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Disjoint systems over set ideals
(On a generalization of the usual conception
of almost disjoint set systems)

by
Géza Fodor and Attila Maté (Szeged)

Introduction. Let E be an infinite set. We shall denote by P(E)
the set of all subsets of E. Let m be an infinite cardinal number; then
a non-empty system I of the elements of P(E) is called an m - additive ideal
in E if the sum of any system of elements of power smaller than m of I
is again a set belonging to I,and if X e Jand ¥ C X imply Y e I. Throughout
this paper we shall assume that mis & regular cardinal number, the power of the
set B is = m and if I is an m-additive ideal, then the empty set belongs to L
‘We shall denote by H~™ the m-additive ideal of the subsets of power < m
of the set H. Let X and ¥ be two elements of P(H). We shall say that X
and Y are disjoint over Iif X ~ Y e I Let H be a subset of P(E). If any
two distinct elements of H are disjoint over I, then we say that H is
a disjoint system over I; if, moreover, for every X ¢ H the relation X ¢ I
holds, then we say that H is a strongly disjoint system over I If I= {0},
then we obtain the well-known definition of disjoint sets and if I= BT,
then we obtain the well-known definition of the almost disjoint sets.
Let G be a subset of P(E) and let I C P(H) be the smallest m-additive
ideal which contains G. We shall call I the m-additive ideal induced by G.
T G consists of (strongly) disjoint sets over J, then we say that Iig in-
duced by (strongly) disjoint seis over J. Let I be a given m-additive ideal;
then the m-additive ideal J is said to be To(I) ideal if for every subset
F ¢I of E the relation J ~ P(F) QYP I holds, THI) ideal if for every subset
F¢J of B the relation J~ P(F) Q; I holds, and T,(I) ideal if for every
subset F ¢ J of B, J ~ P(F) cannot be induced by disjoint sets over I,
respectively. It is obvious that a Ty(I) ideal is always To(I) ideal, further
a THI) ideal is always TyI) ideal and the To(I) ideal J is To(I) ideal if
and only if IC J. A proper m-additive ideal J (i.e. for which J # P(E))
is called 7T,(I) ideal if every proper m-additive ideal K with K2 J is
a Ty(I) ideal. Let I and J be two m-additive ideals and S a (strongly)
disjoint system over I. We say that S s a complete (strongly) disjoint
system in J over I if there is no element X of J such that X ¢I and
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S U {X}is (strongly) disjoint over I. It is easy to see that each complete
strongly disjoint system § in J over I is also a complete disjoint system
in J over L If J = P(E), then we say that S is a complete (strongly) disjoint
system over 1.

A set mapping S(z) on F is defined as a function from ¥ into P (E).
We assume that for every « ¢ B the relation « ¢ S{x) holds. Two distinet
elements of B,  and y, are called independent if x ¢ 8(y) and y ¢ S(x).
A subset F' of F is called free if any two of the elements of it are independent.
TFor any element z of E, let 8§ Ha)={yeB: eS8y} and 8[x]
= 8(z) v 8 ().

Tf I is an m-additiveideal, S C P(E) and H C E, then we shall denote
by the symbol [S, T, H] the set {X eS: Hn X ¢I}. If G is a set of sets,

then we denote by (G) the set | J @ The symbol § denotes the power
GeG

of the set §, w(m) the initial number of the cardinality m and m* the
cardinality following m immediately.

In this paper we are going to prove some results concerning the
powers of disjoint systems over a proper m-additive ideal and some
results concerning To(f), To(I), To(I) and To(I) ideals.

1. Basie results. TaeorsM 1. Let I be a proper m-additive ideal, S
a disjoint system over I, and J the m-additive ideal induced by S. If for
a subset H of E the power of [S,1,H] is =m, then H ¢J.

Proof. Suppose, on the contrary, that H eJ. Then there exists
a subset S’ of S such that the power of S is < m and H C <S’). Since
the power of [S, I, H] is > m, we obtain that

[S,1,H]-S #0.

Let F be an arbitrary element of this set. Since S’ C S, further the power
of 8’ is < m and the elements of S are disjoint over I, we obtain that
F ¢Sy el On the other hand, the definition of [S,I,H] implies
that F ~ H ¢ 1. Consequently F~ H—(S’> ¢ I. Therefore H—<S" ¢I
But this contradicts the fact H C (S’>. The theorem is proved.

CoROLLARY 2. Let I be a proper m-additive ideal, S o strongly disjoint
system over I, of power > m. Then the m-additive ideal induced by S is
proper.

The proof is obvious.

THEOREM 3. Let I be a proper m-additive ideal, S a complete disjoint
system over I, and J the m-additive ideal induced by S. If IC J and H ¢ J,
then the power of [S,I, H] is = m.

Proof. Suppose, on the contrary, that [S,I, H] has power < m.
Then (S, I, H]) «J, because [S, I, H] C S. Consequently the set ¢ = H—
—{[8,I,H]> does not belong to J. Since I C J, we have that ¢ ¢ I. On
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the other hand, for every X ¢S the relation G ~ X eI holds. Thus
S U {G} is a disjoint (or strongly disjoint) system over I. This contradicts
the assumption that S is complete disjoint system over I.

2. The cardinality of disjoint systems. TEEOREM 4. Let I
be a proper m-additive ideal, S o disjoint system over I such that the power
of [S,1, B] is = m. Then there ewists a sequence {Helecam Of type w(m)
of mutually disjoint subsets of B such that for every & < w(m) the set [S, I, H;]
has power = M.

Proof. Let A be the set of all the ordered pairs (a, ), where a < f
< o(m), i.e. 4= {(a,B): a < p < o(m)}. By the familiar way we define
a well ordering in 4 as follows. If (a,, §;) and (o, ;) are two elements
of A, then (a;, f1) < (ay, f) means either §; < B, or else f; = fyand a, < a,.
The relation < well orders A. Since for every (a, 8) ¢ A the inequality
a < p holds, the set A has the ordinal type w(m).

Tet S’ be a subset of power m of [S,I, E] and let (a, f)—S; be
a one-to-one mapping of 4 onto S'. Then S’ = {S8flacpcuim. Pub

Gi=28—- | 8.
(@8)=(&n)

Since the set {(a, ) e A: (a, f) < (£, 7)} has power < m and the sets 83
((a, B) eA) are strongly disjoint over I, we obtain that Gf, ¢I. Put

H= U 6.

E<n<a{m)

It is easy to see that the sets H, (5 < zo(m)) are mutually disjoint and
the power of [S,I, H] is = m for every & < o(m).

THEOREM 5. Let I be a proper m-additive ideal, S a disjoini system
over I, J the m- additive ideal induced by S, and G a disjoint system of power m
over J. Suppose that for every Z e G the set [S, 1, Z] has power = m. Then
there exists @ subset F ¢ G of B such that the power of [S, I, F]is = m and
G v {F} is a disjoint system over J.

Proof. Let {Gelicwm be a well ordering of type w(m) of G and
Fe= G.— |J @.. Obviously the sets F; (£ < w(m)) are mutually disjoint.
On the otfér hand, for every & < w(m)

[S,I,F;]: [Syla Gl .
Thus the power of [S, I, F;] is = m, where & < w(m). Let X, be an arbi-
trary element of [S,I,F,]. Let £>0 and suppose that the sets X,
where 0 < a < & have been already defined. Then let X, be an arbitrary
element of [S,I,F,] for which X; ¢ {X.}uce. Such an X, clearly exists,
because the power of [S, I, F¢] is = m. Thus we can define the sets X
for every £ < w(m). Put

F= | (XgnFy.

E<w(m)
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It is easy to see that
{Xele<atmy C[S, I, FJ;

consequently the power of [S,I,F] is > m. Therefors, by Theorem 1,
the relation F ¢ J holds. Since @; C | | F., and the sets F; (£ < o(m)) are
o<

mutually disjoint, we obtain:

FoGC( U nl)o( JF)=JXinT)eJ,

A<a(m) ast A<§

where ¢ < o(m); so F is disjoint to each elements of G over J, and so
cannot belong to G, either. The theorem is proved.

CoROLLARY 6. If the conditions of Theorem 5 hold except for the power
of G but G is complete strongly disjoint over J, then the power of G = m.

The proof is obvious (see Theorem 5).

CorOLLARY 7. Let I be a proper m-additive ideal, S o complete disjoint
system over I, J the proper m-additive ideal induced by S and suppose that
ICJ. If G is a complete strongly disjoint system over J, then G - m.

Proof. This follows from Theorem 3 and Corollary 6.

TEEOREM 8. Let I be a proper m-additive ideal, S a disjoint systems
over I, [S,I, E] = m and J the m-additive ideal induced by S. Then there
exists a strongly disjoint system over J with power > m.

Proof. Let ® be the set of all strongly disjoint systems G over J
for which

(1) GC=m,
@) (S, Z]=m

for every Z ¢ G.

By Theorem 4 the set @ is not empty. By Zorn’s lemma there is
o maximal element G, of & with respect to the relation of inclusion. It
follows from Theorem 5 that G, > m.

Now we prove Theorem 8 in another way using the following for
P=m: '

TreoREM A. Hvery infinite set of power p is the sum of more than »
almost disjoint sets each of which is of power p (see [1]).

Another proof of Theorem 8. Let S’ be a subset of power m
of [S,I, ] and {Selecam & well ordering of type w(m) of §’. Put

Qs = 8:— L(JE 8 (E<o(m).

It is clear that the sets Q, are mutually disjoint and QF ¢ I for every
£ < o(m). Let

Q = {Q£}$<m(m) .
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By Theorem A, Q is the sum | J Q; of more than m almost disjoint sets Qx
i<t

(A < 7) each of which is of power m. It is easy to see by Theorem 1 that
the sets P = {Qp, where 1<, form a strongly disjoint system of
power > m over J.

3. Existence of 7, and T, ideals. THEOREM 9. Let I be a p oper
m-additive ideal, S @ disjoint system over I, [S, I, B] = m and J the m-ad-
ditive ideal induced by S. Then there exists a T,(J) ideal.

Proof. Let S’ be a subset of power m of [S,I, F] and consider S’
in the form:

’ §yé<an(
§'= {S,,},,i"j,(ﬂ)).

Put B = <S) and S, = {8 }icam for every n < w(m). Let R be the
get of the sets R = {R,},<wmy C S’ which have only the element R, common
with the set §, for every 5 < w(m). Let Q be the set of all the sets ¢ for
which @ ~ 8% eI, where £,y < o(m). Let

P =R v {St<am -
Further let
V={((M: McPBju Q.

Let K be the m-additive ideal induced by ¥. We shall prove that K
is a Ty(J) ideal in B’ (}). (Then the m-additive ideal K, induced by
Vo {E—FE}, is a Ty(J) ideal in E.)

We prove that K is a Ty(J) ideal in E'. Let F C F' and ¥ ¢ K and
suppose, on the contrary, that K ~ P(F) can be induced by a disjoint
system G over J.

We need, for the proof, the system {Felecwmm 0f the sets F; which
we shall define later on such that

1) F=F,2F2..2F:D.. [(¢<awm)
and
(2) Fo—F:cK for every £ < w(m).

If £ and 7 < w(m), then we put
A= {8y~ Fs: 8 nFedl, y < wim)}.
It is obvious (particularly in the case & = 0) that for cvery cardinal number
n < m the set
Woln = {n < o(m)|: jﬁj > n}

() More precigely said, if we consider the ideals only in the set £’ then K n P(E’
is a Iy(J n P(E")) ideal.
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has power m, because Fy=F ¢ K. It is also obvious that the set
W= {g: n<w(m)} has a partition W= |) W, such that for every

A<e(m)
cardinal number » < m the set

W jn= (ne Wy A°>n}
has power m. Let now A and £ < w(m) and let for n <m
Wiln = {ne Wi: E>n} .

According to (2) the fact Win = m implies that

(3) Wiln=m for every 1,& < o(m) and n < m.
It is obvious that if & < &, then
(4) Wiin D Win .

Let by definition
W0 = Wi
for 4, { < w(m).
Now we define by transfinite induction the sets F: (€< w(m)) as
follows. Let G be a system of disjoint sets over J which induces the ideal
K~ P(F). Put Fy=F and let B, be an arbitrary set for which

() B,C U 4
quz
and
(By) BynA)=1 for every 9 e W,.

(Such. a set B, clearly exists.)

) Tt is easy to see that (B,» e K, but by Theorem 1 <(B,> ¢ J. Since G
induces the ideal K ~ P(F), there is a subset G, of power < m of G such
that

By C<Gy: (¢]).
Since ("5: < m, there exists a set G, ¢ G such that
(Co) By CGyel,

Put F, = F;—@,. Let 0 < £ < w(m) and suppose that we have defined
the sets ., B, and G, for every a < & such that @, ¢ G,; moreover,

(Aq) B, C | 4%

Few,
(B.) B,~nAdA;=1 for every ne Wa.
(Gd) Boy~GatJ

e ©
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and
(D) G, # Gy for every f < a.
Let

Fe= Fo— U Ge.
a<é
Since @. € G, relations (1) and (2) hold obviously.
Now we define the sets B and G as follows. Let B; be an arbitrary
set such that

(49) B,C U 4,
neEwy
and
(By) B,~ di=1 for every ne Wi.

(Such a set B; clearly exists.)
Tt is easy to see that ¢(B;> e K, but by Theorem 1 (B> ¢ J. Since &
induces the ideal K, there exists & subset G; of power <m of G such that

(B> C <Gy (¢J).
Since G; < m, there exists a set G; e Gy such that
(Ce) (Be> ~Ge ¢ .
It is obvious that
(D) G: # G,

if @ < &, because (B;y C F: and G, ~ Fy = 0 for every a < &, 80 otherwise
the relation (C:) could not hold for &; if e <§.

Thus we can define the sets Fe, Bs and G such that G¢ ¢ G, (Ag),
(B:), (Ce) and (Dg) hold.

It follows from (A) and (B) that

B= |J (B eK.

§<a(m)

Tt follows from (Cg) and (D) that
(G,],Bl=m.
This means by Theorem 1 that
B¢K.

But this is a contradiction. Consequently the ideal K is a Ty(J) ideal
in E'. Thus the theorem is proved.

TaworEM 10. There exisis a To(E~™) ideal.

We need, for the proof of this theorem, some lemmas (2).

(*) The undermentioned lemmas concerning set mappings and free sets are con-
tained partly in [2] and [3].
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LevvA A, If B> m, then the ideal J=B™ is a Ty(B<") ideal.

Proof. Suppose, on the contrary, that there exists an m-additive
ideal K'D E™ such that for a subset F of E the proper m-additive
ideal K= K' ~ P(F) defined in F can be induced by the disjoint system
G C P(F) over F~™ and let

G ={XecG: X =m}.

Then, by K'DE“™, we obtain KDF<", and so G' > m. Let G be
a subset of power m of G’ and let us correspond to every element X of G’/
a subset H(X) of power m of X. Let
H= |J HX).
XeG”

Since H = m, H ¢« F<"" C K. On the other hand, according to Theorem 1,
wehave H ¢ K, because [G, F<™, H] D G’ and G’ = m. This contradiction
.proves Lemma A.

By Lemma A we can assume that E=m.

LevumA B. Let BE=m and let J be a proper m-additive ideal which
can be induced by a system G of power < m of sets. If 8(x) is a set mapping
such that S[z] e J for every « ¢ B, then there exists a free subset M of E for
which M e J.

Proof. Let {G:)ic: be a well ordering of type T < w(m) of G. Pub
He=G:— | G,.

a<é

It is clear that the set {H:}:;<. of the disjoint sets H; induces J.

‘We consider two cases:

(a) The power of the set of the sets H for which H; = 0 is smaller
than m.

(b) The power of the set of the sets H; for which H; # 0 is m.

Ad (A). Itis obvious that the non-empty set M = E— | ) H, satisfies

8=

the conditions of the lemma, since <I> C | J Hiel.
£<z

Ad (b). We define a free set {#}i<om DY transfinite induction as
follows. Let &, be the smallest ordinal number for which Hg, s 0, and
let 2, be an arbitrary element of Hg; further let 1 be a given ordinal
number, 1 < 4 < w(m). Suppose that we have defined the elements x,

for each a < A such that the set {%.}a<s is free and {Tolocs m Hg < 1 for
every & < 1. Let

Vi= {Hg {#o}ocs ~ Hr # 0 for & <1}
and
Qlé = HE_ U (S[$a]_‘<ya>) .

a<i

: ©
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Obviously there exists a & for which @;¢ # 0, because
U H:élJ

E<r

and, on the other hand,

U (8{@a] v Vo) € J.

a<f

Let & be the smallest ordinal number & for which @ = 0, and ;

an arbitrary element of Qig. Thus we can define the elements x; for
every A< o(m). It is eagy to see that the set M = {#}a<wm is free. On
the other hand, we have the relation M ¢J. Indeed, the set {Hele<r I8
a disjoint system (over {0}) which induces J, the inclusion

[{Hehe<r, 103, M2 {Hedrcotm

holds &nd, since the ordinal numbers & (A < w(-m)) are distinct, we have
the inequality .

[—{H’;};::{O} , M2 {Heli<omy = M-
So we may apply Theorem 1. The proof is complete.

TmyyMa C. Let B = m and let J be a proper m-additive ideal which
can be induced by the almost disjoint system G. If 8(») is & set mapping
such that S[z] e J for every x < E, then there exists a free subset M of B for
which M ¢ J.

Proof. We consider two cases:

(a) [G, B, BE]l= {X e G: X = m) has power < m,

) [G,E"", E]= {X < G: T = m} has power > m.

Ad (a). In this case the ideal J can be induced by the system

G'={XecG: X=m}ul{z): el

which has power < m. Therefore we can use Lemma B.

Ad (b). Let

¢ =[G, E™E (={XcG:X=m)
and
G () = [G7 BT, S[w]] ’
where # is an arbitrary element of B. Since S[z]eJ, by Theorem 1 we
have G(z) < m. Let
G'=G— | G).

zel

Tt is clear that G > m, because G > m and G(z) < m. Let H be a subset
of power m of G”, further let {Helecuim D6 2 well ordering of type w(m)
of H. Tet A be the set of all ordered pairs (a, f), Where u < f < w(m),
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well ordered in the same way as in the proof of Theorem 4. We define
the set M Dby transfinite induction as follows. Let 2§ be an arbitrary
element of H, and suppose that the elements o3 have been already defined

for every (a,p) << (&,7), wherein (& i i
: 7) is an arbitrary ele:
with (0,0) << (&, ). Let ’ v ment of 4

H = H.— 5 2
" £ (a,p)L<J<;,.,)<{ st w S[asl) -
Since 'ﬁ—; =m and S’—[m] ~ H:< m, we i :

: z] - , obtain H} s 0. Let #f be
arbitrary element of H:. Thus we can define th f g o
o ot H e elements z; for each

M= (@}, mea

By definition, M is a free set. On the oth [
. er hand, M =
¢ < w(m). Since s M~ He= m for every

[G3 E<m7 M] 2 {Hé}é<m(m) ’

the power of [G,Ej, M] is = m. Thus, by Theorem 1, M ¢ J.
ot I{J:mg‘;x D. Let E=m and let J be a proper m-additive ideal such
b m,@r}; flogr ;;m}/ xeH. Let <S (%) be a set mapping suck that S[x]eJ
zeH. 18 not To(E=™) id, ]
et oo o ) ideal, then there ewists a free subset M
Proof. If J is not To(E<™) ideal, th i
B not; , then there exists a proper m-ad-
g;tgefldeal K 2 J which ig not Ty(E~™) ideal. Thus there exists a subset F
oL or Whlch‘. F¢K and the ideal K ~ P(F) can be induced by almost
; S];]I]J..t sets. Since {x} ¢ Jfor every « ¢ B, we obtain F = m. Using Lemma C
t;)l; ; ;st?d of E, we obtain that there exists a free subset M of F such’
; ¢K. It follolvs that M ¢ J, because KD J. The lemma, is proved.
nd aEmsgt mapE.i nlf SE: m,hthen there ewist a proper m-additive ideal J
o a7 ping S(x) such that 8{z], (&} (2 € B) and every free subset of B

Proof. L = iti
et K e<%{m)E5 be a decomposition. of B into m mutually

disjoint sets of power m. Let
R={RCE: R~ E,=1 for every &< w(m)}
and let J be the m-additive ideal induced by the set
G =Ry {Bscum -

If reB,

a,n; ;h;,s :?cixmv;e.putsﬂ (:c)d= .Eg— {m}. It is easy to see that the ideal J

iy ping S(z) defined in this way satisfy the conditions of
It follows from Lemma D th: i

‘ A hat the ideal J' defi i

is T,(B"™) ideal. Thus Theorem 10 is proved. 7 deffzed fn Lemma B

e ©
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4. Structural remarks (°). THEOREM 11. Let I be an arbitrary
m-additive ideal, and J o ToI) ideal; moreover, let S be a disjoint system
over I If S is complete in J over I, then S is complete in P(E) too.

Proof. Let F be a subset of B not belonging to I. If there exists
o subset H ¢ I of F such that H e J, then, since S is complete in J, there
exists & set K in S such that H ~K ¢I, consequently F ~ K ¢ If
for every subset H ¢ I of F the relation H ¢ J holds, then J ~ P(F) C I,
which contradicts the fact that J is a To(I) ideal. Thus we may conclude
that S is complete in P(X).

TrmoreM 12. Let I be a proper m-additive ideal, S @ complete disjoint
system over I, and let J be the m-additive ideal induced by S. Then J is
a ToI) ideal.

Proof. Suppose, on the contrary, that J is not a Ty(I) ideal, ie.
there exists a subset F ¢ I of E such that J P(F) CI Then because
of S CJ, the relation S ~ P(F) C I holds, and thus the set S v {F} is
also (strongly) disjoint over I, which contradicts the completeness of S.

CoROLLARY 18. Let I be a proper m-additive ideal, S a complete
disjoint system over I, and let J be the m-additive ideal induced by S. If
IC J, then J is a To(I) ideal.

This follows from Theorem 12 applying the very simple fact mentioned
in the introduction that the Ty(I) ideal J is a T4(I) ideal if and only I C J.

TaeoreM 14. Let I be a proper m-additive ideal including all subsels
of one element of B (i.e. let I be a proper To({0}) ideal) and let J be a proper
TyI) ideal. Then J cannot be induced by disjoint sets (in the usual sense,
i.e. over {0}).

Proof. Suppose the contrary and let G be a disjoint inducing system
of J. Choose an element out of each element of G and let F Dbe the set of
the chosen elements. Then it is obvious that F ¢ J; on the other hand
J ~ P(F) = F<™ which is a gubset of I. This contradicts the fact that J
is a To(I) ideal.

CoroLLARY 15. Let I be a proper m-additive ideal including all subsets
of one element of E_and let J be a proper Ty ideal. If G is an inducing
system of J, then G > m. i

Proof. Suppose, on the contrary, that G <m and let {Gel<. be
a well ordering of type 7 < w(m) of G. Now let

H5= G;— U Ga (f < T).
a<$
Then it is easy to see that {Helec: i8 & disjoint inducing system of G
contradicting Theorem 14. The proof is complete.

() Each of the following results are given in [2] (pp. 363-365) in the gpecial case
I=E".
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Concerning homotopy properties of compacta

by
Karol Borsuk (Warszawa)

The aim of this note is to introduce some notions which allow us
to compare the global homotopy properties of two compacta X and ¥
lying in the Hilbert space H. The basic notion in this study is the notion
of the fundamental class from X to ¥, which is in fact a generalization
of the classical notion of the homotopy class of a map of X into ¥. If ¥
is a polyhedron or, more generally, an ANR-space, then this notion differs
only formally from the classical notion of the homotopy class. However,
in the case of arbitrary compacta, the situation is different and the
notion of fundamental class has a more intimate connection with the
global topological structure of spaces than the classical notion of homo-
topy class. The category consisting of fundamental classes as mappings
and of compacta (in H) as objects allows us to study the global homotopy
properties of compacta from a new point of view.

The author acknowledges his gratitude to Dr. H. Patkowska, who
read the manuscript and made several valuable suggestions.

§ 1. Homotopy classes. Let X, be a subset of a space X and ¥,
2 subset of a space Y. By a map of the pair (X, X,) into the pair (¥, ¥,)
we understand a continuous function f: (X, Xo)—(Y, Y,). If (4, 4,)
C(X, X),i.e. 4 CX and 4,C 4 n X, then the map f': (4, Ag)—>(¥, ¥,)
defined by the formula f'(z) = f(x) for every = <« A is called the restriction
of f and denoted by f/(4., 4,).

If X is a subset of a space M, then a pair (Z, Z,) is said to be a neigh-
borhood of the pair (X, X,) in M if Z is a neighborhood of X, and Z,
a neighborhood of X, (in M). If Z is an open (closed) neighborhood of X,
and Z, is an open (closed) neighborhood of X,, then the pair (Z, Z,) is
said to be an open (closed) neighborhood of (X, X,) in M. In the case of
X,= 0, the pair (X, 0) is considered as identical with X.

Two maps f,g: (X, Xo)~>(M, M,) are said to be homotopic in the
pair (Z,2Z,) C(M, M,) it there exists a map

@ (XX 0, 15; Xyx<0,1)) (M, M)
such that (X x<0,13)CZ, ¢(X,%x<0,1>)CZ, and ¢(z,0)=7F(z),
¢(2,1) = g(z) for every point © ¢ X. Then we write f ~ ¢ in (Z, Z,) and
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