin to the
points (1, 1) and (1, —1) respectively. For every positive integer ¢, let L.
denote the segment from (2'%, 2'~%) to (2'~%, 0) minus the latter endpoint
and let M; denote the segment from (3%, —3"7%) to (3%, 0) minus the
latter endpoint. For every pair of positive integers (¢,3) where j >4,
let P(4,j) denote the segment from (2%, 277%) to (27— 27 ""Y(j—1)}j, 27%)
and let Q (¢, j) denote the segment from (3%, —377) to (37"~ 37""}(j—1)}3,
—3‘7). Let A denote the right half of the circle centered at (1, 0) with
radius 1. Finally let X denote the set

A+ DLt Y Mit Y PG, i)+ D QUi j) minus the origin .
120 i=0 i>i>0 i>i>0

Then if ¥ is the interval [0, 1] on the z-axis, X and ¥ are locally
connected generalized continua. The unified space of the mapping f: X - ¥
defined by f(#,y) = min{z, 1} is homeomorphic to the set X+ ¥ with
the induced topology from the plane and this set is locally connected at
the origin. However every region R = [0, t) (£ < 1/2) has infinitely compact
components in fY(R).

DermniTions. A locally connected and connected space W is said
to be regular provided for every point p e W and every open set U of W
containing p there is an open set V containing p such that ¥ C U and
Fr7 is a finite set. A locally connected generalized continuum is said
to be a dendrite provided it contains no simple closed curves.

(3.4) TomorREM. Suppose that X is locally conmected and connected and
that X is a regular space that satisfies the first awiom of countability. If
point inverses of f have compact boundaries, Z is locally connected.

Proof. We wish to show that f satisfies the condition of Theorem (3.1).
Suppose to the contrary that there exists a point y ¢ ¥ and an open set U
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of ¥ containing y such that every region R of ¥ containing ¥ with EC U
has infinitely many compact components in f'(R). Then since ¥ is regular
and satisfies the first axiom of countability, we may select a sequence { U3}
(¢=1,2,..) of conditionally compact regions of ¥ closing down on y
such that for each 4, Usy1 C Uy, Fr Uy is a non-empty finite set and (T
has infinitely many compaet components. First of all we note that for
each 4, H; = Fr f(T,) is a subset of f~*(Fr U,) and since Fr T; is a finite
set and point inverses of f have compact boundaries, H; is a compact
subset of X.
Since H, is compact and every component of f~(U,) is open in X,
H, is covered by a finite collection of components of f7(T,). Let ¢, be
a component of f(T,) that misses H,. Let K, be a component of f™( T,)
that misses H, and let C, be the component of f~*(T,) that contains K,.
Since K, meets H,, 0, # 0,. Continue in this manner and select a ge-
quence {0} (¢=1,2,...) of distinet components of f~(T,) such that for
each ¢=1,2,.., 0; contains a component of f~(T;). Then for each
>2, C; contains a component of f (U, and thus meets H,. For each
1>2, let @i Oy-Hy. Then Yay (i= 2, 3,...) has a limit point p in the
compact set H,. But this is a contradiction; X is locally connected and
H,Cf™(U,) and thus p is interior to some component of f~(T,). This
component must then intersect infinitely many €; (¢ = 2, 3,...) which
is impossible. Thus f satisties the condition of Theorem (3.1) and Z is
locally connected.

CorOLLARY. Suppose that Y is a dendrite and X is o locally connected
generalized continvum and further suppose that f is a mapping of X onto ¥
such that for any compact set K in X, f7'f(K) is also compact in X. Then fis
a compact mapping.

Proof. Suppose that f is not compact. It is well known that Y is
a regular space and so by Theorem (3.4), Z is a connected and locally
connected space. Whyburn has shown that Z is also a separable metric
space and thus Z is arewise connected. Let # ¢ X and let P be an arc
in Z from « to a point p « ¥ such that P ¥ — p. If f (p). P = @ let w be
the last point of P in f~*(p) in the order from z to p; i f(p)- P = @ let uv
be an arc in X from a point » in f7(p) to a point » e P— p such that
uwv-f(p) = u and up- P — . In either case there exists an are I from
a point uef(p) to pe¥ such that I-f(p)=u and I. ¥ — p. Let
w SI_ (u+p) and let uw be the subare of I from # to w. By hypothesis,
J7f(uw) is compact and hence if ¢ is the last point of I in f'f(uw), the
subarc ua lies entirely in X. Furthermore, since a lies between « and 2,
a ¢ f7(p). Let b= f(a) and let J denote the unique arc of Y from b to p.
Then each of the locally connected continua f(ua) and »(ap) = p-+f(ap—p)
confains J. Hence if {y,} (1=1, 2, ...) is a sequence of points in J that
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converge to p, we may choose a sequence {z;} (=1, 2,...) in X such
that for each i=1,2,.., mief '(y) (ap—p). The set H= Dz
(i=1,2,..) is also a subset of the compact set ff(ua) and hence has
a limit point y in X. Since f is continuous, y ¢f '(p). But since ap—p
is closed in X, y is also in ap—p. This is a contradiction, because
(ap—p)-F (p) is empty by construction. Thus f is & compact mapping.

Exampre. The compactness of the boundaries of point inverses is
necessary in Theorem (3.4). Let X = {(z,¥): 0 <2z <1 and y = sinl/z}
and let ¥ =[—1, 1]. Define f: XY by f(z,y)=y. Then Z is home-
omorphic to the closure of X in the plane and is not locally connected
at any point of ¥. However, point inverses of f do not have compact
boundaries.

Exawpre. Corollary (3.5) cannot be extended to regular spaces.
Let X be the interval [0, 1) and let ¥ be the unit circle in the complex
plane. Define f: X —Y by f(z) = €*i*. Then f is 1-1 and hence satisfies
the conditions of Corollary (3.5), but f is not compact.

(3.6) THEOREM. Suppose that X and Y are locally connected generalized
continua and that f is a closed mapping of X onto Y. Then Z is locally
connected.

Proof. By Theorem 1 of [4] the singular set S of f in ¥ is a totally
disconnected set. Furthermore, ¥Y— . is open in Z, hence Z is locally
connected at all points of X+ (¥ — §). Since a locally compact, connected
Hausdorff space cannot fail to be locally connected on just a totally
disconnected set, Z must be locally connected.

(3.7) DEFINITIONS. A mapping f: X—Y is said to be quasi-open
provided for any y « ¥ and any open set U of X containing a compact
component of f~'(y), y is interior to f(U). See[16],p. 9. A mapping f: X ¥
is said to be gquasi-monotone provided for any continuum K in ¥ with
a non-empty interior, f(K) has just finitely many components and
each of these maps onto K under f. See [20], p. 152.

(3.8) LemvaA. Suppose that W and V are locally compact Hausdorff
spaces and suppose that y is a compact quasi-open mapping of W onto V.
Then if K is any continuum in V every component of g-Y(K) maps onto K
under g.

Proof. Let H be any component of ¢ '(K). By theorem (10.4) of [16],
g can be factored into the form g = Im where m is a compact monotone
mapping of W onto a locally compact Hausdorff space M and [ is a com-
pact, light and open mapping of M onto V. Since m is compact and mon-
otone, I = m(H) is a component of [7}(K). By Theorem (11.1) of [16],
I maps onto K under I. (In Theorem 11.1 3 is assumed to be separable
and metric in addition to being locally compact, however the proof given
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is sufficient for the locally compact Hausdorff case). Then ¢ (H) = Im (H)
= [(I) = K as required. :

(8.9) TEEOREM. Suppose that X and Y are conmected amd locally
conmected and that Y satisfies the first axiom of countability. Suppose further
that f is a quasi-open mapping of X into Y. Then Z is locally connected
if and only if the retraction r: Z—Y is quasi-monotone. Furthermore when-
ever f: XY = f(X) is also a compact mapping, Z is locally conmected
and thus r is a quasi-monotone map.

Proof. We first argue that whenever f is a quasi-open mapping,

80 also is . To this end let y ¢ ¥, let € be a compact component of Yy)

and let U be any open set in Z containing ¢. Now if ¢ C X , Cis a com-
ponent of f(y) and since f is quasi-open, y is interior to f(U- X) and
hence to r(U) = f(U- X)+ U- Y. On the other hand if ¢ ¢ X, O contains
and y is then interior to U- ¥ and hence to #(U). Thus 7 is quasi-open.

If Z is locally connected, » is a compact quasi-open mapping on
a locally connected space into a first countable space and such maps
can be shown to be quasi-monotone. See Theorem (10.41) of [16]. On
the other hand, if » is quasi-monotone, f must satisfy the conditions
of Theorem (3.1) and hence Z is locally connected.

Now let us assume that f: X —¥' = f(X) is compact. We will show
that Z is locally connected by showing that f satisfies the conditions of
Theorem (3.1). To this end let y ¢ ¥ and let U be any open set in ¥ con-
taining y. Now if y ¢ X', choose a conditionally compact region R about y
such that EC U. T’. This is possible since f: X—Y' is compact and
30 f(X)- 8 =@ and Y’ is open in ¥. Then f~YR) has only finitely many
components since f: XY’ is a compact quasi-open mapping on a locally
comnected space and as such is & quasi-monotone map. If y ¢ ¥', let B
be a conditionally compact region in ¥ abous y such that B C U. Then
F7YE) does not have any compact components. For suppose that ¢ is
such a component. Then ¢ would be a component of »~'(E) also. By
Lemma (3.8), ¢ maps onto B under the compact quasi-open map r. But
#(C) = f(C) and y ¢f(0). This is a contradiction and so f satisfies the
conditions of Theorem (3.1).

(3.10) DEFINITION. A mapping f: X—¥ is said to be monotone
provided for every ye Y, f'(y) is continuum.

(3.11) TrEOREM. Suppose that X and T are locally generalized continua
and suppose that f is a non-compact monotone map of X onto ¥. Then if f |T
18 a compact mapping, Z s locally conmected and both Y and Z are multi-
coherent.

Proof. We wish to show that f satisfies the conditions of The-
orem (3.1). To this end let y ¢ ¥ and let U be any open set in ¥ contain-
ing y. We consider case: (1) If Y ¢ 8, let R be any region of ¥ containing
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such that B C U.{¥— §). Then since fis compact and monotone on X— 7,
FYR) is a continuum and f satisfies the conditions of Theorem (3.1) in
this cage. Case (2): If y ¢ 8, let ¥ be a conditionally compact open setin ¥
containing y such that ¥ C U. By hypothesis f|7 is compact so H = (7. 8)
is compact in X. Let W be any conditionally compact open set in X eon-
taining 7 and let {U;} (i =1, 2, ...) be a sequence of conditionally compact
regions in T closing down on y such that U,C V. (¥—jf(Fr W)) and
foreachi=1, 2, ..., U1 C Uy. Then each of the sets f~(T;) misses Fr W
so that f(,)T-W is a compact set in X. We now show by an argument
similar to that of the proof of the necessity of Theorem (3.1) that some
(f'T:) has only finitely many components that lie in W. For if each
F U)W has infinitely many components we may, as in the proof of
Theorem (3.1), select a sequence {C;} (i =1, 2, ...) of distinet components
of f7YT,)- W such that for each i =1,2, ..., C4-f (T3 = @. Then if ¢
is the component of f~(T)-W that contains f~(y), f Y(y) is interior to €
and since limsupC; # @, ¢ must intersect infinitely many of the Cy's
which is impossible. Thus we may and do assume that YT, -W has
just finitely many components.

Since f7'(Ty)- W contains T-77(T,) and since T,C 7, f%T,) has
just finitely many compact components that intersect 7. We next argue
that every component of f~(T,) that misses 7 is non-compact. For suppose
that @ is such a component and suppose that @ is compact. Then if #
denote the mapping fiX—T: X—7 ¥, F i3 a compact monotone mapping
and as such is quasi-open. Let Z, be the unified space of F: X—T->¥
and let u: Z,—Y be the retraction of Z, onto ¥ induced by F. Since ¢
is a compact subset of X—7, Q is a component of FYU,) and hence
of w=}(T,). By Lemma (3.8), @ maps onto U, under the compact quasi-
open map U. But this is impossible sinee %(Q)= F(Q)= f(@) and @
misses f(y). Therefore { cannot be compact and f%(T,) has just finitely
many compact components. Thus f satisfies the conditions of Theorem (3.1}
and Z is locally connected.

By Theorem 6 of [15], p. 1430, ¥ is multicoherent. Whyburn has
argued in Theorem 2 of Section 6 of [14] that whenever Z is connected and
locally connected and Y is multicoherent, so also is Z. This completes
the proof.

Exawpre. In the following example f: X — ¥ is a 1-1 mapping of X
onto ¥ where X and Y are locally connected generalized continua. The
restricted mapping f|T' is not compact nor Z is locally connected. Both Z
and Y are unicoherent.

We construct this example in E3. For each positive integer 4, let I;
be the segment from (0, 1/, 0) to (1, 1/7, 0), let I, denote the non-negative
z-axis and let 4 denote the segment from (0,1, 0) to the origin. For
each pair of positive integers (¢,j) let P(¢,j) denote the solid triangle
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with vertices (1/(i+1),1/j,0), (1/(i4+1),1[j,1/i—1/(i+1)) and (1/(i+1),
1/(j+1), O) Let P denote the solid triangle with vertices (0, 0, 0), .(—a],. 0,0)
and (0, 0, 1) and for each positive integer i, let @; denote the solid triangle
with vertices (¢, 0, 0), (4,0, 1) and (¢,—1,0). Let W denot.e the xy-plane.
Finally let X be the set W+P-i—”2>’0 P(i,jH—ig Q: minus the eclosed
set A+ g{) L.

Wetaescribe the mapping f and the range space Y at the same time.
Let f be a 1-1 mapping on X such that:

(i) the side of the triangle P (i, j) with endpoints (1/(i+1), 1/j, 0) and
(1/+1), 1/, 1/i—1/(i+1)) is mapped onto the missing interval from
(1/ta+1), 1/, 0) to (1)¢, 1/, 0) on Lu;

(ii) the side of the triangle P with endpoints (0,0, 0) and (0,0,1)
is mapped onto the missing line 4; .

(iii) the side of triangle ; with endpoints (¢, 0,0) and (z, 0,0) i
mapped onto the interval from (¢—1,0,0) to (¢,0,0) on the z-axis.

(iv) f is the identity elsewhere.

The resultant space (the space X -with the missing set A+ DL, tilled
in by the sides of the vertical triangles) is the space Y. It is unicoherent
as is the unified space Z of f.

‘We see that Z is not locally connected since the inverse image of
the closure of any sufficiently small region B of ¥ containing f(2,0,1)
(= the missing point (1,0, 0)) would intersect all but finitely many of
the triangles P(1,4§) and so would have infinitely many components
in f(R).

4. Unicoherence of the unified space. In this section we
give necessary and sufficient conditions for Z to be unicoherent whenever
it is & locally connected metric continuum. We also show that even when Z
is not compact there are certain necessary conditions that X and ¥ must
satisfy in order for Z to be unicoherent.

We first state some definitions and lemmas that will be useful in
this and the following section. The statements of the lemmas are included
for completeness and the proofs appear in [2].

(4.1) DEFINITIONS. A connected space W is said to be unicoherent
provided whenever W = H+ K where H and K are closed and connected
sets, H- K is also connected. The space W is said to be weakly-unicoherent
provided whenever W = H-+ K where H is a closed and connected set
and K is a continuum, H- K is also a continuum.

A connected set W is said to have the Complementation Property
provided for every compact set K in W, W— K has at most one non-
conditionally compact component.

icm
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(4.2) LevMa. Suppose that W is a locally connected generalized con-
tinwum. A necessary and sufficient condition that W be weakly-unicoherent
is that every conditionally compact component of the complement of a closed
and connected set has the Complementation Property.

(£.3) LeMMA. Let W be a non-compact locally connected generalized
continuum. Then a necessary and sufficient condition for W o be weakly-
unicoherent and have the Complémentation Property is that W satisfy:

(¥) For any continuum K in W and any open set U containing K,
there is a conditionally compact region R of W about K such that FrR is
a continwum lying entirely in U.

(4.4) LEMMa. Let W be a locally connected weakly-unicoherent general-
ized continuum and let A be a closed subset of W. Then (1) every component
of W— A is weakly-unicoherent and (2) if every non-emply component of A
is non-compact and if W has the Complementation Property, every component
of W—A is weakly-unicoherent and has the Complementation Property.

(£.5) LEMMA. Let W be a non-compact locally connected generalized
continuum. Then a necessary and sufficient condition Jor Weo = W {cc},
the one-point compactification of W, to be locally connected and unicoherent
s that W be weakly-unicoherent and have the Complementation Property.

(4.6) LEMMA. Let W be a continuum and let A be a unicoherent and
locally connected subcontinuwum of W such that B = W— A is connected and
locally conmected. Then W is unicoherent if and only if B is weakly-unico-
herent and has the Complementation Property.

(4.7) TrEOREM. Lot X and Y be locally connected generalized continua
and let f be a non-compact mapping of X into Y. Suppose that Z is locally
connected and unicoherent. Then (1) X is weakly-unicoherent and ¥ is
unicoherent; (2) 8 is connected; and (3) if f(X) is compact, X has the Com-
plementation Property.

Proof. (1). Whyburn has shown in the proof of Theorem 2 of Sec-
tion 6 of [14] that when Z is a locally connected generalized continuum
and T is multicoherent, so also is Z. Hence ¥ must be unicoherent. The
weak-unicoherence of X is a direct consequence of Part (1) of Lemma (4.4).

(2). Recall that X.¥ = 8, thus § must be connected by the unico-
herence of Z.

(3). If f{X) is compact, X is compact. Thus X is a conditionally
compact component of the complement of the closed and connected
set ¥ and by Lemma (4.2), X has the Complementation Property.

ExawerEs. (a) In this example f is a 1-1 mapping of X into ¥,
where X, ¥ and Z are all locally connected unicoherent generalized con-
tinua and § is a continuum. However, f(X) is not compact nor does X have
the Complementation Property. Let X be the open interval (0, 1), let ¥
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by the half open interval [0, 1) and let f be the identity map of X into V.
Then Z is homeomorphic to an open interval and is unicoberent and
Ff@&) =T is not compact and X does not have the Complementation
Property.

(b) This example shows that even when (i) X is unicoherent and
has the Complementation Property, (ii) § is connected, and (iii) Y is
unicoherent, Z need not be unicoherent. Thus conditions (1), (ii) and (iii)
are not sufficient for the unicoherence of Z. Let X — {@,9): 0<o<1
and 0 <y <1}andlet ¥ =[0,1). Definef: X ¥ by f(#, y) = . Then Z
is homeomorphic to the cylinder §*x[0,1) and is not unicoherent.

‘We note that in these two examples Z is not compact, When Z is
compact, conditions (i) and (iii) are necessary and sufficient for the uni-
coherence of Z.

(4.8) TemoreM. Let X and Y be locally connected generalized continua
and let f be a non-compact mapping of X into Y. Suppose further that Z
is locally comnected and compact. Then Z is unicoherent if and only if X
is weakly-unicoherent and has the Complementation Property and Y is
unicoherent.

Proof. Follows from Theorem (4.7) and Lemma (4.6).

(4.9) Levwma. Suppose that Z is not compact. Let Zo and Yo denote
the one-point compactifications of Z and ¥ respectively and let Z' denote
the unified space of the mapping f: X - Ve. Then Z' and Zo are homeo-
morphic.

Proof. Let u denote the retraction of Z’ onto Y associated with
fi XY and let @ = w=Y(¥). (Here we are regarding ¥ as a subset
of ¥). Then @ is a locally compact Hausdorff space and u|Q: QY
is a compact retraction of Q onto ¥. Thus by Theorem (2.9) @ is homeo-
morphic to the unified space of the mapping u|X: X—7¥. But u|X =7
80 @ iy homeomorphic to Z, thus we may consider Z., to be a one-point
compactification of Q. We note that Z’ is also 3 one-point compactification
of @. It then follows from the topological uniqueness of the one-point

compactification of a locally compact Hausdorff space that Z’ and Z.
are homeomorphie.

(4.10) CorOLLARY. Let f: XY be a non-compact mapping where X
and Y are locally connected generalized continua and suppose that Z is
locally connected. Then a necessary and swufficient condition for Z to be weakly-
unicoherent and have the Complementation Property 1is that both X and Y
are weakly-unicoherent and have the Complementation Property.

Proof. The necessity. Suppose that Z is weakly-unicoherent
and has the Complementation Property. If ¥ is compact, Z is compact
and unicoherent and the necessity in that ease follows from Theorem (4.8).
Thus we may assume that ¥ ig not compact. By Lemma (4.5), Zw, the
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one-point compactification of Z, is unicoherent. Let Z’ denote the unified
space of the mapping f: X — ¥, where Yo is the one-point compactification
of Y. By Lemma (4.9), Z'is homeomorphic to Ze, hence Z’ is unicoherent.
Thus applying Theorem (4.8) to Z’ we have that X is weakly-unicoherent
and has the Complementation Property and Yo is unicoherent. By
Lemma (4.5), Y is weakly-unicoherent and has the Complementation
Property and this completes the proof of the necessity.

The sufficiency. If ¥ is compact, Y is unicoherent and the suffi-
ciency follows from Theorem (4.8). If T is not compact, ¥ is unicoherent
and by Theorem (4.8) the unified space Z’ of the mapping f: X — Yo
is unicoherent. Since Z’ is homeomorphic t0 Zw, Zo is unicoherent. Thus
by Lemma (4.5), Z is weakly unicoherent and has the Complementation
Property.

(4£11) CoroLLARY. Let f: E"—E™ be a non-compact mapping of E*
into E™ where n, m = 2 and let Z(n , m) denote the unified space of f. Then
if Z(n,m) is locally connected, it is weakly-unicoherent and has the Com-
plementation Property.

(£.12) Remark. Note that the proof of the sufficiency of
Theorem (4.8) depends on Lemma (1.6) which does not require Z to be
locally connected. Thus whenever X is a weakly-unicoherent, locally
connected generalized continuum that has the Complementation Property
and Y is a locally connected unicoherent eontinuum, Z is unicoherent
even if it is not locally connected. In partiuclar we have:

(4£.13) COROLLARY. Lef f: E"—8™ be a mapping of E* into 8™ where n,
m =2 and let Z'(n, m) denote the unified space of f. Then Z'(n, m) is uni-
coherent.

5. Singular sets for mappings. In this section we investigate
the relationship between the connectedness and compactness properties
of the singular sets of a non-compact mapping and certain topological
properties of the range and domain. G. T. Whyburn in [14] has shown
that when f is a monotone map of X onto ¥ where X and Y are locally
connected generalized continua and Y is unicoherent, the singular set T
of fin X cannot have any non-empty compact components. In [6] E. Duda
has shown that every monotone mapping of a locally connected generalized
continuum having the Complementation Property onto the plane is
a compact mapping. Similar results are obtained here where we show
that when f is a mapping of a locally connected and connected space
having the Complementation Property into a space ¥, the singular set §
of fin ¥ cannot have any non-empty compact components if f(X) is
not compact; and if f(X) is compact, § is a continuum. Furthermore we
show that every closed mapping of a locally connected, connected and
paracompact space having the Complementation Property onto a non-
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compact space must be a compact mapping. Finally we show that under
certain conditions the Complementation Property and weak-unicoherence
are inherited by the components of the complements of § and 7 in ¥
and X respectively.

We first prove two lemmas.

(5.1) LEMMA. Let W be a locally connected, connected, locally compact
Hausdorff space and let V be an open subset of W such that V s not compact
but K= FrV is compact. Then V has a non-conditionally compact (in W)
component.

Proof. Suppose to the contrary that every component of V is con-
ditionally compact. Let @ be a conditionally compact open subset of W
containing K. Since @ is compact and ¥ is not compact, we may choose
& component N, of V such that ¥, ¢ §. Then since Q4 N, is compact,
we may choose & component N, of V such that N, ¢ §+XN,. Continuing
in this manner we obtain a sequence {1, Ny, ...} of distinet components
of V such that for each i =1, 2,..., ¥;- (W—Q) s @. We note that since W
is connected and locally connected, the closure of every component of V
meets K. Thus foreach i =1, 2, ..., N;-Q # @. This implies that each N;
meets the boundary of @ and thus Fr ¢ contains a limit point p of 2N
(¢=1,2,..). We note that each N; is also a component of W— K and
since W is locally connected, p is interior to some component N of W— K.
But this is a contradiction for then N would have to meet infinitely
many N which is absurd. This completes the proof.

(5.2) Leama. Let f be a non-compact mapping of X into ¥ where X
is a locally connected and conmected space and suppose that S has n>1
non-empty compact components. Then there exists compact set K in X
such that X— K has at least n non-conditionally compact components and
if in addition f(X) is not compact, K can be chosen so that X — K has at
least w41 non-conditionally compact components.

Proof. Let (i, C, ..., Cn be n distinet non-empty compact com-
ponents of 8 and let W, W,, -y Wn be a collection of pairwise disjoint
conditionally compact open subsets of ¥ containing (y, C,, ..., Oy Te-
spectively chosen so that S-Fr W, =@ for i—= 1,2,..,n For each
i=1,2,...,m, let V;=f"(W,). Then for each 4, FrV; is compact since
FrV:CfY(Fr W) and Fr W misses § and ¥; is not compact since
W2 0;. Hence by Lemma (5.1) each Vi, i=1,2,..,n, contains a
non-conditionally compact component B; of X.

Suppose also that F(X) is not compact. Then if Vo= X— 3 (W)
(1=1,2,...,n), 7, is not compact. But Fr(V,) C S FrV; (1=1,2,..,n)
and so FrV, is compact. Thus by Lemma (5.1), V, contains a non-con-
ditionally compact component B, of X. Then B,, By, ..., By is the desired
collection. As an immediate consequence of Lemma (5.2) we have:

icm°
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(8.3) THEOREM. Let f: X~ Y be a non-compact mapping where X
8 @ connected and locally commected space having the Complemeniation
Property. Then (1) if f(X) is not compact, the singular set 8 of f in Y cannot
have any mon-empty compact components; and (2) if f(X) is compact, S is
a continuum.

(5.4) THEOREM. Suppose that X is a locally connected, connected and
paracompact space having the Complementation Property. Then every closed
mapping f of X onto a non-compact space Y i3 a compact mapping.

Proof. By Theorem (1.1) of [8], point inverses of f have compact
boundaries. I assert that this implies that every point inverse of f is
compact. For suppose to the contrary that Fr i) =K is compact
but ~(y) is not. By Lemma (5.1), f (y)— K must have a non-conditionally
compact component which we denote by N. Then since X has the Com-
plementation Property, N is the only non-conditionally compact com-
ponent of X— K and this implies that X— ¥ is compact. But then f(X)
=f(X—N)+f(N)=f(X—N)+y is a compact set and this contradicts
our hypothesis that f(X)= Y is not compact. Thus every point inverse
of f is compact and a closed mapping with compact point inverses onto
a locally compact Hausdorff space is compact. See [19].

(53.5) TEHEOREM. Suppose that f is a non-compact mapping of X into ¥
where X and Y are locally connected gemeralized continua, X has the Com-
plementation Property and Y is weakly-unicoherent. Then (1) if f(X) s
not compact and Y has the Complementation Property, every component
of Y—8 is weakly-unicoherent and has the Complementation Property;
(2) if f is onio and ¥ is nmot compact, every component of ¥— 8 4s weakly-
unicoherent and has the Complementation Property; and (3) if f is a monotone
onto mapping and if ¥ is not eompact, every non-empty component of T is
non-compact and every component of X—T has the Complementation
Property.

Proof. (1). By Theorem (5.3) every non-empty component of § is
non-compact and by Part (2) of Lemma (4.4) every component of ¥Y— 8
is weakly-unicoherent and has the Complementation Property.

(2). Let @ be a component of ¥Y— 8. We wish to show that Q satisfies
condition () of Lemma (4.3). To this end let K be a continuum lying
in @ and let U be an open subset of @ containing K. By Lemma (4.13)
of [7], there exists a conditionally compact region M of @ containing K
such that ¥ C U and ¥Y— M has only finitely many components, say
Nyy Vo, ooy Np. Since M misses S, N =f"YHM) is compact and since X
has the Complementation Property, X— N has only one non-conditionally
compact component which we denote by B. Now X— B is compact and
thus the component of ¥—M that contains f(B) is the only non-con-
ditionally compact component of ¥ — M. Without loss of generality let

9#
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us suppose that f(B) C N;. Then each of the sets N, Ng, ..., N, is con-
ditionally compact. By Theorem (5.3), every non-empty component of §
is non-compact. Since the boundary of each N; misses S, N;- 8§ = 0 for
i=2,3,..,p. Thus R = M+ N,+ Ny+...+ N, is a conditionally compact
region whose closure lies entirely in . Furthermore, since ¥ is weakly
unicoherent, FrR = E. N, is a continuum lying in U. Thus @ satisfies
condition (%) and @ is weakly unicoherent and has the Complementation
Property.

(3). Suppose that K ig a non-empty compact component of 7. Let R
be a conditionally compact region in X containing K so that F = FrR
misses 7'. Let € = f(F) and let ¥ be a region in ¥— C which intersects f(X).
Let pg be an arc in T such that pg meets f(E) in exactly the point . This
is possible since every point in f(K) is a limit point of ¥ —f (R). Then
p <f(R) since V-0 = @. Hence p ¢ S as p is not interior to f(R).

Let 4, be the union of all the components of X—F which intersect
the set f '(pg—p) and let B= X— A. Then 4 = 4, and B are closed,
B and f(A) are connected, X =4+ B and 4- BCF. By our hypotheis,
X—F has exactly one non-conditionally compact component which we
denote by N. Now either ¥ C 4 and B is compact or N CB and A is
compact. But in either case if we let a = f(4) and B =f(_B“), Y=o0a+8
where o and £ are closed and connected and either a or p s
compact.

Since 4-BCF, a-C O+ 8. For if a point p ea- § is not in g+ 8,
asmall region U in Y eontaining p but missing €+ 8 would have a region W
a8 its inverse under f which would meet both 4 and B but not F and this
is impossible. Also since 4-F % @ and BOF, we have that 8D ¢ and
a- 0 # @ so that a-f- C 5= @. Furthermore, pg—p C f(4) so that Pea;
and pep since p ¢ f(R) Cf(B)Cp. Thus a-B-8 = @ since P € 8. Hence
a- B is the sum of two non-empty separated sets a- B-8 and a-B-C and is
not connected. But this contradicts the weak-unicoherence of ¥ since
Y = o+ p and either a or § is compact. This proof closely parallels that
of Theorem (2) of [14].

In order to see that components of X— T have the Complementation
Property let Q be a component of X— 7 and let K be a compact set in Q.
Since fi@ 48 a compact monotone mapping, ¢ is an inverse set of f, i.e.,
Q=f1"(Q), and H = FYE)is a compact set lying entirely in . Further-
more, P = f(Q) is a component of T— § and every component of Q— H
maps onto a component of P— f(K) under f. By part (2) of this Theorem,
P—f(K) has exactly one non-conditionally compact (in P) component.
This implies that Q— H hag exactly one non-conditionally compact (in Q)
component since f|Q is a compact monotone map of @ onto P. It is then
clear that Q— K must then have only one non-conditionally compact
(in @) component.
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(5.6) Remark. Note in part (1) of Theorem (5.4) the components
of ¥— 8§ inherit the Complementation Property from Y but in part (2)
they inherit the Complementation Property from X.
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