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Completeness theorems
for some presupposition-free logics

by
H. Leblanc (Rosemont, Pa.) and R. H. Thomason (New Haven, Conn.) *

1. Introduction. Contemporary logic has often been faulted for
requiring, first, that its individual variables have values, and, second,
that its individual constants each designate a value of the individual
variables. In recent years various modifications of QC=, the first-order
quantificational caleulus with identity, have been designed, that eschew
one, or the other, or both of these presuppositions; () and some, though
not all, of the calculi in question have received a semantical interpreta-
tion. (?) OQur purpose in this paper is to furnish a systematic account—
both from a syntactical point of view and a semantical one—of such
like presupposition-free logics. We shall study ten of them in the body
of the paper, and prove the (semantical) completeness of each, in Henkin’s
sense of the word ‘completeness’ and in Godel’s. (%) Further presupposition-
free logics are discussed in footnotes and appendices; some may prove
as interesting as the ten treated in the text, but for lack of space could
not be accommodated therein.

* The research that led to this paper was supported by NSF grants GS-973
(H. Leblanc) and GS8-190 (A. R. Anderson and N. D. Belnap, Jr.), and by the John Simon
Guggenheim Memorial Foundation of which Professor Leblanc was a Fellow for the
academic year 1965-1966.

(*) See in particular [10], [5], and [7]. Modifications of QC—the first-order quanti-
ficational calculus without identity—that do not require ‘a’, ‘y’, 2", ete., to have values,
will be found in [2], [6], [13], and [14], and a like-minded one of QC= will be found
in [15]. Those five calculi have no individual constants, though, and hence are in a class
apart.

(%) One semantical account of Hintikka’s modification of QC= in [5] is supplied
in [16], another in [17]. To our knowledge no semantical account of Leblane and Hail-
perin’s modification of QC= in [10] has appeared, so far.

(®) We take a calculus C to be (semantically) .complete in Gddel’s sense if every
valid formula of € is derivable from @ in C, and to be (semantically) complete in Henkin’s
sense if every formula of ¢ that is implied by (or, in Tarski’s terminology, is a semantical
consequence of) a set of formulas of ¢ is derivable from that set in C. Completeness
in Henkin’s sense is referred to in [4] a8 strong completeness.
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‘When an individual constant is not required to designate any value
of ‘@, ‘y’, ‘2, ete., it may designate something not a value of a variable,
a possibility often overlooked. It may also fail to designate at all, i.e.,
serve as a non-designating constant. Various options are open as regards
the truth of statements containing a non-designating constant: (i) the
statements in question may be denied any truth-value whatsoever;
(ii) they may all be assigned some truth-value other than the classical 7
and F; (iii) some may be assigned T or F, and the rest assigned no truth-
value; (iv) they may all be assigned the truth-value T'; (v) they may all
be assigned the truth-value F; and (vi) some (but not all) may be assigned T,
and the rest F. Perhaps the most interesting alternative under (vi) is the
one, say, (vi’), in which all atomic statements containing a non-designating
constant are arbitrarily assigned one of the two truth-values 7 and F,
and the truth-value of non-atomic ones is determined by the standard
semantical rules of truth. For lack of space we relegate treatment of (i)
to footnote 22, pass over (ii), and refer the reader to [17] for treatment
of the major alternative under (iii), thus restricting ourselves in the main
text to (iv), (v), and (vi').

Among our ten modifications of QC=, five (namely, QUZ, QC+,
Q0=, QC<, and QOL), lift the classical restriction that variables must
have values by acknowledging the empty set @ as a possible domain.
The others do not. QC =, QC £.QC <, and Q0= allow for non-designating
constants, yet require that designating ones each designate a value of
a variable. QC< and QO =+ handle formulas that contain a non-designating
constant in the spirit of (iv) above; QC< and QC-=2 in the spirit of (v).
QC=% and QU= are like QC= and QC=, respectively (QC= and QOX
like QO and QC=, respectively), except for allowing designating con-
stants to designate something not a value of a variable. This is accom-
plished by introducing, besides the domain D (or 4mner domain) serving
a8 the range of values of the individual variables, an outer domain D’
that is disjoint from D and whose members may also be assigned to the
individual constants of QC=, QC<, QUL, and QCX. (1

QC= and QO é, possibly the most interesting of our ten calculi, are
gusceptible of various semantical accounts. The most general of these,
call it Account One, (a) uses an outer as well as an inner domain, thus
permitting an individual constant to designate something not the value
of a variable, and also (b) allows for non-designating constants, formulag
that contain such being handled in the spirit of (vi') above. It turns out,

(*) The notion of an outer domain was mentioned to Professor Leblane by Professor
Joseph 8. Ullian in the spring of 1962.
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though, that as regards soundness and completeness (%), (b) is dispensable
in the presence of (a), and likewise (a) dispensable in the presence of (b). (¢)
Thus two further accounts yield completeness theorems for QC = and QC %
one requiring every individual constant of QC= and QC= to designate
(decount Two), the other requiring every such constant—when it de-
signates—to designate a value of ‘@', “y’, %%’, ete. (Account Three). For
convenience (and novelty, since Account Three is close to van Fraassen’s
in [16]), we employ Account Two in the main text, and relegate Accounts
One and Three to Appendix II.

Antieipations of one of our results, Theorem TT7(b) in Section IV,
will be found in [14] for the case where 4 is a closed formula of QC=
that contains no identity sign nor any individual constant, in [15] for
the case where 4. is a formula of QC = that contains no individual constant,
and in [16] for the case where 4 is a closed formula of QC = that contains
no sentence variable. () To our knowledge the remaining results, though,
are new. (%)

The argument whereby we deduce from the completeness in Henkin’s
sense of QU< and QC=% that of QU< and QC, can be put to further
use: deducing from the completeness in Henkin’s sense of QC= that
of QC= or, as we shall label that calculus here, QC<. The result is
a familiar ene, but detailed and correct proof of it is somewhat of a rarity. (°)

(*) We take a caleulus € to be (semantically) sound in Godel’s sense if every formula
of C that is derivable from & in ¢ is valid, and to be (semantically) sound in Henkin’s
sense if every formula of C that is derivable in ¢ from a set of formulas of € is implied
by that set.

(*) An individual constant ‘a’ of QC2 or QC2 that does not designate at all can
always be made to designate something not a value of a variable: adding to D’ (the
outer domain) some ad hoc thing d’ not in D (the inner domain), assigning d’ to ‘a’, and
adding suitable m-tuples (m =1, 2,...) to the subsets of (D U D)™ already assigned
to the predicate variables of QCL or QC2, will do it. And one that designates something
not a value of a variable can always be made not to designate at all: assigning suitable
truth-values to the atomic formulas of QCZ or QCA that contain ‘a’, is all that is
needed. Hence Accounts Two and Three are sure to fit QG and QCZ if Account
One does. . .

() [14] borrows heavily from [2], and so to a lesser extent does [15].

(*) Professor van Fraassen has recently obtained a proof of T7(a) for the case
where S is a set of closed formulas of QC2 that contain no sentence variable and 4 is
a closed formula of QCZ: that contains no sentence variable either. The proof has
not reached print yet. )

(°) Proof of the completeness in ‘Godel’s”sense of QCL goes back of course to
Gédel in'[l]. Proof of its completeness in Henkin’s sense can be retrieved from [3], once
the definition of a formal deduction from assumptions is amended to read as in [12].
For further details on this last matter, see footnote (13).
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2. Syntax. We attend in this section to the syntax of QC=-QCX
(caleuli which of course all have the same signs and hence the same
formulas), and that of QO=, an auxiliary caleulus that is like QU == except
for having N, extra individual constants of its own and hence extra formulas
of its own. In the definitions and remarks that follow, the index ¢ is meant—
unless otherwise indicated—to run from 0 to 10.

D1. The signs of QO are the two connectives ‘~’ and 2%, the one
quantifier letter ‘V’, the identity sign ‘=’, the two parentheses ‘(’and ‘),
one or more sentence variables (among them ‘p’), one or more monadic
predicate variables (among them ‘f?), for each m from 2 on zero or more
m-adic predicate variables, ¥, individual variables (among them ‘z’
and “y’), and one or more individual constants.

D1%. The signs of QC= are those of QC— together with N, extra
individual constants.

Remarks. The individual variables and individual constants of QC <
[QC =] will be collectively known as the individual terms of QO [QC =,
and be presumed to be arranged in some fixed alphabetical order. We
shall refer to the sentence variables of QU== [QC=] by means of ‘P, to
its predicate variables by means of ‘¥, and to its individual terms by
means of ‘X’, ‘¥’ and ‘Z°.

D2. Let A be a finite sequence of signs of QC=.

(a) If A is a sentence variable of QC=, then A counts as a formula
of QG

(b) If 4 is of the kind F(X,, X,, ..., Xn), where F is an m-adic
{m > 1) predicate variable of QC , then 4 counts as a formula of QC é;

(c) If A is of the kind (X = ¥), then 4 counts as a formula of QC L;

(d) If 4 is of the kind ~B and B counts as a formula of QC—l, then 4
counts as a formula of Q0

(e) If 4 is of the kind (BD ) and both B and € count as formulas
of QUL, then A counts as a formula of QU

(f) It A is of the kind (VX)B, where X is an individual variable
of QCZ, and B counts as a formula of QO<, then 4 counts as a formula,
of QU<;

(g) 4 counts as a formula of QC-- pursuant only to one or another

of (a)-(f).

D2%. Like D2, but with ‘Q0=’ in place of ‘QC <,

Remarks. Except D6-D8 and D10, every further definition in
this section will be understood to carry along its analogue for QC<=.
‘We shall refer to the formulas of Q0= [QC 2] by means of *4’, ‘B, and ‘0,
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and to sets of such by means of ‘3°. To abridge matters, we shall usunally
write ‘(4 &B)’ for ‘N(AD ~B)’, (4AvB) for (~ADB), {4 =Ry
for ((AZ)B)& BDA) ), HX)A’ for ‘~(VX)~4’, and ‘BIX for
“Hz)(z = X) when X i3 distinet from ‘z’, otherwise for ‘(Hy)(y = X
and we shall usually omlt outer pa.rentheses Lastly, we shall assume
that the formulas of QC=: [QC=2] are arranged in some fixed alphabetical
order.

D3. Let A and B be formulas of Q0.

(a) If 4 and B are the same, then B counts as a component of 4;

(b) If 4 is of the kind ~( and B counts as a component of C, then B
counts as a component of 4;

(e) If 4 is of the kind ¢ D ¢" and B counts as a component of C or
of ¢’, then B counts as a component of A;

(d) If 4 is of the kind (VX)C and B eountb as a component of C,
then B counts as a component of A4;

(e) B counts as a component of A pursuant only to one another
£ (a)-(d).

D4. Let X be an individual term of QC=<= d ,and 4 be a formula of QO .

(a) An oceurrence of X in A is said to be bound if it is in a component
of A of the kind (VX)B, otherwise to be free.

(b) X is said to occur bound in A if at least one occurrence of X
in 4 is bound, to occur free in A if at least one occurrence of X in 4
is free.

Remark. It follows from D2-D4 that every oceurrence of an in-
dividual constant of QC<- [QC=] in a formula of Q0% [QC=] is free.

Convention. Let 4 be a formula of QCL- [QC =], and let X be an
individual term of QCL [QC2Y.

(1) Let Y be an individual variable of QC [QC=1. If X does not
occur free in A or X occurs free in at least one component of 4 of the
kind (VY)B, we shall take both 4 (¥/X) and A(¥//X) to be A; otherwise,
we shall take 4(Y/X) to be the result of replacing every free occurrence
of X in A by an oceurrence of X, and A( ¥//X) to be any result of replacing
zero or more free occurrences of X in A by an occurrence of Y.

(2) Let ¥ be an individual constant of QC - [QC=]. If X does not
oceur free in 4, we shall take both 4(¥/X) and A(Y//X) to be 4. If X
occurs free in 4, we shall take A(¥/X) to be the result of replacing every
free occurrence of X in A by an occurrence of Y, and A(Y//X) to be
any result of replacing zero or more free occurrences of X in A by an
oceurrence of Y.

D5. Let 4 be a formula of QC=.
(a) If 4 is as in D2(a)-(c), then 4 is said to be atomic.
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(b) If no individual variable of QO occurs free in A, then 4 is
said to be closed; otherwise, to be open.

(e) If no individual constant of QC=< occurs in A, then 4 is said
to be constant-free.

(d) If ¥’ does not occur in A, then A is said to be quantifier-free.

Remark. In view of D5 a formula 4 of Q0L [QC=] is closed and
quantifier-free if no individual variable of QG- [QC=] occurs at all in 4.

D6. Let 4 be a formula of QC<L, where =2 or 6. '

Case 1: 4 is open. Then ‘p D p’ counts as the @-associate of A.

Case 2: A is closed.

(a) If 4 is atomic, then A counts as the @-associate of 4,

(b) If A is of the kind ~B and B’ is the @-associate of B, then ~ B’
counts as the @-associate of 4;

(e) If A is of the kind BD ¢, and B’ and €' are the @ -associates
of B and C, respectively, then B'D ¢’ counts as the @-associate of 4;

(d) If A is of the kind (VX) B, then ‘p D p’ counts as the @ -associate
of A. (1)

Remark. Tt follows from the above definitions that the & -associate
of a closed formula of QC= (i =2 or 6) is closed and quantifier-free,
D7. (a) A formula of QC< counts as an axiom of QCc<, Qo,

and QCL if it is of one of the following eight kinds, where in the fourth
case X is wunderstood not to oceur free in A:

AD(BDA4),
(42(B2C)D((4DB)D(4D0),
(~AD ~B)D(BD 4),
AD(VX)A,
(VX)(4DB)D((VX)4D (VX)B),
(VX)AD A(Y/X),

X=X,
and

X=1YD (ADA(Y//X)) .

_ . (b) A formula of QG+ counts as an axiom of QC<, QCL, and Qo
if it is of ome of the eight kinds listed under (a), but with Y wnderstood

N (1) 11111 [18] Mostowski took-a vacuous quantification like ‘ (V)
when ‘c’ has no values, and hence to be trne—so to speak—only if ‘p’ i

o v d —only if ‘p’ is true. Soon
aitiemamds Ha_.llpefrm urged: in [2] that ‘(V%)p’ be invariably held true when ‘s’ has no
Zh nes. We abide in the main text by Hailperin’s recommendation, but list in Appendix I
; e .var1ou§ changes that Mostowski’s handling of ‘(Vz)p® (and its congeners) calls
or in Sections 2-3. Case 2 of D6 will be one of the items affected.

P’ to amount to ‘p’
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to be an individual variable (rather than an individual variable or an in-
dividual constant) of QC == when the formula is of the kind (VX)A D A(Y/X).

(¢) A formula of QC= counts as an axiom of QC2, QC%, and QC L2
if it is of one of the eight kinds listed under (a), but with ¥ wunderstood

to be an individual variable of QCQ, and with X understood to occur free
in A, when the formula is of the kind (VX)4 D A(Y/X).

(d) A formula of QC<L counts as an axiom of QC< and QCL if it
is of one of the eight kinds listed under (a), but with X understood to occur
free in A when the formula is of the kind (VX)A D A(Y/[X).

D7, A formula of QC= counts as an axiom of QC= if it is of one
of the eight kinds listed under {a), but with X understood to be an individual
variable of QCZ when the formula is of the kind (VX)A4A D 4(Y/X).

D8. (a) Let 4 and B be formulas of QC=.

(al) B is said to follow from A and 4 D B by means of rule R1.

(a2) If A is closed or B is open, then B is said to follow from 4 and
A DB by means of rule R2. (%)

(a3) If every individual constant of QC< that occurs in A also
oceurs in B, then B is said to follow from 4 and A D B by means of rule R3.

(ad4) If 4 is closed or B is open,and every individual constant of QC<
that occurs in A also occurs in B, then B is said to follow from 4 and 4 D B
by means of rule R4.

(aB) B is said to follow from A and ~A4 by means of rule R5.

(a6) If 4 is closed or B is open, then B is said to follow from 4 and ~A
by means of rule R6.

(b) Let (VX)4 be a formula of QCL, and ¥ be an individual variable
of QCé that does not occur free in (VX) A. Then (VX)A4 is said to follow
from A (¥/X) by means of rule R7.

D8™. (a) Let A and B be formulas of QC=. Then B is said to follow
from A and A D B by means of rule R1.

(b) Like D8(b), but with ‘QC=’ in place of ‘QCL.

D9. Let K be a finite column of formulas of QC<; let (VX)4 be
any entry in K that follows from a previous one by means of rule R7;
and let 4 (Y/X) be the earliest entry in K that is previous to (VX)A4 and
from which (VX)A follows by means of rule R7. If X and Y are the
same, then Y is said to be universalized upon in K; otherwise, Y is said
to be quasi-universalized upon in K.

(1) We borrow R2 from Schneider’s [15]. Mostowski’s rule in [13]: “If every in-
dividual variable [of QC<] that occurs free in A occurs free in B, then B follows from 4
and 4D B, could do duty for R2; it would, however, occasionally make for slightly
longer proofs on pp. 138-143.
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D10. Let 4 be a formula of QO<, § be a finite set of formulas of
QO<, and K be a finite column of formulas of QC < such that (i) K closes
with 4 and (ii) no individual variable of QC< that is universalized or
quasi-universalized upon in K occurs free in any member of §.

Case 1: ¢ =0 or 1. If every enfry in K belongs to S, counts as an
axiom of QC=<, follows from two previous entries by means of rule R1,
or follows from a previous entry by means of rule R7, then K counts as
a derivation of 4 from § in QOL. ()

Case 2: 4= 2. If every entry in K belongs to 8, counts as an axiom
of QO , follows from two previous entries by means of rule R2, or follows.
from a previous entry by means of rule R7, then K counts as derivation
of 4 from § in QC,

Case 3: =23 or 5. If every entry in K belongs to §, counts as an
axiom of QC<, follows from two previous entries-by means of rule R3,
or follows from a previous entry by means of rule R7, then K counts as
a derivation of 4 from § in QO=<.

Case 4: ¢ =4 or 6. If every entry in K belongs to §, counts as an
axiom of QC=, follows two previous entries by means of rule R4, or
follows from a previeus entry by means of rule R7, then K counts as
a derivation of 4 from § in QC <.

Casge 5: =17 or 9. If (i) every entry in K belongs to S, counts as
an axiom of QC<, follows from two previous entries by means of one
of rules R1 and R3, or follows from a previous entry by means of rule R7,
and (ii) every individual constant of QQé oceurring in any entry in K
that ecounts as an axiom of QUL occurs in some member or other of 8,
then K counts as a derivation of A from § in QC=<.

(*) In most of the literature on QC<, the following rule, call it R7’, does duty
for R7: “(VX) A follows from A”. An individual variable X of QC < is then said to be
universalized wpon in a finite column of formulas of QC = if at least one entry in the
column is of the kind (VX)4 and a previous one is of the kind 4; and a finite column
of formulas of QC<L that closes with a formula 4 of QC% and every one of whose entries
belox‘xgs to a set § of formulas of QCL, counts as an axiom of QC 2, follows from two
previous entries by means of rule R1, or follows from a previous entry by means of
rule R7, is said to constitute a derivation of A from § in QC= if no individual variable
of QCL that is universalized upon in the column occurs free in a member of S. As
Montague and Henkin have shown in [12], however, this account of things blocks proof
of L3.(c) on p. 138, and hence blocks proof of T10(a) for the case where ¢ = 0. Qur repair
?mre is reminiseent of the one in [8]. Montague and Henkin offer a different one, which
incidentally makes do with R7. For a survey of yet other repairs, see [9], where line 9

on g: 34 ghould read ‘nor in (VX)4’, and the end of line 13 read ‘nor in (IX)4, nor
in B’
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Case 6: =8 or 10. If (i) every entry in K belongs to S, counts as
an axiom of QO<L, follows from two previous entries by means of one
of rules B2 and R6, or follows from a previous entry by means of rule R7,
and (ii) every individual constant of QC< oceurring in any entry in K
that counts as an axiom of Q0L oceurs in some member or other of S,
then K counts as a derivation of A from § in QC=%.

D10”. Like D10, Case 1, but with ‘QC=’ in place of QoL

Remark. The restrictions placed in QCL-QCE wupon (VX)4
D A(Y/X), BR1, and (when applicable) R5, can be tabulated as follows:

TABLE I (%)

(VX) 4D A(¥/X) R1

| {

0 ' no restriction no restriction

1 Y a variable | no restriction
5 |Xfreein 4 &

¥ a variable A closed or B open (= R2)

every constant in A ocecur-
ring in B (= R3)

A closed or B open & every
constant in 4 occurring in
B (=R4)

every constant in 4
oceurring in B (= R3)

3 | no restriction

X free in A4

Y a variable

O

A closed or B open & every
eonstant in 4 occurring in
B(= R4)

no restriction
4 closed or B open (= R2)

no restriction

g |X freein 4 &
Y a variable

no restriction

4 closed or B open (=R6)

7 | no restrietion
8 | X free in 4
9 | Y a variable

X freein 4 &
Y a variable

no restriction

A closed or B open (= R6)

10 A closed or B open (= R2)

(1) Seemingly missing from our roster of calculi is a meodification of QC £, call
it QCY, that would stand to QC2 as QC4 stands to QC=2 (and QCZ to QCZ), and
in which (i) X should oceur free in A if (VX).4 D 4 (¥/X) is to count as an axiom and (ii)
4 should be closed or B open if B is to follow from A and 42 B. Wh«;m QCL and QC¥
have no individual constants (as is the case in [15]), QC< and QCZ do differ; under
the present circumstances, though, they amount to the same. By the same reasoning
as in the proof of L5(b) below, 4 is derivable from 8 v {(4®)(f(x)V ~f(x))} in QCE
if 4 is derivable from § in QC=. But, since ‘f(a) & ~ f(a)’, where ‘e’ is an individual
constant of QC, follows from ‘(V#)(f (%) & ~f(2))’ and ‘(V&)(f(x) & ~f(2))D (f(a) &
~f(a))’ by means of rule R2, ‘(F=)(f(x)V ~ f(x))’ is derivable from & in QCL. Hence 4
is derivable from S in QO if is derivable from § in QCZ.
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Dil. Let 4 be a formula of QC <, and 8 be a set of formulas of QC =,

Case 1: § is finite. Then A is said to be derivable from § in QC-L
it there is a derivation of 4 from § in QC.

Case 2: S is infinite. Then 4 is said to be derivable from § in QC+
if there is a finite subset 8’ of § such that 4 is derivable from §' in QCL. (19)

Remarks: It follows from D10-D11 that a formula 4 of QC= is
not derivable from @ in QGé for any 4 from 7 to 10 unless 4 is constant-
free. To abridge matters, we shall write, e.g., ‘S by A’ for ‘4 is derivable
from § in QCL’, and ‘S+°4’ for ‘4 is derivable from S in Q0=
we shall further write, e.g., ‘+; 4’ for ‘@ |, A’, and ‘+> A’ for ‘@ = 47
and we shall call a derivation in QCé of a formula 4 of Q()é from
a set S of formulas of QO+ constant-free if every entry in the derivation
is constant-free.

D12. A set § of formulas of QC < is said to be inconsistent in QC
if St+ip& ~p; otherwise to be consistent in QO+,

The following consequences of D1-D12 merit separate recording as
lemmas.

L1. Let 8 be a set of formulas of QC=; A and B be formulas of Q0=
X and Y be individual variables of QC=; and Z, Z', and Z' be individual
terms of QC=.

(@) If S 1= A, then there is a finite subset 8’ of 8 such that 8’ = A.

(b) If A belongs to 8 or is an axiom of QC=, then 8= A.

(¢) If SF2 A4, then 8w 8' A for every set S’ of formulas of .

QOC=.

(d) Let every member of 8 be a formula of QCL and A be a formula
of QC==. Then S = A if and only if S+ A.

(e) 8 is inconsistent in QC= if and only if some finite subset of § is
inconsistent in QC=.

(£) If S+ A" and S +° ~A’ for some formula A' of QC=, then S is
inconsistent in QC=,

(g) If 8w {4} is inconsistent in QC=, then 82 ~A.

(h) If 8w {4}~ B, then S +° AD B.

(1) If S A and S+° AD B, then 81+~ B.

() If St 4 or S+°~A, then S+° AD B if and only if S+ B or
it s not the case that S > A,

() Proof is easily obtained that, where § is finite, 4 is derivable from § in QC*
if and only if .4 is derivable from § in Leblanc and Hailperin’s variant of QC= in [10];
and that 4 is derivable from @ in QU if and only if 4 is provable in Hintikka’s variant
of QC= in [5]. Details are left to the reader.
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(k) If S+ A(Y/X), then S +=(VX)A, so long as Y does not occur
free in any member of § nor in (VX)A.

O If S (EX)A and Sv {A(Y[X)}+> B, then S+° B, so long
as Y does not occur free in any member of S, nor in (4X)A, norin B.

(m) If S+=~(VX)A, then S+ (EX)~A.

(n) S E!X.

(0) If 8> (HX)A and 8w {4(Z/X),E\Z}* B, then St*°B, so
long as Z does not occur free in any member of 8, nor in (LX) A, nor in B.

(p) S+ E!Z if and only if S (HX)(X = Z).

(a) If SF°(VX)A, then S E!ZD A(Z]X).

(r) 8 (AX)((HX)4D 4).

(s) S Z = Z.

(t) It Sv>Z =2Z', then S+ Z' = Z.

(WY If S Z=2Z" and SY°Z' = Z", then S+2Z = 7",

(v) If S+>Z = Z', then S+ 4 if and only if 8+ A(Z']|Z).

L2. Let S be a set of closed formulas of QCZ; A and B be closed formulas
of QCZ; and X, X, and Z be individual constants of QCZ.

(a) 8 is inconsistent in QCZ if and only if some finite subset of S is
inconsistent in QC 2.

(b) If St A" and Sty ~A' for some closed formula A’ of QCZ,
then 8 is inconsistent in QC==.

(e) If 8w {4} is inconsistent in QC=, then S}, ~A.

(A) If Sted or Sty ~A, then St, AD B if and only if S+, B or
it s not the case that S, A.

(e) SH X = X.

) If S X =T, then Sk ¥ = X.

(@ If ShX=Y and ShY=2Z, then S, X = Z.

(h) If Sk X =Y, then 8+, 4 if and only if St A(Y]/X).

L3. Let 8 be a set of formulas of QO=; A, B, and C be formulas of QUL
X and Y be individual variables of QC; and 0 < i <6.

(a) If Sti 4, then there is a finite subset S' of § such that §" }; A.

(b) If A belongs to 8 or is an axiom of QC< , then 8 b A.

(e) If St 4, then 8w 8 ti A for every set 8’ of formulas of QC=<.

(d) If 8w {~A4} is inconsistent in QC=, then St A.

() If Sw {4} B and 8w {~A}} B, then St B, so long as no
individual term of QC= oceurs free in A.

(£) If S {A} i B, then St ADB.

() If StiA and StiADB, then St B, so long as (1) in case
=2, 4, or 8, A is closed or B is open, and (2) in case 3 < i < 6, every
individual constant of QCL that ocours in A also ocours in B.

(h) If St 4, then SHBD A.

Fundamenta Mathematicae LXII 10
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() If SHAD(BDO), then St (ADB)D (4D 0).

G) If 8 +s ~4AD ~B,then S+ B A.

k) If S ADB, then St ~BD ~A.

() If St A and S +i B, then St A &B.

(m) If 8+ A(X]X), then 8 ki (VX)A4, so long as Y does not ocour
free in any member of 8 mor in (VX)A. )

(@) If 8 b (HX) A, then 8 ki A, so long as X does not occur free in A,

(0) If S+iADB(Y[X), then S+ AD(VX)B, so long as Y does
not occur free in any member of 8 nor in A D (VX)B.

(@) If 8+ (VX)(ADB). then 8 ki (VX)AD (VX)B.

(@) If 8 ke (E2) (f@)V ~F (@), then § ke (BX)(F(X)V ~F(X)).

L4. Let i==2 or 6. )

() Let 8’ consist of the @-associates of the members of S, and let A’ be
the @-associate of A. If 8 ki A’, then Sv {~(E[w)(f(m)v~f(m))} ki A.

(b) Let A be an open formula of Q0. Then | ~(Wa) (f(2)V ~f(w))} s 4.

L3. (a) Let X be an individual variable of QC= that does not occur
free in A, and [i=2 or 6. Then i (Ea) (f () v ~f(@) D (VX)AD A).

(b) If St A, then 8 U |[(Ea)(f(2)V ~f(@))} F; 4.

(¢) If 8ts4, then 8 v {(Hz)(f(z)v ~f(z))} Fe A.

L6. Let 8 be a finite set of formulas of QC=.

(a) Let A and B be constant-free formulas of QC=Z. Then there is a con-
stant-free derivation of AD (B = B) from 8§ in QCZ.

(b) Let A be an atomic formula of QG2 that is constani-free, and Y
be an individual variable of QCZ. Then there is a constant-free derivation

from 8 in QCZ of
(VX)X = Y)D((VX)4 = A(¥[X)),
(VX)(X = ¥)D (VX)4 = (VX)A(Y[/X)),
(VX)(Y = X)D (VX)4 = A(X]Y)),

(VI)(X = X)D ((VX) A = (VX)A(X][Y)).

(e) If there is a constani-free derivation of A D (B = C) from 8 in QCZ,
then there is one of AD (~B = ~0).

(@) It there is a constant-free derivation of A D (B = B') from § in QOZ,
and one of AD(C = 0), then there is one of 4D ((BD 0) = (B'D (")).

(e) If there is a constani-free derivation of AD (B = C) from § in QOZ,
then there is ome of AD((VX)B = (VX) G), so long as X does mot occur
free in A.
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(f) A being a formula of QCZ, B being one of the kind A (Y|/X), where
exactly one of X and Y is an individual constant of QCZ, and Z being an
individual variable of QCZ that does not ocour in A and is distinct from Y,
let A" and B’ be the resulis of replacing by an ocourrence of Z any occurrence
in A and B, respectively, of any individual constant of QCL, and let A"
and B"' be the results of replacing by an occurrence of (VZ)C any ocourrence
in A’ and B, respectively, of any atomic formula ¢ of QO that contains Z.
Then there is a constani-free derivation of (VZ)(Z = ¥)D(4”D B")
from 8 in QO if X an individual constant of QCZ, otherwise one of
(VZ)(X = Z)D (4" D B").

(g) If there is a constant-free derivation of AD (B = C) from § in QO
then there is one of AD (BD ().

L7. Let 8 be a finite set of constant-free formulas of QO , A be a con-
stant-free formula of QC L;, land i =1 or 2. If 8 ki A, then there is a con-
stant-free derivation of 4 from 8 in QC%.

L8. (a) If + A, then k5 A.

(b) If kA, then bg A. (%)

L9. Lei every individual constant of Q0L (hence, QOL, QCZ, and
QCL) that occurs in one or more members of 8 occurs in A.

(@) If Sk A, then Sts A.

(b) If Sty A, then Ste A, so long as every member of 8 is closed
or A i8 open.

L10. Let 8' consist of every closed formula of QCL (hence, QCZ and
QCYL) of the kind EIX. (1)

(@) If 8w 8+ A, then Sty A.

(b} If 8w 8" ks A, then §k; A.

(¢) If 8w 8" te A, then SH, A.

L11. Let 7 <4< 10.

(@) If 8+ 4, then S 8 b A for every set S of formulas of QcL.

(b) If Stip & ~p, then S A.

L12. Let every individual constant of QO (hence, QC L, QOZ, and
QCL) that occurs in A ocour in one or more members of S.

(a) If Sk A, then St A.

(b) If St A, then 8y A.

(*) Note also that if Fy 4, then b, 4. Hence, so far as derivability from @ (though
not from arbitrary 8) goes, QC2 and QCL coincide, as do QCZ and QOZ, and QC2
and QCZL, which leaves us with only three variants of QC= : QCL, QCZ, and QC£.

(%) L.e., let S consist of every formula of QCL of the kind E!X, where X is an
individual constant of QCX.
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L13. Let 8 consist of every closed formula of QC< (hence, QUL) of
the kind B!1X, where X ocours in one or more members of 8.

(a) If Su 8"t A, then St A.

() If Su 8 4, then 8t A.

Proof of the above lemmas is a routine matter, except possibly
for T (¢), L (h), Li(o), Li(q), L3(e), L3(£), Ld(a), L5, L6 (f), L7, L8, L9,
L11(d), and L12. Since proof of Li(e), Li(h), L3(c), L3(f), and Lil(a)
can be retrieved from [8], (1%) proof of L4(a) can be retrieved from [15],
proot of L5 (c) is like that of L5(b), proof of L8(D) is like that of L8 (a),
proof of L9 (b) is like that of L9(a), and proof of L12(Db) is like that of
L12(a), we shall restrict ourselves here to Ll (o), L1(g), L5(a)-(b), L6(f),
L7, L8(a), 1L9(a), and L12(a).

For proof of Ll(o). Let 8 +* (EX)4 and § v {4(Z/X), E!Z} +* B,
where Z is as in 1id(o). Then in view of L1(a) and Ll (c) there is a finite
subset §' of 8 such that & (*° (AX)4A and §' v {4(Z/X),E!Z}}° B,
and bence, in particular, a finite column of formulas of QC=, say,
the formulas Ci, C, ..., Op, that counts as a derivation of B from
8" V{A(Z/X),B!Z} in QC=.Now let ¥ be the alphabetically earliest
individual variable of QC= that does not occur in any member of
8" u {4(Z]X), B!Z} nor in any one of 0y, Cs, ..., Cp; and for each ¢ from 1
to p let C; be C4Y[Z). In view of the restrictions placed upon Z, C}
(i=1,2,...,p) is sure to be C; if C; belongs to §', C; again if C; is B,
and A(Y/X) if 0; is A(Z/X). But, if so, then the column made up of
¢i, Cs, ..., and 0Op is sure to count as derivation of B from 8w
U {A(Y/X),B!1X} in QC=. Hence in view of Li(h) 8 v {4(¥/X)}
+° BE!Y D B, and hence in view of Ll(n) and L1(i) §’' v {4A(¥/X)} > B.
But Y is sure not to occur free in (HX)A4. Hence, since 8} (HX)A,
then 8’ +° B in view of L1(1), and hence § +* B in view of Ll(c).

For proof of Ll(q). (*¥) Let S +° (VX)A. Then in view of Ll(a)
there is a finite subset 8’ of § such that §' F° (VX)A. Hence in view
of Li(e) ' v{B!Z,Y=2Z}1°(VX)4, where ¥ is the alphabetically
earliest individual variable of QC= that does not occur in any member
of §8'v {B!Z} not in (VX)4. But in view of Li(b) 8 v {E!Z,

Y =27} (VX)AD A(Y[X). Hence in view of L1(i) §8'v {B!Z, ¥ = Z}
F° A(Y/X). But in view of Ll(b) 8’ V{B!Z, Y=2}}°* Y = Z, and

(") [8] uses in place of R7 a rule that reads: “(VY)4(¥/X) follows from 47,
and a slightly different notion of derivation (in QC&). Nonetheless, the proof of MT2.4.7
on pp. 132-133 readily converts into one of Ll(e), L3(c), and Lll(a), and the proof
of MT2.4.9 on pp- 133-135 into one of L1(h) and L3(f).

(1) Proof of L1{g), for the case where 8 is a finite set of formulas of QC, first
appeared in [10]. Proof of the kindred result: «If I, (VX)4, then }, E!ZD 4 (%/X)",
appeared simultaneously in [5].
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& v {EEZ, Y=2Z} =Y =ZD (A(T/X) D A(Z/X)). Hence in view of
Lll(l) S' v {B!Z, Y = Z} ° A(Z/X). But in view of Li(b) and Ll(p)
8u {E;Z} ;-.°°(E[I")(Y = Z). Hence in view of L1 (1) 8’ w {B!Z} ° A(Z|X),
hence in view of Li(h) & F*BlZD A(Z]X), and hence in view of
Ll{c) SF E!ZD A(Z/X).

For proof of L5(a). Let X and i be as in L5(a). The following
column of formulas of QC<,

1)y ~4
(2) 1D (~~(fIX)V ~f(X)) D ~4) (Axiom)
3)  ~~[f(X)v~f(X)D ~4 (R2 or R4, 1, 2)
4)  3D(4D ~(fx)v ~F (X)) (Axiom)
(6)  AD ~f(X)v ~f(X)) (R2 or R4, 3, 4)
6) (VX)5 (R7, 5)
(M) 6D((VE)4D (VX)~(f(Z)v ~f(X))) (Axiom)
(8) (VI)AD (VI)~(f(X)v ~f(X)) (B2 or B4, 6, 7),
counts

as a derivation of (VX)4D (VX)~(f(X)v~f(X)) from
{@2)(fl@)v ~f(x), ~4} in QCL. Hence in view of L3 (k) {(@2) (fm)v
~f(@), ~A} (M)(f(X)VNf(X))D ~(VX)4. But in view of L3(b)
and L3(q) {(Hx)(f(x)v ~F()), ~A} b¢ (LX) (f(X)v ~f(X)). Hence in
view of L3(g) {(Tz)(f(z)v~F(2)), ~A} b ~(VX)A, hence in view
of L3(f) {(Hx)(f(x) v Nf(.r))} Fi ~4 D ~(VX)A, hence in view of L3(j)
{(Ha) (f () v ~f@)} Fi(VX)AD A, and hence in view of L3 (£)
ke (E2) (f(2) v ~F(2) D (FX) 4D 4).

Fpr proof of L3(b). Let S, A. Then in view of L3(a) and L3(c)
there is a finite subset S’ of S such that 8’ u {(@a) (fl@) v ~F(2)} 1, 4,
and hence there is a finite column of formulas of QC=, say, the
formulas By, B,, ..., and B, (p > 0), that eounts as derivation of A4 from
R {((H'a:)(f(.zr)VNf(.r))} in QC&. But, if so, then & u {(Fx) {f(z)v
~f(x)}} s Bi— 8"}, By, for short—for each j from 1 to p, as can be
shown by mathematical induction on J. For suppose that B; belongs to 8
or is an axiom of QC< that counts as an axiom of QCZ. Then in view
of L3(b) 8" k-, B;. Or suppose that B, is an axiom of QC< that does not
count as an axiom of QCZ. In view of L5(a) and L3(c) 8" , (Hx) (f(w)v
~f(w)}31?j. Hence in view of L3(b) and L3(g) & 2 B;. Or suppose
that B; follows from two previous entries, say, B, and B;D B; (= Bj),
by means of rule R1; suppose 8" +, By and 8" F, Ba; and suppose that By
is closed or B; is open. Then in view of L3 (9) 8" k. B;. Suppose then
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that B, is open and B; is elosed, and suppose that X is the alphabetically

i i 2 i member of S
earliest individual variable of QC= not to oeculll in any
nor in B;. Since 8’ +, By, then in view of L3(h) 8 b (f(X)V ~f(X)) D Ba,
and hence in view of L3(i)

8 b ((FE)V ~F(D) D By} D ((F(E)V ~F(D)) 2 By -

But since St By, then in view of L3(h) 8"k, (f(X)v ~f(X) D By .
Hence in view of L3(g) 8 I, (f(X)v ~f(X)) D By, hence in view .of L3 (k)
8"ty ~B; D ~ {f(X)V ~f(X)), hence in view of L3 (m) 8" b, (VX)(~BD
D ~{fX)v Nf(X))), hence in view of L3(p) 8"k (VX)~BD (VX)
~(f(X)v ~f(X)), and hence in view of 13(k) 8"k (E@X)(f(X)v
~f(X)) D (AX)B;. But in view of L3(a) and L3(q) 8" Fe (EX)(f(X)v

" ~f(X)). Hence in view of L3(g) 8"k (4.X) By, a,nq hence in view of
L3(n) 8" t B;. Or suppose that By follows from a previous Pjntry, say, B,
by means of rule R7, and suppose 8" t,Ba. T.hen inview of L3 (m).
8" b, B;, which completes the induction. But, if 8+, By for each j
from 1 to p, then 8" +, B, (= A). Hence in view of L3(a)

8 U |(Ha) (fo) v ~F (@)} b A
For proof of L6(f). Let S be as in L6; and let 4, B, X, ¥, Z,
A’y B', A", and B" be as in L6(f).
Oase 1: X is an individual constant of QC=.

in B, and hence B’ is the
a constant-free derivation of

Subease 1.1: ¥ does not occur free
same as A”. Then in view of L6(a) there is

(VZ)(Z= YY)D (A" =B"”) from 8 in QCZ.
Subcase 1.2: ¥ occurs free in B. In view of Lé(b)-(e) it readily

follows by mathematical induction on the number of occurrences of ‘~,
<, and ‘V’ in A that there is a constant-free derivation of (VZ)(Z = )

D(A” = B"”) from 8 in QCZ. For suppose in particular that 4 is of the
kind (VX,)4,, and hence B of the kind (VX,)4,(¥//X,); suppose Ai
and Bj respectively stand to 4, and B, as A’ and B’ respectively stand
to A and B; and suppose that AY and BY respectively stand to 4] and Bj
as A" and B’ respectively stand to 4’ and B’. Since Y is presumed to
occur free in B and hence in (V.X;) BY, then X, is sure to be distinet from Y.
Hence, if there is a constant-free derivation of (VZ)(Z = ¥)D (4Y = BY)
from § in QC—i, then in view of L6(e) there is one of (VZ)(Z = X)
D ((VX)4AY = (VX)) BY).

Oase 2: ¥ is an individual constant of QC=. Proof like that of
Case 1.
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For proof of L7. Let § s 4, where 8, 4, and i are as in L7. Then
there is a finite column of formulas of QU< say, the formulas By, B,, ..., By,
that counts as a derivation of 4 from § in QC<. Let X be the alphabeti-
cally earliest individual variable of QC< that does not oceur in any one
of By, By, ..., By, and for each j from 1 to p let B, be the result of replacing
by an occurrence of X any occurrence in B; of any individual constant
of QCL,

Case 1: i=1. Then the column made up of Bj,B},..., and By
counts as a constant-free derivation of B), (= A) from § in QC=L.

Case 2: i = 2. For each j from 1 to p, let B} be the result of re-
placing by an occurrence of (VY)( any occurrence in B} of any atomic
formula ¢ of QC< that contains X. Tt is easily shown by mathematical
induction on j that for each j from 1 to p there is a constant-free derivation
of BY from § in QCL. For suppose that B; belongs to S or is an axiom
of QCL, and suppose in the latter case that BY is an axiom of QCZ.
Then Bj counts as a constant-free derivation of By from § in QC-=%.
Or suppose that By is of the kind ¥ = ¥, where ¥ is an individual constant
of Q0L. Then the column made up of X = X and (VX)(X = X) counts
as a constant-free derivation of By from § in QC<L. Or suppose that Bj
is of the kind ¥ = Z D (¢"D 0'(Z//Y)), where exactly one of ¥ and Z
is an individual constant of QGi—. Then in view of L6(f)-(g) there is
a constant-free derivation of Bf from § in QC<. () Or suppose that By
follows from two previous entries, say, B, and B, D By (= Bz), by means
of rule B2, and suppose that there is a constant-free derivation of B
and one of B from § in QC<. Since BY is By D B} and By is closed
or By is open, then the column made up of the derivation of By (from &
in QC<L), that of By D Bj and BY counts as a constant-free derivation of B
from § in QO<L. Or suppose that B; follows from a previous entry, say, Ba,
by means of rule R7, and suppose that there is a constant-free derivation
of By from 8§ in QC <. Then the column made up of the derivation of By
(from 8 in QC <L) and B counts as a constant-free derivation of By from S
in QC-L—, which completes the induction. But, if so, then there is a constant-
free derivation of By (= 4) from § in QC.

For proof of L8(a). Let | A.

Oase 1: No individual constant of QC<: oceurs in 4. Then in view
of L7 there is a constant-free derivation of 4 from @ in QC<, and hence
there is a derivation of 4 from @ in QO<.

() Note that when B; is of the kind ¥ =ZD (0'D 0'(Z/|Y)), where both ¥
and Z are individual constants of QC =, then B;' counts as an axiom of QC+ and hence
as a constant-free derivation of Bf from § in QC.
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Case 2: At least one individual constant of QO1 < occurs in 4. Since
b, 4, there iy a finite column of formu}as of QC=, say,'the folrmulas
By, B, ..., By, that counts as a derivation of A. from @ in QC=. Let
X,,X;, ..., Xn Dbe in alphabetical order all the individual congtants.of
QO+ that oceur in 4; for each j from 1 to p let Bj be the 1'(?31'111; of replacing
by an occurrence of X, any occurrence in B; of any individual constant

of QO that does occur in 4; and for each j from 1 to p, let By be
(=X & Xy = X) &) & Tn = Xa)D Bj.

It iy easily shown by mathematical induction on j that ks B for each j
from 1 to p. For suppose that B; counts as an axiom of QC < and hence
as an axiom of QC<. Then B} counts as an axiom of Q@=, and hence
in view of L3(h) Fs BY. Or suppose that B; follows from two previous
entries, say, By and By D By (= By), by means of rule R, and suppose
that s By and F; By. Then in view of L3(i) ks By D By, and hence in
view of L3(g) Fs BY. Or suppose that B; follows from a previous entry,
say, B, by means of rule R7, and suppose that ks By . Then in vie.w
of L3(o) ts B/, which completes the induction, Hence IsBy. But in
view L3(b) and L3(1)
sl (X=X & Xy= X,) &...) & X=X

Hence in view of L3(g) s By (=4).

For proof of L9(a). Let S|, 4, where § and 4 are as in L9. Then
in view of L3 (a) there is a finite subset of S, say, {By, By, ..., Bn} (n > 0),
such that {B;,Bs,..., Bn}h 4, hence in view of L3(f) k B, D (Bg 2
D (w(BsD 4)...)), hence in view of L8(a) ks ByD (ByD ((BuD 4)...))
and hence in view of L3(c) {By, By ..., Bn} ks B D (B23 (e (BrD A)...)).
But in view of L3(b) {By, B,, ..., Bx} s Bj for each j from 1 to n. Hence
in view of L3(g) {Bi, Ba, ..., Ba} ks A, and hence in view of L3(c) S ;5 4.

For proof of Li2(a). Let S+, A, where S and 4 are as in L12.
Then there is a finite subset S’ of S snch that S8’ |, 4.

Case 1: Every member of 8" v {4} is constant-free. Then in view
of L7 there is a constant-free derivation of 4 from 8’ in QC —1-=, and hence
a derivation of 4 from 8’ in QUZ. Hence in view of Lil(a) S ks 4.

Case 2: At least one member of 8’ v {4} (and hence of 8) is not
constant-free. Since 8’ 1, A, there i§ a finite column of formulas of QC =,
say, the formulas B,, B,, ..., and B,, that counts as a derivation of A
from 8’ in QC==. Let X, X,, ..., Xy (n > 0) be all the individual constants
of QO that oceur in one or more of By, B, ..., and B, but not in any
member of § (nor, as a result, in A); let T be the alphabetically earliest
individual constant of QG2 to occur in a member of §; and for each j
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from 1 to p let Bj be the result of replacing by an occurrence of ¥ every
ocewrrence in B; of every one of X, X,, ..., and X,. Then the column
made up of By, Bz, ..., and Bj counts as a derivation of 4 from &' v {C}
in QCZ, where C is the aphabetically earliest member of § that contains
an occurrence of Y. Hence in view of Lil(a) 8§+, 4.

3. Semanties. We next attend to the semantics of QOL (0 <9<10)
and QC=. Of the two domains D and I’ mentioned in D13 and later defini-
tions, D is the inner domain of Section 1, D’ the outer one. Note in con-
nection with item (ii) of D13 that when an individual constant X of QC=-
[QC=] is assigned a member of D D’ that belongs to D, then X de-
signates a value of ‘@, ‘y’, %2’, etc.; when X is a assigned a member of
D v D' that belongs to D', then X designates something not a value
of ‘2, ‘y’, ', ete.; and when X is not assigned any member of D u D’
(which is bound to be the case if D v D' is empty, but may also happen
when D v D’ has members), then X fails to designate at all.

D13. Let D and D’ be disjoint domains, and Int¢p,py be any result
of assigning:

(i) exactly one of the two truth-values 7 and F to each sentence
variable P of QC=, the truth-value in question to be known as the value
of P under Int(p,pn;

(ii) if D is not empty, exactly one member of D to each individual
variable X of QC é, the member in question to be known as the value
of X under Intp py;

(ii) if D v D’ is not empty, at most one member of D v D’ to each
individual constant X of QC-==, the member in question to be known
as the value of X under Int¢p ps; and

(iv) exactly one subset of (D v D)™ to each m-adic (m=1,2,...)
predicate variable ¥ of QC% , the subset in question to be known as the
value of F under Intp p.

Then Int¢p,p~ counts as a <D, D';-interpretation of the variables and
constants of QO or, for short, as a (D, D’)-interpretation of VC?.

D13%. Like D13, but with ‘Q0=’ in place of ‘QC==’, and ‘VC™ in
place of VG,

Remark. Except D19-D21, every further definition in this section
will be understood to carry along its analogue for QC=.

Didi. Let D, D', and Intppy be as in D13. If every individual
constant of QO has a value under Intp,p, then Intep, pr is said to be
C-exhaustive.

D15. Let D be a non-empty domain; let D’ be a domain disjoint
from D; let Intep,p, and Intipps be (D , D"y -interpretations of veh
and let X be an individual variable of QC==. If Int(p p is like Int(p pr
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except possibly for assigning to X a different member of D than Int, p,
does, then Int{pp» counts as an X-variant of Intw,py. . .

We next define three notions of satisfaction: satisfacmon;p, sa,t;s-
factiony, and (plain) satisfaction. The first is intended for QC=-QC=,
which—the reader will recall—automatically pronounce true any formula
that contains a non-designating constant; the second is intended for
QC£-QCL, which automatically pronounce false any such formula;
and the third is intended for QOL, QCZ, and QC=, which under our
official account of things require every individual constant to designate
something, either a value of a variable or something not a value of
a variable. D16-D18 run along anticipated lines when D is not empty,
and hence the variables ‘z’, ‘y’, ‘¢’, etc., have values under Int(p,p.
When, on the other hand, D is @, then an open formula or a closed one
of the kind (VX)4 is automatically held, e.g., satistiedr by Intp,on,
this in the second case because (VX) A is held tantamount to ~(HX)~A4,
in the first because the formula is held tantamount to its universal closure.

D16. Let A be a formula of QC=; D and D’ be disjoint domains;
and Intp,py be a <D, D')-interpretation of VC'.

Case 1: At least one individual constant of QGL— occurring in A
has no value under Inf¢pps. Then Int(pp, is said to satisfyr A.

Case 2: Every individual constant of QC< oceurring in 4 has a value
under Int¢p,pr.

Case 2.1: D is not empty. )

(a) If 4 is a sentence variable of QC= and the value of 4 under
Intp,py is T, then Intppy is said to satisfyr 4;

(by If A is of the kind F(X,, X,, ..., X») and.the m-tuple made
up to the values of X, X,, ..., Xn (in that order) under Int(p py belongs
to the value of F under Intp,py, then Inteppy is said to satisfyr A;

(c) If A is of the kind X = Y and the value of X under Intcp,ps is
the same as that of ¥, then Intip p, is said to satisfyr 4;

(d) I A is of the kind ~B and Intp p, does not satisfyr B, then
Intp.p,y is said to satisfyr 4;

(e) If 4 is of the kind BD ¢ and Intpp, does not satisfyr B or
satisfiesy €, then Intp p, is said to satisfyr A4;

(f) If A is of the kind (VX)B and every X-variant of Int¢pps
satisfiesr B, then Intcp s is said to satistyr 4;

(g) Intip,pry is said to satisfyr A pursuant only to one or another
of (a)-(f).

Case 2.2: D is empty.

Case 2.2.1: 4 is open. Then Intp py is said to satisfyr A.

Case 2.2.2: 4 is closed.

(a)-(e) Like (a)-(e) under Case 2.1;
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(f) If A is of the kind (V.X)B, then Int¢p,py is said to satistyr 4;
(g) Like (g) under Case 2.1.

D17. Let 4, D, 7, and Intpps be as in D16.

Case 1: At least one individual constant of QCL occurring in 4
has no value under Inteppy. Then Intp py is said not to satisfyr A.

Case 2: Every individual constant of QC< occurring in 4 has
a value under Int¢p p,. Then Intcpp is said to satisfyr 4 if Int¢p ps
satisfiesy 4.

D18. Let 4, D, and D’ be as in D16; and let Int.p,py be a C-ex-
haustive (D, D'y -interpretation of VC’. Then Intp,py is said to satisfy 4
if Intp,py satisfiesy A.

Remarks. It follows from D16-D18 that, where Intp,py is a C-ex-
haustive <D, D'} -interpretation of VC* [VC™], then a formula of QC<%
[QC=] is satisfied by Intep py if and only if satisfieds, and hence sat-
istiedp, by Intep,ps. It likewise follows from D16-D18 that a closed
formula of QC<L [QC2] of the kind BIX is both satistied and satisfiedr
by Intp,py if and only if the value of X under Int¢p,pry belongs to D,
and is satistiedr by Int(p,ps unless the value of X under Intp,py belongs
to D',

D19. Let § be a set of formulas of QC=, and D and D' be as in D16.

(a) Let Int¢p,py be a (D, D'>-interpretation of VC'. Then Intp,ps
is said to simultaneously satisfyr [simultaneously satisfyr] 8 if Intp.p
satisfies [satisfiesy] each and every member of S.

(b) Let Intcp,py be a C-exhaustive (D, .D’)-interpretation of VC°
Then Intp,p, is said to simultaneously satisfy S if Intep, pn simultaneously
satisfiess 8.

‘We then turn to the notion of implication and the attendant one of
validity. Eleven different cases are in order.

D20. Let 8 be a set of formulas of QC==, and A be a formula of QCL,

(a) 8 is said to imply 4 in QC== if, for every non-empty domain D,
every C-exhaustive (D, @)-interpretation of VC® that simultaneously
satisfies S also satisfies 4.

(b) 8 is said to imply 4 in QC=< if, for every non-empty domain D
and every domain D’ disjoint from D, every - C-exhaustive (D, D">-in-
terpretation of VC! that simultaneously satisfies § also satisfies A.

(¢) 8 is said to imply 4 in QC if, for every domain D and every
domain D’ disjoint from D, every C-exhaustive (D, D’)-interpretation
of VC? that simultaneously satisfies § also satisfies 4.

(d) 8 is said to imply 4 in QC if, for every non-empty domain D,
every <D, O)-interpretation of VC® that simultaneously satisfiesy S
also satisfiesy A.
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(e) 8 is said to imply 4 in QO if, for every domain D, every <,D’ 2> -
interpretation of VC* that simultaneously satisfiesr 8 also sa,tlsﬁes.zv A.

(f) 8 is said to imply 4 in QC== if, for every non-empty domain D
and every domain D’ disjoint from D, every <D, D’ -interpretation
of VC5 that simultaneously satisfiesz S also satisfiesr 4.

(g) § is said to imply 4 in QC= if, for every domain D and every
domain D’ disjoint from D, every (D, D’'>-interpretation of VC* that
simultaneously satisfiesy 8 also satisfiesr 4.

(h) § is said to imply 4 in QO if, for every non-empty domain D,
every <D, @)-interpretation of VC” that simultaneously satisfiesr S also
satisfiesr 4.

(i) 9 is said to imply A in QO< if, for every domain D, every <D, @)~
interpretation of VC® that simultaneously satisfiesr § also satisfiesr 4.

(3) S is said to imply 4 in QC= if, for every non-empty domain D
and every domain D’ disjoint from D, every (D, D’>-interpretation
of V(? that simultaneously satisfiesr S also satisfiesr A.

(k) § is said to imply A in QCZ2 if, for every domain D and every
domain D’ disjoint from D, every <D, D’)-interpretation of VC© that
simulatenously satisfiesr S also satisfiesr A.

Remark. It is evident that no (@, @) -interpretation of VC* can
be C-exhaustive; hence § implies 4 in QCZ if and only if, for every
domain D and every domain D’ that is disjoint from D and non-empty
if D is empty, every C-exhaustive (D, D’»-interpretation of VC* that
simultaneounsly satisfies S also satisfies A.

The various restrictions placed in D20(a)-(k) upon D, D', and
Int(p,py, and the kind of satisfaction that is in order in each case, may
be tabulated as follows:

TABLE I1

{

D D’ Int kind of satisfaction!
0 non-empty empty C-exhaustive satisfaction
1 non-empty disjoint from D C-exhaustive satisfaction
2 arbitrary disjoint from D O - exhaustive satisfaction
3 non-empty empty arbitrary satisfactions
4 arbitrary empty arbitrary satisfactions
5 non-empty disjoint from D arbitrary satisfactions
6 arbitrary digjoint from D arbitrary satisfactions
7 non-empty empty arbitrary satisfactions
8 arbitrary empty arbitrary satisfactionp
9 non-empty disjoint from D arbitrary satisfactions
10 arbitrary disjoint from D arbitrary satisfactionr
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D.21. A formula 4 of QC=is said to be valid in QCLitg implies A
inQC=.

Remarks. Tt follows from D20-D21 that a formula 4 of QC=% is
not valid in QC= for any i from 7 to 10 unless 4 is constant-free. To
abridge matters, we shall write, e.g., ‘4 is implied; by 8 for ‘A is implied
by § in QCL, and ‘4 is valid,’ for ‘4 is valid in QO

The following consequences of D13-D21 merit separate recording
as lemmas.

L14. Let (VX)A be a formula of QC2, D be a non-empty domain,
D’ be a domain disjoint from D, and Int.p pn be a C-exhaustive {D,D";-
interpretation of VC™.

(a) Let each member of D be the value under Intep pr of some individual
constant or other of QC=. If Intp p, satisfies A(Y|X) for every individual
constant Y of QC= whose value under Int¢p,p, belongs to D, then Intp p
satisfies (VX)A. .

(b) If Intp,pry does wnot satisfy A(YIX) for at least one individual
constant I of QC= whose value under Int¢p,py belongs to D, then Int¢p p,
does not satisfy (VX)A.

L15. Let A be a closed formula of QCZ, A’ be the @-associate of A, D' be
a non-empty domain, and Intgrpy be a (B, D" -interpretation of VCu.
Then Int,py salisfies A if and only if Intg py satisfies A,

L16. Let A be a closed formula of QC==, 8" consist of the dlosed members
of 8, and i = 2 or 6. If S implies; A, then it is not the case that there is a non-
empty domain D' and a C-exhaustive <O, D">-interpretation Intg,p
of VC* such that Int.g p simultaneously satisfies S’ {~A4}.

L17. (a) If 8 implies, A, then S implies, A.

(b) If 8 impliess A, then 8 implies, A.

(c) If 8 implies; A, then S implies; A.

(@) If 8 implies, A, then 8 implies, A.

(e) If 8 implies;y, A, then S implies, A.

L18. Let 8 consist of every member of S in which there occurs an in-
dividual constant of QG not occurring in A, 87" be S—8', and i =5 or 6.
If 8 implies; A, then 8 implies; A.

L19. Let 8" consist of every closed formula of QC= (hence, QC 2= and
QCL) of the kind B!X.

(a) If S implies, A, then 8w 8 implies, A.

(b) If 8 impliesy A, then S o 8 implies; A.

(c¢) If 8 implies, A, then S 8 implies; A.

L20. Let at least one individual constant of QO == that occurs in A fail
to occur in any member of 8, and T <1 <10. If S implies; A, then S im-
plies; ‘p & ~p'.
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1.21. Let 8' consist of every closed formula of QC= (hence, QCZ) of
the kind BIX, where X oceurs in one or more members of S.

(@) If 8 implies, A, then 8w 8’ implies, A.

(b) If 8 impliess A, then S v 8 implies,, A.

Proof of L14 can be retrieved from [8], (%) proof of L15, 116, and L17
is obvious; proof of Li19(c) is like that of L19(b); and proof of 1.21(b)
is like that of L21(a). We shall therefore restrict ourselves here to Li18,
L19(a), L19(b), L20, and L21(a). .

For proof of L18. Let §’, 8, and ¢ be as in L18, and let § imply; 4.

Case 1: 4= 5. Let be a non-empty domain, D’ be a domain disjoint
from D, Intp, py be a (D, D'y -interpretation of VC* that simultaneously
satisfiesr 8", and Int(p,py be like Int¢ppy except f01t not assigning any
member of D w D' to the individual constants of QC= that do not occur
in A. Since Int{pps simultaneously satisfiesy S’, then clearly I]?.tzp,pg
simultaneously satistiesr 8’ v 8 (= 8) as well. Hence, since S implies; 4,
then Int¢p,p» satisfiesr 4. Hence, clearly, so does Int(p,p. Hence 8"
implies; A.

Case 2: i = 6. Proof like that of Case 1, but with D allowed to be
empty.

For proof of L19(a). Let S’ be as in L19, and suppose that § w §’
does not imply, 4. Then there is a non-empty domain D, a domain D’
disjoint from D, and a C-exhaustive (D, D’>-interpretation Int¢p p:
of V(! that simultaneously satisfies § v 8’ (and, hence, assigns a member
of D to every individual constant of QC=), but does not satisty 4. Now
let Intip,gy be like Intip py except for assigning to each m-adic predicate
variable ' of QC=- the subset of D™ consisting of every member of D™
that belongs to the value of ¥ under Intip p+. Clearly, Int(p g, simul-
taneously satisfies § v 8" if and only if Int¢p,p does, and fails to satisty 4
if and only if Int¢p,p, does. Hence S does not imply, A. Hence, if §
implies, 4, then § v 8’ implies, 4.

For proof of L19(b). Let 8§’ be as in 119, and suppose that § v &’
does not imply; A. Then there is a non-empty domain D, a domain D’
disjoint from D, and a <D, D’;-interpretation Intcpp, of VO* that
simultaneously satisfiesr S 8’ (and hence, does not assign a member
of I’ to any individual constant of QU=), but does not satistyr A. Now
let Int(p,qy be like Int¢p,p, except for assigning to each m-adie predicate
variable F of QC2= the subset of D™ consisting of every member of D™
that belongs to the value of F' under Int(pps. Clearly, Intp g, simul-
taneously satistiesr 8o 8’ if and only if Int(pps does, and fails to

(*) See the proof of MT2.5.35 on p. 158.

Completeness theorems for some presupposition-free logics 149

satisfyr A if and only if Intp p-, does. Hence 8 does not imply, 4. Hence,
if 8 implies, 4, then 8§ o &' implies; A.

For proof of L20. Let § and 4 be as in L20.

Case 1: i= 7. Suppose that there is a non-empty domain D and
a (D, O -interpretation Intp g, of VO’ such that Intp,g, simultaneously
satisfiesr S; and let Int{pg, be like Intp,g, except for not assigning
any member of D to the individual constants of QC < that occur in 4 but
do not occur in any member of S. Since Intp,g, simultaneously satistiesg &,
then clearly so does Int(pe,. But Int{pg, does not satisfyr 4. Hence §
does not imply; 4. Hence, if § implies; 4, then it is not the case that
there is a non-empty domain D and a {D, @) -interpretation of VC*
such that Intp,g, simultaneously satisfiess S. Hence, if § implies; 4,
then § implies; ‘p & ~p’.

Case 2: 8 € %< 10. Proof like that of Case 1.

For proof of L21(a). Let & be as in L21, and suppose 8 v 8
does not imply, A. Then there is a non-empty domain D, a domain D’
disjoint from D, and a <D, D’:-interpretation Intp,py of VC* that
simultaneously satisfiesr § v & (and hence assigns a member of D to
every individual constant of QC= that occurs in one or more members
of 8), but does not satistyr 4. Now let Intcp,ey be the result of assigning
to each sentence variable of QC-the same truth-value as in Intp s,
to each individual variable of QC=- the same member of D as in Intp,o,
to each individual constant of QOZ that oceurs in one or more members
of § the same member of D as in Intcp,py, and to each m-adic predicate
variable F of QC< the subset of D™ consisting of every member of D™
that belongs to the value of F under Intip,pry. Clearly, Int.p g, simul-
taneously satistiesr 8 if and only if Intcp,p does, and fails to satisfyr 4
if Int¢p,p-, does. Note, in the latter case, that if any individual constant
of QC< that oceurs - in 4 has mo value under Intp,gy, then Intcp gy
fails to satisfyr 4, whereas if every individual constant of QC< that
occurs in 4 has a value under Intcpgy, then Intcg, fails to satisfyr 4

if and only if Int(pp, does. Hence 8 does not imply, A. Hence, if §
implies, A, then S u §' implies, 4.

4. Completeness theorems. In this section we first establish
that QCL is complete both in Henkin’s sense and in Godel's, and then
proceed to obtain similar results for the rest of our caleuli. The proofs
of the auxiliary theorems T1, T2, and T4 owe much, as the reader will
gather, to [3].

T1. Let 8, be a set of formulas of QC== that 4s consistent in QC=; for
each j from 1 on let S; be ;1w {(HX;)4;D 4,(Y/X;), E!Y}, where
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(i) (EX;) 4; is in alphabetical order the j-th formula of QC= of the kind
(EX)A, and (i) ¥ is the alphabetically earliest individual constant of QC=
not to occur in amy member of Sj_1 mor in (HX;)As; and let S be the
union of Syy 81y 8oy eene Then:

(a) For each § fwm 0 on 8 is consistent in QO=, and

(b) 8w is comsistent in QC=.

Proof.

(a) Suppose that §; (j>=>1) is inconsistent in QC =. Then in view
of L1 (0) and L (r) so is 8;_;. But in view of L1 (d) S, is consistent in QC=.
Hence (2) by mathematical induction on j.

(b) Suppose that 8w is inconsistent in QC=. Then in view of Lil(e)
some finite subset of S is inconsistent in QO=. But every finite subset
of 8 is a subset of §; for some j from 0 on. Hence in view of L1 (e) not

all of 8,8y, Ss, ..., are consistent in QO=, as against (a). Hence (b).
T9. Let &% be the set Se of T1; Ay being in alphabetical order the k-th
formula of QC2, let 8% be for each  from 1 on S5O {Ag) or 857 according
as 851w {Ay) is consistent, in QC= or not; and let S be the umion of
8, S, 8%, .. Then:
(a) For each k from 0 on 8% is consistent in QC=;
b) 8% s consistent in QU=;
¢) If 8% {A} is consistent in QC=, then A belongs to Su;
d) ST A if and only if 4t is mot the case that Su Y ~A4A; and
e) (BLX)A4; being in alphabetical order the j-th formula of QC= of the
kind (HX)A, then for each j from 1 on there is an individual constant ¥
of Q02 such that 8% 1 (EX)A4;D A(Y/X;) and Se ¥ B!Y.

Proof.

(a) Suppose that S k=1) is 85T {Ag}; then 8% is consistent
in QO2, and hence is consistent in QO if 857 is. Suppose, on the other
hand, that S% is §%7%; then 8% is consistent in Q0L if 8% is. But in
view of T1(b) 8% is consistent in QU=. Hence (a) by mathematical in-
duction on k.

(b) Proof like that of T1(b).

(c) Suppose that S% u {4} is consistent in QCZ and that A is in
alphabetical order the kth formula of QC=. If S5 were inconsistent
in QOZ, then in view of Ll(c) 8% v {4} would be inconsistent in QC=,
contrary to the assumptmn Hence 85w {4} is consistent in QC=Z,
hence 4 belongs to Sw, and hence A Dbelongs to Sx.

(d) Suppose 8%+ 4 and 8% 1 ~A. Then in view of L1(f) 82 is
inconsistent in QU=, as against (b). Suppose, on the other hand, that

(
(
(
(e)
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it is not the case that 8% ki A. Then in view of L1(b) 4 does not belong
to S=. Heunce in view of (¢) 8% u {4} is inconsistent in QC=. Hence in
view of Li(g) 8% K ~d.

(e) Proof by T1 and L1(D).

T3. Let 8 be a set of formulas of QC= that is consistent in QCZ=. Then
there is a set 8’ of formulas of QCZ such that:

(a) S is a subset of S';

(b) 8" H° A if and only if it is not the case that 8\ ~A4A; and

(c) (HX;)A being as in T2(e), for each j from 1 onthere is an individual
constant ¥ of QC= such that 8ty (HX)A4;D A4(Y/X;) and 8+ B! Y.

Proof by T1-T2.

T4 Let 8 be a set of formulas of QC2=. If S is consistent in QC=,
then there is a non-empty domain D, a domain D' disjoint from D, and
a C-exhaustive (D,D’:-interpretation Intpp-, of VC* such that Intp pr
stmultaneously satisfies S.

Proof. Let S be consistent in QC<. Then in view of T3 there is
a set 8 of formulas of QC= of which (a)-(¢) in T3 hold true.

Part One. Let T consist of all the individual terms of QC= and R
be a dyadic relation on 7 such that, for any members X and ¥ of T,
R(X, Y) if and only if §' i° X = ¥. Inview of L1(s)-(u) R is an equiv-
alence relation on T™, and hence partitions T™ into one or more sets,
say, 1%, 1%, ..., which by definition are pairwise disjoint and exhaustive
of T, Now, for each * from 1 on, let Uy be the alphabetically earliest
individual variable of QC= to belong to T<= if any individual variable
of QC= Dbelongs to T%, otherwise the alphabetically earliest individual
constant of QC= to belong to Ty ; and for each individual term X of QC=
let y(X) be Ui, where T} is the one subset of 7% to which X belongs. (%)
It is easily verified that:

(L.1) For each individual term X of QC=, 8+ E'X if and only if
81 Bly(X);

(1.2) For each individual variable X of QC=, 8t Bly(X);

(1.3) There is at least one & such that S’ +i° B! Uk

(L) 8 K F(Xy, oy ooy Xm) f and only if 8 1 F(y(Xy), y(Xa), -
veey ¥(Xm)); and

(1.5) 8K X = Y if and only if 8" y(X) = y(X).

(21) For each k from 1 on Ty ecan be thought of as the representative of the various
individual terms of QC: that belong to [ ; and hence, for each individual term X
of QC Z , ¥(X) can he thought of as the representative of the various individual terms
of QC: that belong to the same subset of T as X does.

Fundamenta Mathematicae LXII 11
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Note for proof of (1.1), (1.4), and (1.3) that 8’ i X = y(X) by the
very definition of 'y(X) Henc (1.1), (1.4), and (1.5) by repeated uses
of T1(v). Note for proof of (1.2) that in view of Ll(n) 8§ +° E!X for
each individual variable X of QC=. Hence (1.2) by (1.1). And hence (1.3).
Part Two. Let D v D' be {U,, U,, ...}; for each k from 1 on let U,
belong to D if 8" 11 B! Uy, otherwise to D’; and let Int¢p,py be the result
of assigning:
(i) to each sentence variable P of QC= the truth-value T'if § +7° P,
otherwise the truth-value F;
(i) to each individual term X of QC= the uniquely determined
member y(X) of Du D'; and

(iii) to each m-adic (m > 1) predicate variable ' of QC= the one
subset of (D w D)™ to which <U;,, Us,, ..., Uy, belongs if and only if
S’ }‘;OF(Uil, Uﬁ, vy Uty)e

It is easily verified that:

(2.1) D is not empty and D' is disjoint from D;

(2.2) Intip,ps assigns a member of D to each individual variable of Q0=

and a member of Du D' to each sndividual constant of QCZ;

(2.3) Int¢p,pry counts as a C-exhaustive (D, D" -interpretation of VO

(2.4) 8’ BLX, where X is an individual constant of QC=, if and
only if the value of X under Int¢p,py belongs to D; and

(2.5) Bach member of D is the value under Intp pry of some individual
constant or other of QC=.

Of these, (2.1) follows from (1.3); (2.2) from (1.2) and (ii); and (2.3)
from (2.1)-(2.2) and (i)-(iii). As for (2.4), note that in view of (1.1) §' " B! X
if and only if 8 +° Ely(X); hence (2.4) by (ii) and the definition of D.
As for (2.5), if Uy belongs to D, then §'i° B! Ui, and hence in view
of Li(p) &' I (EX)(X = U), where X is the alphabetically earliest
individual variable of QC= to differ from Uj;. Hence in view of T3 (c)
and Ll (i) 8’ ii° ¥ = U, for some individual constant ¥ of QC=. Hence ¥
belongs to Z;. Hence Uy is the value of ¥ under Int{p p.

Part Three. Let 4 be a formula of QC= . It is easily shown by
mathematical induction on the number of occurrences of ¢ ~, 2, and ‘V?
in 4 that Intcpp, satisties 4 if and only if & = A4.

Base Step. By (1.4)-(1.5) and (i)-(iii).

Induective Step. Suppose that A is of the kind ~B. Then in view
of T3(b) 8" }° 4 if and only if it is not the case that &’ }° B, hence in
view of the hypothesis of the induction if and only it Intip,pry does not
satlsfy B, and hence if and only if Tnt}p p satisfies 4. Or - suppose that 4
is of the kmd BD (. Then view of T3(b) and L1 (j) & +° 4 if and only
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if 8 1° € or it is not the case that 8’ 1° B, hence in view of the hypo-
thesis of the induction if and only if Int{p, p-, does not satisfy B or Intip,ps
satisfies O, and hence if and only if Int(p p, satisfies 4. Or suppose that 4
is of the kind (VX)B and 8} 4. Then in view of Li(q) &' I E!Y
D B(Y/X) for every individual constant ¥ of QC=; hence in view of (2.4)
and L1(i) 8’ i B(X/X) for every individual constant ¥ of QC2 whose
value under Int¢p, p-, belongs to D; and henece in view of (2.5) and Lil4(a)
Int¢p,py satisfies 4. Or suppose that A is of the kind (VX)B and it is
not the case that &’ Fi° 4. Then in view of T3(b) 8’ k" ~(V.X)B; hence
in view of Ll(m) & +°(EX)~B; hence in view of T3(c) and L1(i)
8 H ~B(Y/X) and 8t BE!Y for at least one individual constant Y
of QO=; hence in view of T3(b) and (2.4) it is not the case that
8’ +7° B(X|X) for at least one individual constant ¥ of Q0= whose value
under Int{p p belongs to D; hence in view of the hypothesis of the in-
duction Int/pp, does not satisty B(Y[/X) for at least one individual
constant ¥ of QC = whose value under Int!p p, belongs to .D; and hence
in view of L14(b) Int{pp» does not satisfy A.

Part Four. Let 4 be a member of S, and Intp,p, be the result
of assigning to each sentence variable of QC= the same truth-value as
in Int{p,ps, to each individual term of QC= the same member of D v D’
as in Int!{pps, and to each m-adic predicate variable of QC= the same
subset of (D v D)™ as in Int{pps. Sinee in view of T3(a) A belongs
to ', then in view of L1 (b) §’ ti 4, hence in view of Part Three Intp,p
satisfies 4, and hence so does Intp,py. Hence T4 in view of (2.1) and (2.3).

T5. Let S be a set of formulas of QC2=, and A be a formula of QC =,

(a) If S implies; A, then St A

(b) If A is valid,, then F 4.

Proof. (a). Let § imply,; 4. Then it is not the case that there is
a non-empty domain D, a domain D’ disjoint from D, and a C-exhaunstive
(D, D">-interpretation Intp,p’, of VC' such that Intp,pr simultaneously
satisfies § v {~A4}. Hence in view of T4 § v {~4} is inconsistent in
QC=. Hence in view of L3 (d) § }, 4. (b) Let 4 be valid,. Then @ implies, 4.
Hence H 4 in view of (a).

In view of T5(a) QC < may be said to be complete in Henkin’s sense,
and in view of T3(b) to be complete in Godel’s.

We next establish that QC= is likewise complete in both senses.

T6. Let 8 be a set of closed formaulas of QG ==, and let 8 © { ~(&x)(f(x)v
~f())} be consistent in QC 2. Then there is a non-emply domain D' and
a C-exhaustive (@, D"y -interpretation Int py of VC* such that Intce,py
simultaneously satisfies S.

11*
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Proof. Part One. Let S; consist of the @ -associates of the members
of 8; 4; being in alphabetical order the jth closed and quantifier-free
formula of QC =, let 87 be for each j from 1 on 8, v {4;} or 85_; according
as 8i_iu {4} is consistent in QCZ or not; and let 8% be the union of

36, 81, .. In view of Li(a) Sg is consistent in QO=. Hence by the same
reasoning as in the proof of T2 (a)-(d), but with L3 (b), L2 (a), L3(c), L2 (b),
and L2(c) respectively doing duty for Lil(b), Li(e), Li(e), L1(f), and
Li(g):

(1) Sk e A if and only if it is not the case that S& by ~A.

Part Two: Let C? consist of all the individnal constants of QU<,
and let R be a dyadic relation on C? such that, for any members X and ¥
of €2, R(X,Y) if and only if Se+, X = Y. In view of L2(e)-(g) R is an
equivalence relation on (2, and hence partitions (? into one or more sets,
say, (3, (3, ..., which by definition are pairwise disjoint and exhaustive
of C* Now, for each k from 1 on, let Uy be the alphabetically earliest
individual constant of QU< to belong to Oi; and for each individual
constant X of QCZ, let (X) be Uy, where O} is the one subset of C°
to which X belongs. It is easily verified with the aid of L2(h) that:

(2) S& l-gF(;I“ KXoy oery Xn)y where X1, X, ..., and Xy, are individual
constants of QC=, if and only if Se b, Fly(X1),»(Xs), -, y(Xm)), and

(3) 8t X =Y, where X and ¥ are individual constants of QCZ,
if and only if Sk b p(X) = y(X).

Part Three. Let D' be {U,, U,, ...}, and let Intcg ps be the result
of assigning:

(i) to each sentence variable P of QC < the truth-value 7T if & ke P
otherwise the truth-value F;

(ii) to each individual constant X of QC< the uniquely determined
member y(X) of D'; and

(’1;1) to each m-adic predicate variable F of QCZ the one subset
of D™ to which <(Us, Uy, ..., Us,> belongs if and only if Se b F(Uyy,
Uiy ooey Uia)-

It is easily verified that:

(4) D' is not empty and Int,py counts as a C-ezhaustive <Q!,-D"'»-
interpretation of VC2. .

Part Four. By the same reasoning as in Part Three of the proof
of T4, but with the induetion carried on the number of occurrences of ¢~
and 3’ (rather than ‘~, %, and ‘V’) in A, and with (1)-(3) above and
L2(d) doing duty{for T3 (b), (1.4), (1.8), and L1(j), it is easily shown that,
?rhlere A is a closed and quantifier-free formula of QU< Int¢p,py sat-
isfies A if and only if 8% b, 4. Hence Intg,p-, simultaneously sa;tisfies 8%,

?
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hence S; (S¢ being a subset of S&), and hence in view of L15 § itself.
Hence T6 in view of (4).

T7. Let § be a set of formulas of QGZ=, and A be a formula of QCZ.

(a) If S implies, A, then S, A.

(b) If A is valid,, then +, A.

Proof. (a) Let § imply, 4. Then in view of L17(a) § implies, 4,
and hence in view of T5(a) S H 4.

Case 1: 4 is open. Then in view of L3 (b) § v {(Hx)(f(z)v ~f(2))} I 4.
But in view of L4(b) and L3(c) 8 v {~(Hx){f(z)v ~f(2))} +. 4. Hence
St A in view of L3(e).

Case 2: 4 is closed. Let S consist of all the closed members of S.
Since § implies, 4, then in view of L16 it is not the case that there is
a non-empty domain D' and a C-exhaustive {@,D’)-interpretation
Int¢g,py 0f VC? such that Int¢s,p- simultaneously satisfies 8" v {~A4}.
Hence in view of T6 8§ v {~(Hx){f(#)v ~f(z)), ~4]} is inconsistent
in QCZ, hence in view of L3(d) 8 u |~ (Hx)(f(z)v ~f(z))} . 4, and
hence in view of L3(¢), S v {N(Hw)(f(w)vrvf(m))} F; A. On the other hand,
since § b, A, then in view of L5(b) § v {(Ha)(f(2)v ~f(2))} F. A. Hence
S+, A in view of L3(e).

(b) Proof like that of T5(b).

Banking on T5 and T7, we next establish that Q0 and QC<- are
complete in Henkin’s sense and in Godel’s.

T8. Let 8 be a set of formulas of QG2 and A be a formula of QCE.

(a) If S impliess; A, then St A.

(b) If A is valids, then 5 A.

Proof. (a) Let 8 imply; 4, and §’” be as in L18. Then in view of
L18 8§ implies; 4, hence in view of L17(b) S’ implies, 4, hence in view
of T5(a) 8k, 4, hence in view of L9(a) 8 F; A4, and hence in view
of L3(c) Sk 4.

(b) Proof like that of T5(b).

T9. Let § be a set of formulas of QCL, and A be a formula of QC<,

(a) If S implies; A, then 8¢ A.

(b) If A is valid,, then }¢ A.

Proof. (a) Let § imply, 4. Then in view of L17(c) S implies; 4,
and hence in view of T8(a) S s 4.

Case 1: A is open. Then Sty 4 by the same reasoning as in the
proof of T7(a), Case 1, but with L5(c) doing duty for L5(Db).

Case 2: A is closed. Let 8’ be as in 118, and let 8" consist of all
the closed members of §”. Since § impliess 4, then in view of L18 8"
impliess 4, and hencein view of L6 it is not the case that there is a non-
empty domain D’ and a C-exhaustive (@, D’)-interpretation Ints,p
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of VC® such that Intg,py simultaneously satisfies 8" v {~A}. Hence in
view of T6 8w | ~(Ha)(f(®)V ~f(2)}, ~A} is inconsistent in QC=Z,
hence in view of L3(d) 8 u {~(Hx)(f(e)v ~f(@))} b 4, hence in
view of L9(b) 8 v {~(Ha)(f(#)V ~f(#))} ks 4, and hence in view of
13(c) 8 v {~(Fw)(f(x)v ~f(@))} ks A. On the other hand, since §t; 4,
then in view of L5(c) 8 v {(Ha)(f(x)v ~(fx))} ks A. Hence Sk A in
view of L3(e).

(b) Proof like that of T5(D).

Banking on T5 and T8-T9, we next establish that Q3=%, QC<, and
QC% are complete in Henkin’s sense and in Godel’s.

T10. Let S be a set of formulas of QC —i-, A be a formula of QC é, and
1=10, 3, or L.

(a) If S implies; A, then Sti A.

(b) If A is valid;, then +; A.

Proof. (a) Let S’ consist of every closed formula of QCL of the
kind E!X.

Case 1: 4= 0. If § implies; 4, then in view of L9(a) S v §' im-
plies; 4, hence in view of T5(a) § v 8 I, 4, and hence in view of L10(a)
St 4.

Case 2: i=3 or 4. Proof like that of Case 1, but with L19(b)-(c)
doing duty for L19(a), T8(a)-T9(a) for T5(a), and L10(b)-(c) for L10(a).

(b) Proof like that of T5(b).

Finally, banking on T5 and T7, we establish that QC <, QCL, QCZ,
and QC2 are complete in Henkin's sense and in Gédels.

T11. Let S and A be as in T10, and 7 < i < 10.

(a) If 8 implies; A, then St A.

(b) If A is valids, then t; A.

Proof. (a) Case 1: ¢=9. Subease 1.1: Every individual constant
of QC = that oceurs in 4 occurs in one or more members of §. If § implies; 4,
then in view of L17(c) § implies, .4, hence in view of T5(a) S}, A, and
hence in view of Li12(a) S+ 4.

Subecase 1.2: At least one individual constant of QO== that occurs
in 4 does not oceur in any member of 8. If § implies; 4, then in view
of 120 8 implies; ‘p & ~p’, hence in view of Subcage 1.1 § Fip & ~p,
and hence in view of L11(h) S +; 4.

Case 2: i=10. Proof like that of Case 1, but with L17(d) doing
duty for L17(e), T7(b) for T5 (b), and L12(b) for Li2(a).

Case 3: i=7. Subecase 3.1: Every individual constant of QC--
that occurs in 4 occurs in one or more members of 8. Let 8 be as in L21.
If § implies; 4, then in view of 121(a) S u &' implies, 4, hence in view
of Case 1 8w 8 |y 4, and hence in view of Li3(a) S A.
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Subecase 3.2: At least one individual constant of QU< that occurs
in 4 does not occur in any member of S. If § implies; 4, then in view
of L20 8 implies; ‘p & ~p’, hence in view of Subcase 3.1 ShHp & ~p,
and hence in view of LII(b) S F; 4.

Case 4: i= 8. Proof like that of Case 3, but with L21(b) doing
duty for L21(a), and L13(b) for L13(a).

(b) Proof like that of T5(b).

The converse of each one of our completeness theorems also holds
true, as the reader may verify:

T12. Let 8 and A be as in T10, and 0 < i < 10.

(a) If Sti A, then S implies; A.

(b) If +e A, then A is valid;.

In view of T12(a) QC L_QC2 may be said to be sound in Henkin’s
sense; and in view of T12(b) to be sound in Gddel’s sense. (%)

5. Closing remarks. With T5 and T7-T12 at hand, the claims
made in the introduction for QCZ=-QC< are easily defended. (i) The
inner domains that figure in clauses (e), (e), (g), (i), and (k) of D20 need
not have members. (ii) The (D, D’:-interpretations that figure in the
last eight clauses of the definition need not be C-exhaustive. (iii) And
those that figure in clauses (b), (e), (£), (2), (j), and (k), when ('-exhaustive,
may assign a member of D" rather than D to any individual constant
of QC=. Henece, in view of T7-T12 and (i), QOZ, Q0%, QCL, QUL
and QC22 do lift the restriction usually placed on the individual variables
of QC=, namely, that they have values. Hence, in view of T5, T7-T12,
and (ii)-(iii), QOL, QCL, QCE, QCL, QCL, and QCZ allow the in-
dividual constants of QC= to designate something not a value of a variable;
QC2-QCY allow them not to designate at all; and, hence all ten of
QCL-QOL do lift the restriction always placed on the individual con-
stants of QC=, namely, that they each designate a value of a variable. (*)

(*) In [18] van Fraassen mentions the possibility of denying a truth-value to any
formula of QC = that contains a non-designating constant, but, given a pair of formulas 4
and B of QC= at least one of which contains a non-designating constant, letting 4
imply B if—in case every individual constant that occurs in 4 or B designaied something—
A would imply B. In view of T5, T7, and T12, two modifications QCX and QCE of Q0=
are readily designed that comply with van Fraassen’s suggestion: (1) a formula 4 of QC X
being understood to he derivable in QCZ from a set S of formulas of QCZ if S}, 4 and,
in case where S is @, 4 is constant-free, and (2) a formula 4 of QC£ heing understood
to be derivable in QCZ from a set § of formulas of QCE if § |, 4 and, in case § is &,
4 is constant-free.]

() Our thanks go to Professors Hintikka and HiZ, who commented at the 1966
meeting of the American Philosophical Association on an early draft of this paper
(zee [11]), and to Professor van Fraassen whose results in [16] and [17] considerably
influenced our thinking on non-designating constants.
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Appendix I. We abide in the main text by Hailperin’s suggestion
in [2] that a formula A of QO of the kind (VX)B be held satistied by
any {@,D’;-interpretation Intcp, of the variables and constants
of QC<. Another course is open, and was adopted by Mostowski in [13]:
letting A be satisfied by Intg,p,y 50 long as X oceurs free in B, otherwise
requiring that B be satisfied by Int¢g,p~ if A is to be satisfied by Int¢g,pry.
The changes that must be brought to Sections 2-3 when Mostowski’s
policy towards (VX)B is enforced, are as follows:

(1) Amend (d) in D6, Case 2, to read: If A is of the kind (VX)B,
where X occurs free in B, then ‘p D p’ counts as the @-associate of A4;
if A is of the kind (VX)B, where X does not occur free in B, and B’ is
the @-associate of B, then B’ counts as the O-associate of 4.

(2) Amend (d) in D7 to read: A formula of QC=- counts as an axiom
of QCZ, QCL, and QOZ if it is of one of the eight kinds listed under (a),
but with ¥ understood to be an individual variable of Qcé when the
formula is of the kind (VX)AD A(¥/X), and X understood to occur
free in B when the formula is of the kind (VX)(4 D B) D ((VX)4 D (VX)B).

(3) Amend (e) in D7 to read: A formula of QC< counts as an axiom
of QC~ and QC< if it is of one of the eight kinds listed under (a), but
with X understood to oceur free in B when the formula is of the kind
(VX)(4DB)D ((VX)4AD (VX)) B.

(4) In L3(p) require X to occur free in B when i =2, 4, or 6.

(5) Retrieve proof L4(a) from [13] (rather than [15], which follows
Hailperin).

{6) Amend (a) in L5 to read: Let X be an individual variable of QC=
that does not occur in B, and i=2 or 6. Then |; (Hz) (_f(m)VNf(w))
D ((VX)(4D B)) D ((VX)A D (VX)B). Proof of the lemma is as follows.

Part One. The following column of formulas of QC<,
(1) (VX)4DB)

(2) 1D (4D B) (Axiom)

) ADB (B2 or R4, 1, 2)
@ 3D ((f/(X)v ~f(X) D (4D B)) (Axiom)

(6) (f(X)V~F(X)D (4D B) (R2 or R4, 3, 4)
(6) 5D (((f(X)v ~FZ) D 4) D ((f(X)v ~f(X)) D B)) (Axiom)

M ([f(X)v ~f(Z)) D 4)2 ((fX)v ~f(X)) D B) (R2 or R4, 5, 6)
(8) 4

(9) 82 ((f(X) v ~f(X)) D 4) (Axiom)
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10) (fIZ)V~F(X)D 4 (R2 or R4, 8, 9)
11) (f(X)v~f(X)D B (R2 or R4, 7, 10)
(12) 11D (~BD ~(f(X)V ~f(X))) (Axiom)

(18) ~BD ~(f(X)Vf(X))
counts as a derivation of ~BD ~ (f(X)v ~f(X)) from (VX)(4 D B), 4 in

(R2or R4, 11, 12)

QC-. Hence in view of L3(f)
{(VX)(AD B} s AD (~BD ~(f(X)V ~f(X))),
hence in view of L3 (m)
{(VX)(AD B)} b (VX) (A O (~BD ~{fX)V ~f(X)))),
henece in view of L3(p)
{(VX)(4D B)} ¢ (VX) 4D (VX) (~BD ~(f(X)v ~f(D)),

and hence in view of L3{c)

{(Fa) (fl@)v ~f(@), (VX)(AD B)} K

ke (VX) 4D (VX)(~BD ~(f(X)Vv ~f(X)))-
Part Two. In view of L3(b) and L3(p)
(VXY ~B D ~(f(X)V ~f(D))} b (FX)~B D (VX)~ (f(X)v ~f(X)

hence in view of L3 (k)

{(VX)(~BD ~(f(X)V ~FE))} He (@X)(F(X)V ~f(X)) D (EX)B,
and hence in view of L3(¢)

{(@2)(f(@)V ~f(@)), (FX)(~BD ~(f(X)V ~f(X)))} ks

F(EX)(F(X)V ~F(X)) D (HX)B.
But in view of L3(b) and L3(q)

(@) (F(@)V ~F(@)), (VE)(~BD ~(f(X)V ~f(X))}

ke (AX){(f(X)v ~f{X)) .
Hence in view of L3(g)

{(&a)(f(2) v ~f (@), (FE)~BD ~(f(X)V ~f(X))} b (@X)B,
hence in view of L3(n)
{@2)(f(#)V ~f(2), (FI)~BD ~(f(E)V~f( X))} 1 B,
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hence in view of L3(m)
{(&2)(f(@)V ~f(@)), (VE) (~BD ~(f(X)V ~f(X)

hence in view of L3(f)

)} H(VX)B,

{(Ex)(f (@) v ~f(@))} ke (VE) ~BD ~(f(X)V ~f(X))) D (VX)B,
hence in view of L3(h)
{(@)(f(2) v ~f(@)} s (VE)AD (VX)~BD ~(f(X)v~f(X))) D (VX)B,

hence in view of L3 (i)

{(@a)(f(x)v ~fl@))} 1

ki ((VX yAD(VX) (~B D ~(f(X)v ~f(X)))) D((VX)4D(VX)B),
and hence in view of L3(e)

{@n)(f(@)v ~f(a), (VXA D B)} b

Fe ((VX)A D (VX)(~BD ~(f(X)v ~f(X>))) D ((VX)AD (VX)B).
Part Three. In view of Parts One-Two and L3(g)
{(@x){f () v ~f (@), (VX)(AD B)} 1 (VX)A D (VX)B.
Hence in view of L3(f)

Fi (&) (f(2) v ~F(®)) O (VX)(4 D B) D (VX)AD.(VX)B) .

(7) In L6 (e) require X to occur free in both B and C or in neither
(as well as not to occur free in A). The restriction does not affect the
proof of L6(f) on p. 140.

(8) Amend (f) in D16, Case 2.2.2, to read: If A4 is of the kind (V.X)B,
where X oceurs free in B, then Intp p is said to satisfyr 4; if 4 is of
the kind (VX)B, where X does not occur free in B, and Intp,py satis-
fiesy B, then Int¢pp is said to satisfyr A.

Since all of theorems T1-T12 hold true as before, and by the same
proofs as before, we end up with five extra variants of QOC= that lift

one or both of the restrictions normally placed on the individual terms
of QC=.

Appendix XI. The alternative accounts of QCL and QOC=: that
we mentioned in Section 1 call for the following definitions:

D21. Let D and D' be disjoint domains, ¢ =1 or 2, and In:
tep.p’
any result of assigning: @ be

(i) exactly one of the two truth-values 7 and F to each sentence

variable P of Q0L » the truth-value in question to be known as the value
of P under Intp,p;
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(ii) if D is not empty, exactly one member of D to each individual
variable X of QC é, the member in question to be known as the value
of X under Intp p;

(iii) if D v D’ is not empty, at most one member of D w D’ to each
individual constant X of QU<, the member in question to be known as
the value of X under Int¢ppn;

(iv) exactly one subset of (D ~ D')™ to each m-adic (m=1,2,..)
predicate variable F of QC=<, the subset in question to be known as the
value of ¥ under Int(p,p»; and

(v) if one or more individual constants of QC < have no value under
Intp,pry, exactly one of the two truth-values T and F to each atomic
formula A of QO that contains such a constant, the truth-value in
question to be known as the value of A under Int¢p,p;-.

If (a) for every individual constant X of QC <L that has no value
under Int;p p the atomic formula X = X of QC <L has the value T under
Intcp pn and (b) for every two individual constants X and ¥ of QC< at
least one of which has no value under Int¢p,p~, every atomic formula A
of QC< that contains X, and every (atomic) formula A’ of QC= of the
kind 4(Y//X), 4 and A’ have the same value under Intp p, if the
atomic formula X = ¥ of QC= has the value 7 under Int.ppy, then
Int¢p,ps counts as a (D, D';-interpretation of the variables, constants,
and atomic formulas of QC=.

D22-D23. Like D14-D15, but with Intp,ps in the first case, each
one of Int¢ppy and Int{p psy in the other, understood to be a (D, D")-
interpretation of the variables, constants and atomic formulas of QC+.

D24. Let 4 be a formula of QO-i—; D and D’ be disjoint domains;
Intp,p be a (D, D’)-interpretation of the variables, constants, and
atomic formulas of QC=%; and i =1 or 2.

Case 1: D is not empty.

{a) If A is a sentence variable of QO < and has the value T under
Intp,pry, then Intp,py is said to satisfy A

(bl) If A4 is of the kind F(X,, X, ..., Xm), each one of Xy, Xyyuny
and X, has a value under Int:p py, and the m-tuple made up of the
values of X, X, ..., and X, (in that order) under Int¢p,p» belongs to
the value of F under Intcp v, then Inten py is said to satisfy 4;

(b2) Tf A is of thekind F(X,, X,, ..., Xm), at least one of X, KXoy eens
and X,, has no value under Int¢p,p», and the value of 4 under Intp, oy
is T, then Intp,py is said to satisfy 4;

(c1) If A4 is of the kind X = ¥, each one of X and ¥ has a value
under Intp,psy, and the value of X under Intp psy is the same as that
of Y, then Intcpp, is said to satisfy 4;
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(e2) If A is of the kind X = Y, at least one of X and Y has no value
under Intp ps, and the value of 4 under Intp,py is T, then Int(pp,
is said to satisfy 4;

(d) If A is of the kind ~B and Int(p,p, does not satisfy B, then
Intp,pn is said to satisfy 4;

(e) If 4 is of the kind B D ¢ and Intp, p, does not satisfy B or satis-
fies C, then Int(pp is said to satisfy 4;

(f) If 4 is of the kind (VX)B and every X -variant of Int(p, ps satis-
fies B, then Intp,py is said to satisfy 4;

(g) Int(p,ps is said to satisfy 4 pursuant only to one or another
of (a)-(f).

Case 2: D is empty.

Case 2.1: 4 is open. Then Intp py is said to satisfy A.

Case 2.2: 4 is closed.

(a)-(e) Like (a)-(e) under Case 1;

(f) If 4 is of the kind (VX)B, then Intpp, is said to satisfy 4;

(g) Like (g) under Case 1.

D25. Let § be a set of formulas-ef QCL, D, D', and Intp py be as
in D24 and ¢ =1 or 2. If Intp,p satisties each and every member of 8,
then Intp,p» is said to simultaneously satisfy 8.

D26. Let 8 be a set of formulas of QC<, A be a formula of QC&,
where ¢ =1 or 2. (a) 8 is said to imply; 4 if, for every non-empty domain D
and every domain D’ disjoint from D, every (D, D')-interpretation of
the variables, constants, and atomic formulas of QC 2= that simultaneously
satisfies S also satisfies 4.

(b) 8 is said to implys 4 if, for all disjoint domains D and D', every
{D, D")-interpretation of the variables, constants, and atomic formulas
of QCZ that simultaneously satisfies S also satisfies 4.

D27. Let 8, 4, and < be as in D26.

(a) 8 is said to imply;’ 4 if, for every non-empty domain D every
{D, ) -interpretation of the variables, constants, and atomic f(;rmulas
of QC= that simultaneously satisfies 8 also satisfies A.

(b) 8 is said to implys’ A if, for every domain D, every (D, @)-in-
terpretation of the variables, constants, and atomic formulas of Qo
that sin‘mlta,neously satisfies § also satisfies 4.

It Iy readily verified (details are left to the reader) that if S}, 4
then § implies; 4. But, if § implies; 4, then 8 implies; 4 (in the se:nsé
?f D20(b)), (f‘*) and hence in view of T5(a) § |, A. Hence § implies; 4
if and only if 8+, 4, and by the same reasoning (but with T7(a) doing

(**} Concerning this point, see the first half of footnote (6).
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duty for T5(a)) § impliess 4 if and only if S F, 4. Hence QC L and QCZ,
which are sound and complete under Account Two, are also sound and
complete under Account One, which allows their individual constants
to designate a value of a variable, or designate something not a value
of a variable, or not designate at all.

It is readily verified also that if S+, 4, then § implies;” 4. But,
if § implies;’ A4, then S implies, 4, (%) and hence S +, 4. Hence 8 implies;’ 4
if and only if 8 4, and by the same reasoning S implies:’ 4 if and
only if 8+, A. Hence QG and QCZ, which are sound and complete
under either one of Accounts One and Two, are also sound and complete
under Account Three, which requires their individual constants to de-
signate a value of a variable or not designate at all.

Three accounts of QC < and QC= are thus available. We personally
prefer Account One, but for reasons already stated employ Account Two
as our official one in the paper.
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Uber die Michtigkeiten und Unabhingigkeitsgrade
der Basen freier Algebren, I*

yon

Peter Burmeister (Bonn)

C. J. Everett hat 1942 in [4] ein Kriterium angegeben, wann ein
endlich erzeugter Vektorraum iiber einem Ring Basen verschiedener
Michtigkeiten besitzt, und auch gleich ein Beispiel eines solchen Vektor-
raumes. B. J6nsson and A. Tarski haben 1956 in [6] ein solches Beispiel
fiir eine andere Klasse von Algebren angegeben und eine Bedingung
dafiir aufgestellt, wann es in einer Klasse & von Algebren keine R-frei
erzeugten Algebren mit }-Basen verschiedener Michtigkeiten geben kann.
BE. Marczewski hat dann gezeigt (vgl [8]), daB fir Algebren mit endlich-
stelligen Operationen, die Basen verschiedener Michtigkeiten besitzen,
diese Basismichtigkeiten eine arithmetische Folge bilden. Gleichzeitig
warf er die Frage auf, welche arithmetischen Folgen dabei auftreten
konnen. Diese wurde von A. Goetz und C. Ryll-Nardzewski in [5] teil-
weise und von S. Swierczkowski in [21] vollstindig beantwortet fiir den
Fall, da man es mit Algebren mit endlichstelligen Operationen zu tun
hat; dann ist namlich jede arithmetische Folge ,realisierbar”, die nicht
die Null enthilt.

Zu einer primitiven Klasse A von (partiellen) Algebren, die eine
mindestens zweielementige Algebra enthiilt (d.h. die ,michttrivial” ist),
bezeichne F(M,N) die—durch die Michtigkeit || der Menge 3 bis anf
Isomorphie eindeutig bestimmte—von einer Menge M U-frei erzeugte
A-Algebra. In der Klasse K aller Kardinalzahlen definieren wir dann
zu U eine Aquivalenzrelation Ry vermoge

(1) (m,n) e Ry genau dann, wenn F(m, %) = F(n, A)
(tiir alle m,neK).

* Die Resultate dieses ersten Teiles sind im wesentlichen schon in der Diplomarbeit
des Verfassers enthalten, die im April 1965 an der Freien Universitit Berlin eingereicht
wurde. Unabhingig hiervon hat inzwischen G. Gratzer fast die gleichen Ergebnisse
(d.h. eine etwas schwiichere Form von Korollar 1 zum Hauptsatz der vorliegenden
Arbeit bzw. zum Satz 4.14 der Diplomarbeit) ohne Beweis im Juni 1966 bei den Notices
of the American Mathematical Society zur Ankindigung eingereicht (vgl. Notices Amer.
Math. Soc. 13 (1966), Seite 632f). Vgl. Dissertation Bonn (D5) 1966, Teil L.
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