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Case 2. Suppose that y has more than one G-cover. Then each
# eD has at least one G-cover. Let K = {x ¢ D:  has precisely one
G-cover}. We assert that K is not cofinal in D. For if K is cofinal, then
for some a € G the set Ko = {x e K: ¢ is a G-cover of x} is cofinal in K
and hence in D. But then y = Lu.b. K,, so that a is a G-cover of y. If b
is another G-cover of y, then b is incomparable with a. But b > z for
all © € Ky, so that b is another G-cover for each z ¢ K,: contradiction.
Hence D— K contains a residual subset E of D; and, as in Case 1, for
all w e B we have fo(2) = fo(y) = 2.

Case 3. Suppose that y has precisely one @-cover a. If R = {x ¢ D:
a i3 the only G-cover of z}, then a simple argument (similar to the cases
above) shows that B contains a residual subset F of D. Also, for all z ¢ E
we have fo(z) = fely) = f(a), by definition of fe.

Thus in each of the above three cases we have a residual (and hence
cofinal) subset B of D such that fe(y) = Luw.b. fe[E]. The continuity
of fe now follows by the lemma.

Sierpiriski has shown in [11] that Theorem 15 does not remain valid,
even when X and X' are well ordered, if “net” is replaced by “transfinite
sequence’.
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On the hyperspace of subcontinua of a finite graph, I

by
R. Duda (Wroctaw)

§ 1. Introduction. Let X be s compact metric continuum with
a metric p. Throughout the paper C(X) will denote the hyperspace of
all non-empty subcontinua of X metrized by the Hausdorff metric o*
(shortly, the hyperspace for X):

o4, B) = maX[sg ¢(a, B), sup p(4,8)].

It has been known for a long time that C(X) with the metric o' is
also a compact metric continuum, and some other properties of C(X)
have also been proved (cf. for instance Wojdystawski [10], Kelley [4],
Duda [1], and Segal [6]). However, no characterization of spaces C(X)
has as yet appeared. Even what C(X) is like is so far known for only
a few and very simple continua X (after all, mainly in folk-lore).

The aim of the present paper is to inquire into the structure of
spaces C(X) in the case which seems to be natural to start with, that
is in the case of spaces ¢(X) which are locally connected and have finite
dimension. The results obtained here uncover some features of their
polyhedral structure and may eventually lead to their topological charac-
terization (ef. remark following corollary 9.2).

As Vietoris [8] and Wazewski [9] have proved, continuum C(X)
is locally connected if and only if continuum X is locally connected, and
it is fairly easy to show (cf. Kelley [4]) that the dimension of a locally
connected continuum € (X) is finite if and only if continuum X is a finite
eonnected graph. Hence

1.1. Continuum O(X) is locally connected and of finite dimension if
and only if continuum X is a finite connected graph.

To gain our aims we shall proceed as follows. We start with a finite
connected graph X dividing its hyperspace C(X) into finitely many
closed subsets M, which turn to be topological balls. Moreover, the de-
composition of ¢(X) into these balls {cells) is a good one (for X acyclic,
cellular), and so in this way we come first to theorem 6.4 stating that C'(X)
is a polyhedron if and only if X is a finite graph. This polyhedron is then
subjected to an analysis resulting in formulas for its dimension (theo-
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rem 7.4). However, a most interesting and somewhat unexpected result
is theorem 8.4, which states that polybedron ¢(X) determines in a natural
way the set homeomorphic to the graph X (but with the exception of
an arc and a simple closed curve, both having a 2-dimensional ball ag
hyperspace, see § 3) and this yields a sequence of immediate corollaries
given in § 9. We infer hence the uniqueness of X for C(X) (theorem 9.1:
if a polyhedron P distinet from a 2-dimensional ball is a hyperspace,
then it is a byperspace for one X only); moreover, we obtain theorem 9.3,
stating that for each % > 2 there are only finitely many %-dimensional
polyhedra which are hyperspaces, etc. Another result worth mentioning
is, perhaps, theorem 9.7, stating that in all but one case (a 2-dimensional
ball) the polyhedron C(X) is topologically prime, i.e. that it is not homeo-
morphic to a Cartesian product of two subspaces distinet from it.

§ 2. Topological lemma. The following simple lemma on com-
bining homeomorphisms will be useful.

2.1. Let a topological space Y be the union of finitely many compact
sets Y, where p e M and M is finite. If for any u ¢ M there exists a homeo-
morphism f,: ¥ —Z into a topological space Z satisfying the two conditions

(i) f#]yymyvzfv]ypf\ Y‘l/y
(11) f,‘(Y,‘nY,):f,,(Yp)nf,(Y,)—:f,(Y,,n Yv)

for all indices p e M and v e M, then the combined function f: ¥ —Z given
by the formula

1) Y= "fu

s also @ homeomorphism.
Proof. By virtue of (i) the function f satisfying (1) does exist.
Function f iz continuous. In fact, if ¥ is any closed subset of Z, then
it follows from the continuity of f., u ¢ M, that fi () is a closed subset
of ¥,. Since ¥, is closed in ¥, this implies that f;(¥) is a closed subset
of ¥, Since M is finite, then

7E = £:4®
neM

is & closed subset of ¥. Hence f is continuous.
Function f is one-to-one. For if 2 ¢ Y, y ¢ Y and f,(z) = f,(y), then
by (ii) there exist points zye¢ ¥, ~ ¥, and y,¢ ¥, ~ ¥, such that

Tul@e) = fule) = fuy) = filya) -
But functions f, and f, are one-to-one by hypothesis, and so z, =z
and Y%o=1, and since function f,|Y.~ ¥,=f,|¥.,~ ¥, is one-to-one
a fortiori, we have also x,=y,. Hence =y and so f is one-to-one.

for upueM,
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Being continuous and one-to-one on a compact space ¥ = | J ¥,
neM
the function f is & homeomorphism.

§ 3. Two simple examples. Before considering the general case
we shall examine here briefly hyperspace O(X) where X is an arc or
a simple closed curve.

1. X is an arc with end-points » and w. Without loss of generality
we may assume that X is a segment [0,1] of the w-axis lying in the
zy-plane and that o= (0,0) and w=(1,0). Under this assumption
each subecontinnum ¢ of X is determined by its middle point m¢ and
the diameter 6(C). The formula

9(0) = (mo, 8(C)) for O eC(X)

g(x)

g(©

U=g(v) me w=g(w)

Fig. 1

Fig. 2

then yields a one-to-one correspondence
g: 0(X)—~>T

from C(X) onto the triangle 7' of vertices g(v) = v, g(w) = w and ¢(X)
= (},1), and it is clearly obvious that ¢ is continuous (fig. 1). Hence ¢
is a homeomorphism between C(X) and T.

Note that the edge of T joining g(v) (resp. g(w)) to g(X) (top vertex)
repregents subcontinua of X containing » (resp. w), and the edge joining
g(v) to g(w) represents points of X (in the notation of the next section
it is equal to ¢(X)).

2. X is a simple closed curve. As before, we may assume that X
is a unit circle

X ={,y): @*+y*=1}.

Under this assumption each proper subcontinuum C of X is, as
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a subarc of X, determined by its middle point mo and the diameter §(C),
0<8(0) < 2m.
Let D be the disc bounded by X. Introducing polar coordinates into
the zy-plane, we may describe each point p of D by the pair (a(p), r(p),
where a(p) is the angle under which p is seen from the pole (0, 0) if z-axig
is the polar line and »(p) denotes the distance between p and the pole.
The formulas

BO)=(0,0) for (=X

and
W) = (almg), L—6(C)2n) for C %X, CeC(X),

yield a one-to-one correspondence
h: O(X)—D

from ((X) onto the dise D, and it is not difficult to see that % is also
continuous and thus is a homeomorphism between C(X) and D (fig. 2).

Note that in both examples considered here the hyperspace is topologi-
cally a 2-dimensional ball. It follows that one polyhedron may be a hyper-
space for two topologically distinct graphs (in our case, for an are and
a simple closed curve). However, we shall proceed to show (cf. theorem 9.1)
that if a polyhedron P distinet from a 2-dimensional ball is a hyperspace,
then there exists one only continuum X (by theorem 6.4, it must be
a finite connected graph) such that P = C(X). Hence the case of a 2-dimen-

0D

sional ball is exceptional, and thus it is not surprising that this ball has
also some other properties not shared by other hyperspaces (cf. 9.7).

§ 4. Preliminaries. From now on we assume that X is a finite
connected graph, ie. a point or a connected union of finitely many
segments in which any two segments either are disjoint or meet at one
or two of their end-points only. By a segment of X we shall always mean
one of those segments (note, however, that two end-points of a segment
of X may coincide, and then such a “‘segment” is topologically a simple
closed curve), and by a subgraph of X—a graph contained in X and formed
by some of those segments and their end-points. In particular, an end-
point of a segment of X is a subgraph of X.

The end-points of segments of X are called vertices of X. For each
vertex v « X we then have either ord, X = 1 if » is an end-point of X,
or ord, X > 2 otherwise. If ord,X > 3, then v is called a ramification
point of X.

A topology on X is the identification topology induced by embeddings
of segments of X into X, and so by a metric on X we can mean a geodegie
mefric ¢ in which
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(«) each segment of X has length equal to 1 and the distance between
any two of its points is equal to the length of the shortest arc joining
them.

However, it may happen under condition («) that X contains an
arc which consists of several segments of X and joins a ramification point
to an end-point or to another ramification point (which may coincide
with the first) without passing through any other ramification point.
Wishing to have a metric in X as economical as possible we can then
re-metrize X by replacing all such arcs by single segments and so—
provided X is topologically distinet from a simple closed curve, which
is the only case where this is not possible—we may also assume that («)
still holds true (for new segments) and the folowing condition (B) is also
fuifilled:

(B) each vertex of X is either an end-point or a ramification poini of X.

For some of our purposes, however, the metric in X satisfying both ()
and (p) may happen to be too coarse, and so occasionally we shall consider
yet another metric in X yielded by introducing into X new vertices
dividing some ‘“bad” segments into two or even into three (as the case
may be) and in a way that («) holds and instead of (B) the following con-
dition (y) is satisfied:

(y) for any two vertices of X which are at a distance 1 from each other
there exists only one segment of X joiming them.

- Under condition (y) we may denote the segment of end-points o
and w by vw.

Conditions («), (B) and (y) are compatible if X is acyeclic, that is
if X does not contain any simple closed curve. In general, however,
(B) and (y) are mot compatible and so we shall have to make a choice
between them in any case where a specification of a metric in X is needed.
Generally speaking, in § 5 we assume condition («) only, in § 6 conditions (o)
and (y), and in §7, § 8 and §9 conditions («) and (B). We shall have
a chance to recall this also later on.

Note that the fulfillment of conditions (B) or (y) in addition to con-
dition () often involves a change of graph structure in X. Nevertheless,
it does not alter the topology which for us is the only important structure
in X, and so from a topological point of view, it is irrelevant what kind
of metric we use.

Let us recall here some notions and notations related to hyperspaces
(cf. Kelley [4]).

For ACX and > 0 let Q(4,n) denote a generalized solid sphere
with centre A and radius %, i.e.

Q4,n={weX: oz, 4)<7}.
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Ag is ‘well known, the Hausdorff metric o' can be equivalently de-
fined by the formula

o4, B) = inf{y > 0: ACQ(B,7) and BCQ(4, )} .

Tn accordance with the notation of the Hausdorff metric by p* let
QY(4, ) denote a solid sphere in 0(X) with centre 4 ¢ ¢'(X) and diameter
7= 0, Le.

(4, n) = {0 C(X): o(C, 4)<m}.

For AC X we define p(4) as the subset of C(X) consisting of all
points of A. In particular, ¢(X) is the set of all points (z) of X.

For UC C(X) we define o(¥) to be the union of all A belonging
to 9. Cleaxly, we always have (%) C X and sometimes even o(A) e C(X).

The notions and notations not defined in this paper come from [1]
and [5].

§ 5. Families I,. In this section we shall define families M,
and prove some of their properties. The metric ¢ is supposed here to
gatisfy condition («) only.

Of special interest to us will be connected and non-empty subgraphs
of X of the following two types: those which do not contain any end-
point of X and those which do not contain any simple closed curve. We
shall call them internal in the first case and acyclic in the second.

Crucial for us is the notion of a pair. Two connected subgraphs of X,
AC B, will be said to form 2 pair in any of the following two -cases:

1. A= 0 and B is a segment of X,

9. A ig internal and B is the union of A and of some segments of X
meeting 4, ie. 4 and B are connected subgraphs of X satisfying con-
ditions A ~ XM =0 and ACBCQ(4,1).

In particular, 4 C@(4,1) is a pair for any internal and acyelic 4.
Pair A C B, where 4 =0 and B is a segment, and pairs 4 cQ4,1),
where 4 is internal and acyclic, will be called fine. Clearly, each fine
pair is a pair and, conversely, in X acyclic each pair is fine.

Tet A CB be a pair. By M cp we shall denote the family of sub-
continua ¢ of X which satisfy the condition 4 COCB and are such
that if 8 is a segment of B— A with end-points ¢ ¢ 4 and b ¢ B— 4, § = ab,
then b e ¢ implies that the component of b in the set ¢ ~ @ (b, 1) is a sub-
graph of X. In other words, if € e M.cp and M is a component of CTZI
then o4 ~ M, M) < 1. :

In particular, if X is acyclic, then the definition of M4cr can be
written. simply as

Mucp={0eC(X): ACCCB}.

- ©
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- 3.1. If C e C(X), then there exists a fine pair A C B such that € €« Macp.

Proof. Let A be the family of all internal subgraphs of X contained
in C.

If A= 0, then C is contained in a certain segment B of X and in
that case C e Dlocp.

And if % % 0, then the union o() of all subgraphs of X belonging
to 9 is also a subgraph of X.

To prove that o() is connected, it suffices to show that it is con-
nected between any pair of its vertices. Let v and w be two vertices of
o{A). Since ¢(A) C ¢ by the definition, the two vertices belong to ¢, and
so in (' there is an arc I consisting of segments of X and containing v
and w. Clearly, L 9.

Denote by 4 a connected and acyclic subgraph of ¢() containing
all vertices of X belonging to (). Since, as a subgraph of internal o (%),
A is also internal, 4 CQ(4,1) is a fine pair. We shall show that this
is the pair we want. But 4 C o (A) C ¢ implies 4 C € and so to complete
the proof it remains to show that if M is a component of C—2M, then
oA ~n M, M) < 1. Let » be any point of ¢ and let S be a segment of X
containing z. Since # ¢« ¢ and C is a continuum meeting internal vertices
of X, C must contain an end-point w of § which is at the same time an
internal vertex of X. But then u ¢ and so, by our definition of 4, also
ued Hence p{d ~ M, M) <1.

Now we shall show an important lemma on the structure of sets M,.

5.2. Let A C B be a pair of X. If A =0, then Mucp is o 2-dimensional
topological ball, and if A +# 0, then Macr is a topological ball of dimension
k421, where k is the number of segments of B— A meeting A at one of their
end-points only and 1 the number of segments of B— A meeting A at two of
their end-points.

Proof. Begin with the case 4 = 0. In this case, by the definition
of a pair, B is a segment of X and so Mycp= C(B) is the family of all
subcontinua of B. By the first example of § 3, C(B) is a 2-dimensional
topological ball.

Now, if 4 #0, then B can be written in the form

n
B=Avu | JL,
i=1
where each I; is a segment of X. If C e Mycp, then

C=AuJCnLi.

i=1

Let I; be a segment with end-points a; and b;. If I; meets 4 at one
of its end-points only, say at a;, then each continuum ¢ e M4cp meets Ly
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along one arc € ~ L; = Li(t;) containing «;, where 0 <{# < 1 is its length.
The range T of numbers #; is, in this case, a real segment [0, 1].

And if the end-points a; and b; of L; both Dbelong to A;, then each
continnum € e Mycp meets Ly along two ares (virtually, they may
cover L;)

0 ﬁL{ = L«L(t;) A L{(i'i’) 3

where 0 < #;+1 <1 and L;({;) denotes a subsegment of L; containing a;
and having length #;. Similarly for L;(i7).

In this case the range T; of pairs (¢,) is homeomorphic to an
isosceles triangle of vertices (0, 0), (1, 0) and (0, 1) in which the hypo-
tenuse is contracted to a single point.

It should be obvious that the correspondence between Ce M, cp
and the system of real numbers t; or pairs of real numbers (], t;') according
to whether L; meets A at one or two points, where ¢= 1,2, ..., n, is
one-to-one and continuous, and thus that it yields a homeomorphism
between M 4cp and the ball )n( T;.

i=1

Here is a simple corollary to lemma 5.2:

5.3. Let AC B be a pair of X. If A 50, then dim Mycp =
In particular, if B= Q(4,1), then dim M4cp = ord, X.

And the two lemmas 5.1 and 5.2 imply

5.4. The union

ordyB

C(X)= U Macs,

where A C B rung over all (fine) pairs of X, is a decomposition of the hyper-
space C(X) into balls Mucp.

§ 6. Decomposition of ((X) into balls 9. This section is
devoted to the proof that if we look upon each ball M5 as 2 cell and
if the metric ¢ in X satisfies the two conditions («) and (v), then the union
0(X) = | Mucn, where 4 C B runs over all pairs of X, is very close to
a cellular decomposition (for X aeyclic, it is exactly that).

0 The first lemma will be shown under the assumption of condition (o)
only.

6.1. Let AC B and D CE be two pairs of X such that A CDCECB.
If either A = D or E # B, then Mpcr s a ball lying on the surface of the
ball ZRA(:E‘

Proof. We shall consider three cases.

1. The case 4 = D=0 is impossible, because in this case B would
be a segment and, in view of ZC B and B = £ B, E would be a vertex of B.
But DCE is not a pair, because “the empty set C vertex’ is not.
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II. A= 0 = D. Here again B must be a segment and so DCFE is
either a pair ‘“vertex of B C vertex of B” or a pair “vertex of BC B”
or, finally, a pair BCB. But M4cs= C(B) is homeomorphic to the
triangle 7 with basis 1 and height 1 (cf. § 3) and in this triangle the set
Mpcr would be, respectively, either a side vertex of T or an edge of T
or a top vertex of 7.

TIT. 4 == 0. In this case B can be written in the form
n
B=A4Au |JL;,
=1

where each L; is a segment of X meeting 4. Denoting the empty set by L,
and re-ordering, if necessary, segments I, ..., L, we may write

!
D:AUQIJ‘L and E:AULJO'L17

i= i=
k<l<n and either 0 < k or I < a.

According to the notation of lemma 5.2, the set 7 is then either the
segment [0, 1] or the triangle of vertices (0, 0), (0, 1) and (1, 0) with the
hypotenuse contracted to a single point. Let us denote by (0); the point 0
in the first case and the point (0, 0) in the second, and by (1); the point 1
in the first case and the point of contraction in the second. As we have

where 0 <

n
shown in lemma 5.2, the family M.cp is homeomorphic to the ball X T
i=1

and it is not difficult to see that IMpcx is the ball

Wl [X TX [0 o X (0)a],
i=kt1

where any of the three expressions in the square brackets [...] may vanish

if, respectively, k=0, k=1 or [ = n. However, at least one of them

remains, and so Mpcx is a ball lying on the surface of the ball Mycp -
6.2. Let AC B and A’ CB' be two distinct pairs of X. If

(1) Mace A Maren # 0,

[(1)y X .o X

then there exist a finite number of pairs (for X acylic, only one pair) Dy C By
of X such that

(2) AU A CDeCE,CBAB for cach k
and
(3) mAcB ~ WA’CB' - ij mtchE]; .

Proof. Hypothesis (1) implies that there exists a non-empty con-
tinuum C such that i

(4) ACCCB and A'CCCHB,
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whence
(5) AvA"CCUBAB .
In particular,
(6) AVA'"CBAB.
Therefore
(7 Muceg n Macp {0eC(X): A A CCUBABY}.

We shall consider three cases.

I. A= 0= 4" In this case B and B’ are distinct segments and
since; by (5), they meet, they have a common vertex » (by the assumption
of (y), one only) and B ~ B’ = (v). Clearly, (v) is the only subcontinuum
of both B-and B’ and so

WMucs N Macw = (v) .
On the other hand, however, (v) C (v) is a pair of X and
(0) = My - '
The two equalities imply our lemma in the case under consideration.

II. A v A’ is non-empty and connected.
Let

(8) 813 85y ey S

be the sequence of all segments S= aa’ C B ~ B’ such that a e A— A’
and o' € 4’— A (if there are no such segments, as in acyclic graphs, things
become much easier).

In view of the connectedness of A u A’ and (6) there exists a com-
ponent B’ of B ~ B’ containing 4 w A4’. Let E be a subgraph of B’ obtained
by removing from B’ all segments (8) (but not their end-points). If X is
acyclic, & = E'. It should be clear that B is a connected subgraph of X.

Consider now subgraphs Di and By of X such that Dy is the union
of 4w A’ and of some segments from (8), and Ei —the union of E and
of the same segments from (8)

(9) Di=AvA uBv..uly, Ex=Foulju..ul;.
If X is acyeclic, then there is only one such Dy= 4 U 4’ and only
one By = B — X (
We shall .show that each Dy C By is a pair and that (3) holds true.
In fact, smcg a connected union 4 v A’ of two internal subgraphs
of X (one of which, however, may be empty) is still internal, then, in

view of 1.;he definition of Dy, Di is also internal. Hence to prove that
D C By is a pair it remains to show that

(10) (D, Br) < 1.
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But since A u A4’'C Dy and ExCB~ B’ by definition, we have
oYDx, Br) < {4 v A’, B~ B'), and so (10) will be proved if we show
that

(11) o{AvA", BAB)<1.

Inequality (11) is nearly obvious if either 4 or A’ is empty. Indeed,

if A'= 0, then
Ql(Ay B~ B')= sup Q(Ay ¥) < sup Q(Ay y)= Ql(Ay B)<1,
yeBNEB yeB

where the first equality follows from (6) and the last inequality from
the assumption that A CB is a pair and 4 # 0.

And if both A and A’ are non-empty, then (11) results from the
following sequence of inequalities:

MAdvA, BAB)= sup o(4v 4,y
yeBNB’

=min [ sup ¢(4,y), sup o(4’, y)]
yeBNB’ yeBnB

< min[sup ¢(4,¥), sup e(d’, y)]
yveB veB’

= min[¢(4, B), o'(4', B)]<1.

Thus we have shown that each Dy C By is a pair.
To prove (3) take first € ¢ Mp,cm,, where Dy C By is a pair such
that (9). Clearly,

ACCCB and A'CCCB'.

In view of the symmetry, it suffices to show that C e Macr . For
that purpose consider a segment I'= ab with ae A and be B—A4. If
beA’, then T either is one of the segments Sy, .., 85 or is not. If it is,
then T C €, and if it is not, then ¢ ~ T = (a) v (b). We may then suppose
that b ¢ B'— A’. But then b ¢ Bxy— D, and so C ~ @ (b, 1) is a subgraph
of X, because C ¢ Mp,cm by hypothesis.

Before proceeding to the converse implication, let us consider first
a segment § from (8). Let § = aa’' CB ~ B',andac A—A'anda’ e 4'— 4.
We shall show that if ¢ eMicp ~ Marcr, then

(12) either S~ 0= (a)w(a) or S8~nC=8.

Indeed, if 8 ~ ¢ contains a closed-open (in § ~ () subset containing
one of its end-points, say @, and distinet from both that end-point and
the whole 8, then € ~ @(a, 1) is not a subgraph of X, because S C @ (a, 1)
and ¢ ~ § is not a subgraph. Hence C ¢ Marcp .

Fundamenta Mathematicae LXII 19
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Equalities (12) are realized by (= 4 v 4’ and (= E v §, which
both belong to Macn ~ Marce , becaunse A v.A’'CA v A and A Ay
v 8 CE v 8 are both pairs Dy C Ey.

To complete the proof of (3) (and of the lemma) take C ¢ Macp
A Marep -

If 8;, ..., 8 are all segments from (8) contained in ¢, then put (9).

Hence D C ¢ CE; and we shall show that C e Mp,cm, . For that
purpose take a segment T = ab such that @ € Dy and b e By— Dy. Then
aedu A, because each §; has both end-points common with 4 v A4’,
and similarly, b e B ~n B'— (4 v 4’). Now, if a e d, then b e C implies
that ¢ ~ Q(b,1) is a subgraph of X, because C' ¢ Mucr and b e B— A.
And, similarly, if a ¢ A’. Hence C ¢ Mip,cx,-

TII. A u A’ is non-empty and not connected, i.e. 4 # 0 #* A’ and
A ~A"= 0. If (1) holds true, then, as follows from the inclusions

AUA'CBAB CQ4,1)nQ(4,1),

we must also have A CQ(4’,1) and A'CQ(4,1), ie. pi(d,4) <L
Since 4 and A’ are disjoint, both 4 and 4’ must be vertices lying at a dis-
tanece 1 from each other. By assumptions («) and (y), X must then
contain a segment D joining them. But D C D is clearly a pair and so,
by virtue of (7), the proof will be completed if we show that B ~ B'= D
And this is obvious, because if S a segment distinct from D one vertex
of which is, say, 4, then, by assumptions (x) and (y), for any point
2z eS8—(4) we have p(z, A’) < 1. In other words, = ¢ B'.

Remark. Assumption (y) was actually used in the proof of cases I
and IIT only. Hence (cage II), if A v A’ is non-empty and connected,
then our proposition holds true under the assumption of condition («)
only.

It is an immediate corollary to 5.2, 6.1 and 6.2 that

6.3. If X is a finite connected and acyclic graph, and the metric in X
satisfies conditions (o) and (y), then ’

0(X)= U Ducs,
where A C B runs over oll pairs of X, is a cellular complex.
6.4. The hyperspace C(X) is a polyhedron if and only if X is a finite
connected graph.
Indeed, if X is a finite connected graph, then by 5.2 and 6.2 its hyper-

space O(X) is a polyhedron. And if C'(X) is a polyhedrorn, then by Kelley’s
theorem ([4], theorem 5.4) X is a finite connected graph.

§ 7. Dimension of C(X). From now on until the end of the paper
we change the assumptions concerning the metric in X: we assume that
it satisfies conditions («) and (B).
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In this section we shall uncover formulas for the dimension of the
hyperspace C(X) and find the structure of the set

1) (0 e 0(X): dimeC(X) = dim C(X)}.

However, before proceeding to do that we must make a more de-
tailed examination of some subgraphs of X.

For the sake of brevity, an internal and acyelic subgraph of X con-
taining all internal vertices of X will be called a maximal fine subgraph
of X.

A simple induction argument leads to the following lemma:

7.1. Let X be a graph topologically distinct from both an arc and a simple
closed curve, and let A be a maximal fine subgraph of X. If B and D are
two other connected subgraphs of X, both distinct from 4 and such that
BC AC D, then

ordzX < ordsX and ordpX < ordsX.

Remark. If X is topologically an arc, then there is no maximal
fine subgraph 4, because there are no internal subgraphs at all. And
if X is a simple closed curve, then condition (8) does not apply to X.

As a finite graph, X may also be treated as a 1-dimensional simplicial
complex whose vertices are vertices of X and edges—segments of X.
Denoting the number of vertices of X by o, and the number of segments
of X by @, we then have the equality

d=1—a+a,

where d is the degree of connectivity of the complex X, i.e. the number
of edges which can be removed from X without violating its connectedness

(ef. [7], p. 87).
Let e be the number of end-points of X. The following lemma should
be obvious.

7.2. Let X be a graph topologically distinst from both an arc and
a simple closed curve. If A is a maximal fine subgraph of X, then
ord4X = 2d-t-e.

Finally, if C is a subcontinuum of X, then ordcX is equal either
to 2 if C is contained in the interior of some segment or to ordg X, where
is the maximal connected subgraph of X contained in C. Hence

7.3. If X is a graph topologically distinct from an arc, then

sup ordeX = maxordgX ,
CeC(X) E

where B runs over all connected subgraphs of X.
19*
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Since, by virtue of 5.4, the union €(X)= | Mucp is & decomposition
of the hyperspace O(X) into balls Macs,.then the dimension of C(X)
is equal to the highest of the dimensions of balls Mucp (cf. [3], p. 30)
and the set (1) is the union of the highest-dimensional balls Mycp.
7.4. If X is a finite connected graph, then

dim 0(X) = sup ord¢X = 2d+e= 2+ 2 (ord, X—2),

CeC(X) p

where v runs over all the ramification points of X.

In fact, if X is topologically either an arc or a simple closed curve,
then dimC(X) =2 and all three equalities hold true (cf. § 3).

And if X is topologically distinct from both, then an immediate
application of lemmas 5.2, 7.1, 7.2 and 7.3 yields the first two equalities,
and the third (like the first, but see the remark below) is contained in
Kelley’s Theorem 5.5 from [4].

Remarks. Note on this oceasion that the proof of the first equality
given by Kelley contains a gap. Namely, he considers a collection
Ay, A,, ..., Ay of connected subgraphs of X (which, as follows from his
argument, are all non-empty) and claims that ¢ (X) is the union of fami-
lies A; of continua for which 4, is the maximal subgraph. But this is
not so, because X clearly contains also subcontinua which do not contain
any non-empty subgraph of X.

The simple inductive proof of the equality

sup ordeX = 2 2 (ordy X —2)
cec(x)
Kelley apparently leaves to the reader.

Now assuming X to be topologically an arc or a simple closed curve
define ¢ to be the number 1, ¢ = 1, and for all other finite connected
graphs let ¢ be the number of all maximal fine subgraphs of X.

Clearly, if X is acyclic, then ¢ = 1. In general, however, ¢ > 1. For
instance, if X is a simple closed curve with a diameter attached to if,
then ¢= 3, and if X is a simple closed curve with two disjoint chords
attached to it, then g = 12.

7.5. If X 18 a finite connected graph, then the set (1) consists of ¢ balls
of dimension 2d+ e each and such that any two of them meet dlong a common
face containing X and proper for both.

Proof. If X is topologically an arc or a simple closed curve, then—
as follows from § 3—our theorem holds true. Suppose then that X con-
tains a ramification point v. As follows from the decomposition of ¢(X)
given in 5.4, the set (1) consists then of balls M4 which have the highest
dimension equal, by virtue of 7.4, to 2d-4-¢. And this number is attained,

©
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in view of 7.1 and 5.3, only if 4 is a maximal fine subgraph of X and
B=(@(4,1) = X. The number of maximal fine subgraphs of X is ¢
and so it remains to show that given two maximal subgraphs of X, 4 and 4',
the set Maicx ~ Marcx containg X and is a proper face of both M4cx and
Mycx. However, v e A ~ A’ by the definition of a maximal fine subgraph
and so we have the inequality 4 ~ A’ 5 0, which implies that 4 v A4’
is connected. Hence by 6.2 (cf. Remark following 6.2), 4 v A'C X is
a pair and
Macx N Varcx = Mavarex

because there is no segment S = aa’ with ac A—4’ and o' e d'—4
(see 6.2, case IT).

And by 6.1 (which was proved under assumption of condition (o)
only and so can be applied here), M ., 4cx is a ball lying on the surfaces
of both Mscx and M.ycx , and, clearly, containing X.

§ 8. Analysis of the 2-dimensional part of C(X). Now we
shall show (under the assumption of conditions («) and (B) on the metric
in X) that the closure Dcxyy of the 2-dimensional part of the poly-
hedron C(X),

Dexy = {C e C(X): dim¢C(X) = 2},

is equal to the union of all balls M4cp with 4 = 0, find its homeomorph
and make some analysis of it.

8.1. If X is a finite connected graph, then

Doy = U Macs,
where 4 =0 and B runs over all segments of X.

Proof. If € e Mucr, where A C B is a pair of X and A # 0, then,
by the definition of a pair and in view of conditions (o) and (B), 4 is an
internal subgraph of X containing a ramification point of X and B is
a connected subgraph of X such that ACBC@(4,1). Let 4,C A be
an aeyclic subgraph of A4 containing all vertices of X belonging to A.
Hence @(4:,1)=@(4,1) and so A4,CQ(4,1) is a pair. Clearly,
C e Ma,cou, 1y and since 4,, being acyclic, internal and containing a ra-
mification point, must be of order ord.X > 3, then by 5.3 the ball
Maycou, 1y has dimension dim My, cou, 1y > 3. Hence, in particular,
dim¢ 0(X) = 3, and so, by 5.4,

(1) Do COX)— | Mycn.
o#AcB

On the other hand, however,

(2) if ACB is a pair such that 4 = 0 and B is a segment of X, then
mACB C-DC'(.X) .
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Tn fact, Macz = C(B) is topologically equivalent (see § 3, ex. 1) to
a solid triangle T, and in this representation it is easy to observe that
if O is a subcontinnum of B which contains none of the end-points of B,
then dimeX = 2. But the set of all such C containg (in thig representation)
the interior of that triangle (actually, it is the union of the interior and
of the edge p(B) but without its ends) and so from this follows (2).

From (1) and (2) follows our lemma.

To find a bhomeomorph of De(x) start with a topological embedding
of X into a 3-dimensional euclidean space B

h: X—>E3,
and then, for each segment B, attach to the image h(B) a 2-dimensional
ball Macn (4 =0),
fa: Macz—>E,
along an arc ¢(B) lying on its boundary and in such a way that
felp(B) = h|B.

Moreover, suppose that any two added balls fB(Macn) and
fe(Marcr) (A =A"=0 and B and B’ are segments) meet if and only
if segments B and B’ meet and that in such a case the equality

I8(Macr) N fo(Macw) = W(B) ~ h(B)
holds.
The formal proof that the function f defined by the formula
fIMascs = fp for each pair 0=ACB
is a homeomorphism
I+ Do~ B

eagily follows from 8.1 and 2.1. Hence

8.2. If X is a finite connected graph, then Dox) 48 homeomorphic to X
with a 2-dimensional ball attached to each segment B of X along an are lying
on the boundary of that ball in such a way that any two distinct balls are
disjoint outside X.

In particular,

8.3. If v is a ramification point of X, then v locally separates Dox)-

Let P be an arbitrary polyhedron. By Er we shall denote the closure
(in P) of a subset of P consisting of all points p e P for which there exists
a closed neighbourhood V topologieally equivalent to a dise (= 2-di-
mensional ball) and such that p lies on the boundary of that disc.
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8.4. If X is a finite connected graph containing a ramification point,
then Eg(x) = X.
top
Prootf. Clearly, Hex C Doxy and so, by 8.1,
(1) BoxC U Mucp, where 4 C B runs over all pairs of X such that
4CB
A=0.

Consider the set Mycpy, where 4 = 0 and B is a segment.
As follows from § 3, ex. 1

(2)

if 0 ¢ M4cp and C neither is a point of B nor contains any vertex
of B (i.e. h(C) does not lie on the boundary of T), then C ¢ Bux).

Fig. 4

Now, if p e B= vw and v % p 3 w, then there exists an 5 > 0 such
that Q(p, n) CB. Hence Ql((p), 17) CMycp. But, as can easily be seen
in the triangle T (see §3, ex.1), the ball Q*((p), 17) is hbmeomorphie
under % to the triangle of base 27 and height 27, on the boundary of which
lies h(p) (fig. 3). Therefore

(3) ®(B) C Bz ,

because, moreover, no point of the set ¢(B), except for, perhaps, the
end-points v and w, is common to any other M cp, where A’ C B’ is
a pair such that either 4 # A’ or B # B'.

We shall now show that

(4) {€eC(X):ve0C B}C Eg, if and only if v is an end-point of X .

In fact, if v is an end-point of X, then any ball @XC, n), Where
veCCB, C+# B, and 0 <7< 1—6(C), is contained in Mycr. And,
ag is not hard to observe in the triangle 7', the ball Q(C, %) is homeo-
morphic under % to a quadrangle on the boundary of which lies 2(C)
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(fig. 4). Hence C ¢ B¢y, and since Eox) is closed and € has been any
subcontinunm of B distinet from B itself and containing v, we have

{060(X> 'I}EGCB}CEC(X) .

And if v is not an end-point of X, then », being a vertex, must he
a ramification point of X. Hence

Q0, 1) = iy,

where 2 > 2 and one of the vertices b;, say b,, is the other end of B,
b, = w. Let ¢ be a continnum distinet from both B and » and such that

Fig. 5

e CCBand 0 <9< min[é(C), 1—45(0)], and let p be a point Q_fqﬁ)‘,z, B
such that vp = C. By our assumptions on € and %, @(p, ) C vb,. As is
not difficult to see (cf. fig. 5), the common part

ﬂn(‘n)CQ(r,l) [} Ql(Cy 77)

is an n-dimensional ball consisting of all continua D such that veD
CQ(v,1), D ~ vb, is a subare of vb, containing v and of length &(D ~ vb,)
satisfying |8(D ~ vb,)—6(0)| < 7 (i.e. an arc whose other end is at a dis-
tance from p not greater than %), and D~ vb; for § = 2,3,.,nis a
subarc of vb; containing » and of diameter not greater than ». Hence
C ¢ Boxy-

Therefore (4) is proved.

Put

. { ®(B) if both end-points of B, v and w, are ramification points,
ACEB—
@(B) v {CeC(X): ve CCRB} if v is an end-point of X .

It follows from (2), (3) and (4) that Y4z is, in any case, topologically
an arc and that

(5) Yaics= Boxy n Mucs .
Let fscs be a homeomorphism
(6) fAcB: Y.icp—B
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which maps Y4cp onto B in such a way that if an end-point w of B is
a ramification point of X, then f,cp(w)= (w).

Since two sets M.ucp and Macp , where 4 = 0= A" and both B
and B’ are segments, meet if and only if segments B and B’ have vertices
in common (one or two) and in that case the common part consists of
those vertices (one or two), then, by our definition of homeomorphism (6),

facBMace N Marcn = facy|Macs » Marew
and

fues(Mucr o Marcr) = facs(PMucn) N farcs(Marcw)
= foca(Mics » Maren) .
Hence, by lemma 2.1, the funection
I ALCJBYACB‘_" LE?J B,
where 4 = 0 and B runs over all segments of X, defined by the formula
f1¥ucp = facn
is a homeomorphism onto %,J B = X. And since, by (1) and (5),ALCJBYACB

= Hgrx) , then this is the required homeomorphism
f Boxy—~X .

§ 9. Topological conclusions. This title is somewhat inadequate
as some of the ‘““topological conclusions” have already appeared before,
to mention only theorem 6.4, stating that the hyperspace 0(X) is a poly-
bedron if and only if X is a finite connected graph, or the formulas for
the dimension of polyhedron C(X) and the structure of the highest di-
mensional part of ((X) given in theorems 7.4 and 7.5. Nevertheless,
we still have to draw some conclusions, topological in character and general
in appearance, which form a natural end of this paper.

First we come to the following theorem-on the uniqueness of the
underlying continuum for the hyperspace C(X).

9.1. Let a connected polyhedron P of finite dimension be a hyperspace.

If AimP = 0, then P is a point and P = X = C(X).

Case dim P=1 4s impossible.

If Aim P = 2, then P is a 2-dimensional ball and, as such, it is a hyper-
space for both an arc and a simple closed curve.

And if dimP > 3, then it is a hyperspace for ome continuum only,
which, by theorem 6.4, must be a finite connected graph.

Proof. Indeed, if dim P = 0, then P, being connected by hypothesis,
must be a point, and then, clearly, P =X = C(X).
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If dim P > 0 and P is a hyperspace for X, then X cannot be a point
(see the case above). Hence, by theorem 6.4, X is a graph containing
a segment B. The ball MocpC C(X) is of dimension 2 (cf. lemma 5.2),
and so dimP = 2.

As follows from theorem 7.4, the only connected graph for which
the hyperspace has dimension 2 can be, topologically, either an arc or
a simple closed curve. The two cases were examined in § 3.

Finally, if polyhedron P is a hyperspace for X and dim P > 3, then,
by theorem 6.4, X must be a finite connected graph containing a ramifica-
tion point (for the only connected graph without any ramification point
is, topologically, either an arc or a simple closed curve, and for such
a graph the hyperspace is of dimension 2). Therefore, by lemma 8.4,

X = Ep and so X must be unique.
0op

The observation that if P is a 2-dimensional ball, then C(Ep) is
homeomorphic to P (cf. § 3, ex. 2), leads together with lemma 8.4 to
the following observation concerning those connected polyhedra of finite
dimension which are hyperspaces.

9.2. Let P be a connected polyhedron of finite dimension. Then P is
a hyperspace if and only if Ep is homeomorphic to a finite connected graph
and P = C(Ep).

Remark. If we could describe the structure of the polyhedron ¢ (Ep)
in topological terms and without involving functor C, then corollary 9.2
would turn into characterization of those locally connected continua of
finite dimension which are hyperspaces C(X) for some X, and so it may
be considered as an attempt toward this end. However, an inspection
of the structure of polyhedra which are hyperspaces, given in the present
paper, is too cursory to make such a characterization possible. Therefore
a somewhat deeper examination of the structure of polyhedra C(X),
wAhere X is a finite connected graph, seems still to be desirable, and the
aim of the next paper [2] will be to do this in the case of acyclic graphs,

9.3. For each k= 2,3, ... there are only finitely many %- dimensional
connected polyhedra which are hyperspaces.

Proof. As follows from theorems 6.4 and 7.4, if a %-dimensional
connected polyhedron P is a hyperspace C(X) for a continuum X, then X
must be a finite connected graph and the equality k = 2d4-e, Wl’lere d is
the degree of connectivity of X and ¢ the number of end-points of X,
must hold. But, for a given k, there are only finitely many connected
and topologically distinct graphs for which the equality k= 2d-- ¢ holds true.

The number »(k) of %-dimensional connected polyhedra which are
hyperspaces rapidly increases as k tends towards infinity. For instance,
¥(2)=1, ¥(3) =2, »(4) = 8, »(8) = 17, »(6) = 80, etc.
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What do the polyhedra which are hyperspaces look like? Deferring
the answer to this question till further research, let us draw here only
some immediate corollaries.

9.4. If a finite graph X is connected and contains a ramification point
(.e.,if X is not a single point and topologically it is neither an arc nor a simple
closed curve), then the hyperspace C(X) is not dimensionally homogeneous.

In fact, in such a case the polyhedron C(X) contains balls of different
dimensions and non-empty interior (relative to C(X)). Such are, for
instance, balls M4, where 4 = 0 and B is a segment of X, and My cow
where v is a ramification point of X.

From 9.4 it follows, in particular (cf. [1]), that

9.5. If a finite graph X is connected and contains a ramification point,
then the polyhedron C(X) cannot be convex in Huclidean metric.

Another corollary follows from 9.4 and from examples analyzed in § 3.

9.6. If a finite graph X is connected, then a (homological) interior of
the polyhedron C(X) is topologically homogeneous if and only if X is an
arc or a simple closed curve.

9.7. If a finite graph X is connected and contains & ramification point,
then the hyperspace C(X) is topologically prime, i.e. 0(X) is not a Cartesian
product of subspaces distinct from it.

Proof. It suffices to show that the polyhedron C(X) is not a Car-
tesian product of two subspaces distinet from if.

Suppose, a contrario, that ¢ (X)t= W, x W;, where W, and W, are

op

two locally connected continua, both distinet from C(X). Since O(X)
contains 2-dimensional balls of non-empty (velative to C(X)) interior,
W, and W, must contain arcs of non-empty (relative to W, or Wy, re-
spectively) interior. Let L; be the union of arcs L contained in Wi, 4= 1
or i= 2, and such that L = Int(L). It is not hard to see that the 2-di-
mensional part of C(X), i.e, by 8.1, the set Doxy= |J Macn, where
A =0 and B runs over all segments of X, is homeomorphic to I, X L,

Dc(x) = I/1 XL2 .
top

Now, in view of connectedness and local connectedness of Do(x)
cf. 8.2), both L, and L, must be connected and locally connected con-
tinua. However, Cartesian product of two connected and locally connected
continua is not separated by any of its points, and the set D¢(x) contains,
by 8.3, points of local separation.
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Note on metrization
by
P. R. Andenzs (Oslo)

1. Introduction. In [1] Alexandroff has proved the following
theorem:

A T,-space is metrizable if and only if it is paracompact and has
a uniform base.

A Dbase $ for a topological space X is called uniform if for each » ¢ X
and each neighbourhood U of # at most finitely many members of &
contain @ and intersect X\ U. The theorem quoted above contrasts other
metrization theorems in the fact that it requires neither a decomposition
of the base into countably many subfamilies nor the existence of a sequence
of open covers with ‘“nice” properties; cf. the theorems of Bing, Nagata-
Smirnov ([5], p.127), Arhangel’skil, Morita, Stone ([4], P. 196), and
Alexandroff-Urysohn ([2]). On the other hand, it invokes the explicit
requirement of paracompactness. In Section 3 of the present paper we
shall prove that a T,-space is metrizable if and only if it has o base which
is locally finite outside closed sets. (The necessary definitions are given
in Section 2). Bases that are locally finite outside closed sets generalize
in a natural way the concept of a uniform base, and, as we shall see, no
decomposition into countably many subfamilies is required in their
definition.

Section 2 contains the necessary lemmas for the proof of the metriza-
tion theorem in Section 3. As corollaries we obtain new characterizations
of metacompact and paracompact spaces. In Section 3 we also briefly
discuss how the classical metrization theorems of Urysohn ([5], p. 125,
[7], [8]) can be deduced from our theorem.

For notation not explained here the reader is referred to Kelley [5].
We recall that a topological space is called metacompact (or pointwise
paracompact) if each open cover has a point-finite open refinement. Finally,
if {#;}ses is a finite collection of covers of a space X, then A{;|7el}
is the cover consisting of all non-empty sets of the form (1) {4i] ¢ eI},
A,; € a‘ei.
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