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On distributive n-lattices and z-quasilattices

by
J. Plonka (Wroctaw)

0. In this paper we give a representation theorem for a class of
abstract algebras (which we shall call distributive n - guasilattices), having n
binary fundamental operations oy, ..., 0,, which are idempotent, com-
mutative, associative and distributive with respect to each other. A dis-
tributive = - quasilattice will be called a distributive n-lattice, if it satisties
moreover formula (5) below, which generalizes the familiar absorption
law for lattices.

We shall show that every distributive n-lattice can be treated as
a subalgebra of an algebra defined in a natural way in a product of distri-
butive lattices, and every distributive n-quasilattice can be represented
as a sum of a direct system (see [2]) of distributive n-lattices.

1. We shall call a distributive n-quasilaitice every abstract algebra
Q = (X; 04y ..., 04) Where n == 2 and oy, ..., 0, are binary operations which
satisfy the following four conditions:

) so;w=uw,

2 X0 Y =yoi%,

(3) (@0:y)0s2=10:(y0:2),
4) (wosy)osz=(v0;2)04(y0;2)
(i,7=1,2,..,n)

A distributive #-quasilattice we shall call a distributive n-lattice
if it satisfies moreover the following equality:

(8)

0, (as 02 (. ® 0p—1 (2 05 ) )) = .

It is easy to see that in the case n = 2 a distributive n-lattice is

a distributive lattice, and equation (5) coincides with the law of absorption.

Similarly, a distributive n-quasilattice in the case n = 2 is a distributive
quasilattice, as defined in [1].

Exavpres. 1. Let X = {a,, a5, ..., @4, 0} and let us define for

i1=1,2, .., n the operations o;as follows: z0; # = @, £0; a7 = 4;0; ¥ = a,

20*
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and z0; y = 0 in all remaining cases. It is trivial to check that the algebra
(X5 04y -ony 0n) i & distributive n-lattice.
9. Tet X be the real n-space, and define, for i=1, 2, ...,n,

[Byy ooy Bl Ot [y oeey Ynl
= [MAX (L1, %), - p MAX (D1, Yio1), MIN (B4, Y1), MAX (Tit1, Yit1)s e
max (@, Ya)] -
Again it is easy to check that (X; 05, ..., 0z) is 2 distributive n-lattice.
Now we shall develop some properties of distributive n-quasilattices
and n-lattices, which will be needed in the proof of the representation
theorem.
LevvA 1. In a distributive n- quasilattice the following equalities hold:

(1) (wory)os(mosy) =201 Yy,
(i) xog (205 y)0u (y 05 2) = woi(y 0 2),
(iii) @0y (oyy)oi (B0 Yoy 2) = wor(20; Y05 2).

Proof. By (1)-(4) we have

wory = (wor y)0;(£01y) = w0u(w0y Y)0: (y0y ) 0; Y = w0 You (205 Y),

proving (i).
Similarly, we get
wou (Y 0y 2) = (L 01 ) 0y (04 2) = @01 (2 05 ) 04 (205 2)04(y 05 2)
hence

%04 (w05 Y) 0¢(y 05 2)
= 204 (y 05 2) 0 (w05 y) = (04 (205 ¥) 0 (0; 2) 04 (y 01 2)) 01 (2 0 )
= 204 (205 ) 0:(®052) 04(y 012) = 00:(y0;2) = 04 (L 0;Y) 04(y 05 2)
proving (ii). Equality (iii) follows from (ii) by the substitution y = zo; .
For shortness let us write

fl'l 13, ’y) =T 011(50012( moikﬂ(mo'iky) "')

(1 <4y, ooy i < nand all 4°s are distinet).
Observe that for evety permutation p,, ..
we have

(iv) Sty v 0@
and, moreover,
(v) Sy

LeMMA 2

., px of the letters 1,2, ...,k

f1p1a~~ ’in @, y)

W%y Y07 2) = [, ..

. Bvery operation fs, ...

7?/) 05 fh 4,,(02,.’3) .

z, y) i8 associative.
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Proof. At first we prove the formula
(6) SER |
In the ease k= 2 we have
Frnial Frniale, 1), 2)
= (zoun(z 05, 9)) o;l((m 04, (205, ) 0f2 z)
= 04, (%04, Y) 04, (¥ 04, 2) 04,(% 05, %) 04, (X 04, Y 01, 2)
= @ 03y(@ 04, Y 04, 2)

(the last equality here follows from (iii)). Assume now that (6) holds for
all sequences of indices with the length < k—1. Then, with the abbrevia-
tions I == [, ., 1], J = [fyy --r, 1] and K = [, ..., tx—1] We have

fI(fI

;'.‘/)y'-')*“woﬁ(mou (w05 Y045 2). ))

2 Y),8) =iz, y) oy (ff(w,.y) o.»gt...(fI(m, Y) 0iy 2) )
= f1l(@, ) 0i (fr(@, ¥) 03 (. Frl@, ¥) 03, 2) )
, ¥)) 04 ((m 0iy fr(2,y) 04, 2) )
= %0y, (f,(a;, ) oi,( frlo, y) 0s (...(f,;(m, ¥) 04, 2) )
=2 oi,(f,,(m, 7) oﬁl frm, y)os, (...(f; (@, y) 04 2) )
= 205, f7(%, Y) 01, fs(®, Y 05 2) = @03, frl@, ¥) 03, ® 04, JH{®, Y 04,)
o = frlz, ¥) 0n, f1(®, ¥ 04 2) = fr(®, T 04 Y) 01, fE(®, £ 04 Y 04, 7)
= f(e, (204 Y) 04 (%04 Y 04 2)
= firs iz o 0(%)

txa(5 304, (804, Y) 0, (204, Y 05 2))

(‘7" (27 fJ 'y ?/)) O (5” 04y fJ

(£059) 04, (2045 Y O'ikz>)
= fiparts o

= fipsize ina{®, B 05 (204 Y 04,2))

== fik—x,ig, [, ‘ik—:,‘il(w) z Oiky Oig % )
= Farsvinin-ainin(®) Y 04 2) = fur, 0@, Y 05, 2)
thus proving (6).
Now we shall prove the formula
(m - frlz, frly, 2)) = = oil(w 0y (- (% 04, 4 04, 2) )

(where we preserve the abbreviations used above), which together with (6)
gives the desired associativity. In the case k = 2 we have

fihil($! fﬁ.ﬁ(?] s ® ) =& 0i1(m Oiy (y Oiy ?/ 03y z)))

=05 (® 03, Y) 05, (05, Y 05, 2) = # 04 (#0455 y 01 Z) ’
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as needed. Assume now that (7) holds for all sequences of indices with
the length not exceeding k—1. Then, using (v) and the inductional assump-
tion, we have

frlz, f1ly, 2)) = wo, (f.l(ifa y) 04, folew, frly, z))) = 804 [5(2,Y) 0, f5(2, 4 05,2)

and this equals fi(#, y04,2) as we have just seen in the proof of (6).
Observe that (6) and (7) imply

Fr(frlz, v),

for every sequence I of indices.

(vi)

"5) = fl(fl(wy z); y)

Leayma 3. For every sequence I of indices, and every i=1,..,n
we have

fr(@o:y,2) = fr(z, #)oi frly, 2) .

Proof. We use induction with respect to the length of I. If it is
equal to 2, then we have (with I = (i, 4,))

f1(@0iy,2) = (w0iy) 0iy ((woiy) 04 2)
= (©0; ) 04, (w01, 2) 0 (y 04, 2))
= (204, (204, 2)) 04 (€04, (§y 012 2)) 05 [y 04, (304, 2) 04, (y 011 (3 04, 2)))
= (204, (£04,2)) 04 (1 05, (404, 8) 0, (3 04, 2)) 05 (y 04, (4 04, 2) 04, (® 05, 2)) 05

03 (Y 04, (4 04, 2)) 04 (204, ¥ 04(w 04, 2) 04, (y 04, 2))
= (04, (204, 2)) 01 (§ 05, (y 0, 2)) 04 (w05, y 05, (@04, 2) 04, (¥ 04, 2)
= (205, (204, 2)) 0 (y 04, (y 03, 2)) = fr(®, 2) 01 fuly, 2) ,

as needed.
Now assume that the lemma is true for all sequences of indices with

the length not exceeding ¥—1, and let I = [i, .., 4]. Then we have
With J = [4, ..., 4] and K = [is, ..., 4_.])

(mory)os, fr{wosy, 2)
04y (fJ(m; 2) 01’fJ(?/7 z)) '
= (wow, fr(w, 2)) 0:(w0s, f1(y, 2)) 0i (y 04, fi(w, #)) 0sy 0s, faly, 2)) -

(8)  filwoiy,2)=

= (2 0;9)

The inductional assumption implies

9) 204, f5(y,2) = oy, iz, 2) 0y fily, ),
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because
zoy, fi(x, 2) = woyfi(x0;y,2)
= 204fx(104 Y, (204, 2) 04, (4 05.2))
= fx(@04y, @05, (£042) 04 (Y04 2))
= fe( 04y, 705 (y 04 2))

= 20,fs(y,2) .
From (8) and (9) we get

Jilwosy,2) =
= (w0s, fo(m, 2)) 0: (2 04, f5(y, 2)) 05 (y 01, fsl@, 2)) 04 (y 01, Fr(y , 2))
= (2 0sfs(@, 2)) 01 [ 01, fol®, 2) 04, 5y, 2)) 01 [y 04, f5(®, 2) 04, fi(y, 2)) 05
0: (g o4, frly, 2)) 05 (2 04 y 04, fr(w, 2) 04, Frly, 7))
= (@05, fs(®@, 2)) 04y 04,f5(y, 2)) 01 (w04, 5 04, fs(2, 2) 01, fly, 2))
= (@oi fsl, 2)) 0i(y 04 fily, 2) = frlz,2) 0s f1ly, %) ,
thus proving the lemma.

LEMMA 4. fip . a(®0:y,%) =20y
(i=1,2,..,n).
Proof. We have

Foonl@osy, o) =f, .,

2) 05 fr(y,

and  fie,.a(®0:Y,y) =x0s Y

(05 Y, )
= fiyi=Li41,.n (801 Y, (205 9) 053)
=fi.., (B0 Y, 00;Y)=m0;9 .
The proof of the second formula is similar.

Levma 5. If for some elemenis z,y,u,v of a distributive n-quasi-
lattice Q@ and some ©,j < n we have f,,(w,y) =z and f“ %, v) = U, then.

k=1,2,

T=1,441, ey

i1, 141, vy

Jis@oru,yoxv) =204 for
Proof. By lemma 3 we have
(@ 05 ) 04 ((« 01, %) 05 (y 01 ¥))

= (5 04 ( 05 y)) 0k (% 01 (z 05 v)) 0x (W 0; (u 0 )} 0k (u 01 (w 05 v))

Jigl@ onu, yorv) =

= (@ 0s(z 07 9)) 0% (w 04( 05 v)) 0 ( 04 (% 05 ) 01 (0 05 (w0 0; v)) op

ox (= 04 (m 05 v)) 04 (4 05 v) 03w 0 (1 05 9) 04 ( 05 )
= wox{zoi(@0;0)) o, (104 (10;)) 0 w0k (w01 (w0;) 01 (1 059) 0104 (%01y) 04 (205))
= @0k % 0k (% 04 (% 05 V) 0 (w 05 ¥) 0; 1 05 (4 0;9) 04 (& 05 )

= 20k % 0k (% 04 (% 055 04 % 04 (4 05 ) = 2 0 U 0p (& 0 1) = W 0 % .
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Liemma 6. If for some elements x,y of an n-quasilattice Q and some
Gy, iy, Tg We have

Fial, ¥) = faial®, y) = Jiul®, y) =@,
then
T = (56 Oy ’.'/) 04y (wois y) .

Proof. We have

&

I

T 03y (% 04 y) = (m 04y (-fl»' (2 y)) 04,(2 04, ?/)
& 03y (%04 y) 04, (2 04, y)

(w 03,y (w 0is :’/)) 03y (m 0Oiy ?/) 0iy (.CU Oy y)

I

Il

({ﬂ 04, (% 04, y)) 05, (2 044 f'/) 04, (% 04, ?/) 04, ((9"l 0iy 1,/) Oiy (» 04y y))
= ($ 04 y) 04y (w Oiy ?/) 04y ((.’E Oig ?/) 01y (m Oiy y))
= (%04, y) 04y ((l? (2 !I) .

LEMMA 7. The following equalities hold:

fuimwoiy,mo;y)=w2o0;y, fislwo;y,z0iy)=wm0;y.

Proof. In view of (iv) it is enough to prove one of these equalities.
‘We have

fiil@osy, wo;y) = (2 0:y) 0:((® 0:9) 0; (@ 05 9)) = (2 0:Y) 0:(x 0;y) = w 0: 9.

2. In this section we prove the representation theorem for distributive
n-quasilattices and distributive n-lattices. Let us denote by N° the set
{1,2,...,n} and by J the system of all subsets of N containing 1 and
different from XN

Clearly, J has m = P | elements, and we may number them in
an arbitrary but fixed manner with numbers 1, 2, ..., m. We define now
an algebra P as follows: the carrier of P is equal to IPJ LD, where for

€

each I ¢ 3, I'P is a distributive lattice, with the fundamental operations
and ~. The fundamental operations o, ..., 0, of P are all binary, and
are defined by '

(@ ooy Tm] 06 [Y1y ooy Ym] = [ Y1y -y Tm &m Ym] ,

where rexyr=a vy if ielr and oy ey = & ~y otherwise. (Here Ix
is the set with number % in 3.)

We prove now the following

THEOREM L An algebra W= (X; 0,,...,04), 0 =2, is a distributive
n-lattice if and only if W is isomorphic with a subalgebra of some algebra B,
as defined above.
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Proof. The sufficiency is trivial. The necessity in the case n = 2
is trivial too. To prove the necessity for the case n >3 we introduce
n(n—1)/2 relations R;; in the set X, defining: @Ry if and only if fis(z, ¥)
= and fiiy,2) =y (for 4,j ¢ N, ¢ j). Lemma 2 implies that every
relation Ry is an equivalence, and from lemma 5 it follows that the re-
lation R;; is an equivalence, and from lemma 5 it follows that the re-
lations Rj are congruences in A. Let [z]y; be the class (modRy) de-
termined by # ¢ X and consider the mapping & —>([%he, [®]is, ey [BIn—1,n)-
This mapping is an imbedding, which follows from lemma 6, and it results
that the algebra U can be isomorphically imbedded in the product
P (U/Ry). (Note that by lemma 7 the operations o; and o; coincide in

7

A/Ry;, so we may under circumstances treat /Ry as an (n—1)-lattice.)

Now we may consider in every algebra A/R; congruences Ry with s, ¢ 5 1,

and similarly as before, we may imbed %/R;; in the product P (U/Ry;)/Ra:.
8,

Collecting these imbeddings together we obtain an imbedding of A into
the product P P (U/Ry)/Rs. (Note that in the factor (U/Ry)/Re of this
i st

product o; = 0; and 0s = o;.)

Proceeding in this way we finally obtain an imbedding of U into
a produet L of distriburive -lattices, in which the fundamental operations
03, ..., 0y can be partitioned in two classes, 88y (04, ..., 04) a0A (04414 +oey 04,)

such that every two operations of the same class coincide.

Note that if T = (4y, ..., %) C N, and N\I = (4x+1, ..., tn), then there
exists a factor of L in which o; = ... = 04, and 04, = ... = 0;,. In fact,
the algebra

(s (W Rs1) [ Risss) oo/ Rissiaf Bisatinaf oo/ Rinosrn)

is clearly such & factor.

If I = (4y,..,%) is a subset of N containing 1, then by I; we shall
denote the set of all factors of L such that oy =0, (j=1,2,..,k) and
0y =104, (J=k+1,%k+2,..,n). If now for Bel; we define z vy
= 70,y and £ ~ ¥ = x 04, y, then we obtain an algbera with two fundamen-
tal binary operations. Observe that this algebra is a lattice. In fact, in
view of (1)-(4) it is enough to show that # = z u (z ~ y), but this results
from (1), (5) and Lemma 1, (iii) as follows:

8= 2045 0s(... (% 049)...))

=g oﬁ(w 0y [+ + {04, (% 0igaa(er (& Oty y)...))
Tk times

=& Oi'l(m Oippyy) = o v (@~ y) .
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If we now define, for I C N containing 1, L ag the product of all
lattices in L;, each taken as many times as it appears as a factor of L,
then we get clearly

L=pI®
I

and this proves theorem I.

Remark. If in this proof one replaces the word ‘lattice” by
“quasilattice”, and do the same in the statement of the theorem, then
we get a representation theorem for distributive # -quasilattices. However,
the following characterization of distributive #-quasilattices seems to
be simpler:

THEOREM II. An algebra W = (X; 01, ..., 0an), n =2, 18 a distributive
n- quasilattice if and only if it is the sum of a direct sysiem of distributive
n - lattices.

(For the definition of the sum of direct systems of algebras, see [2].)

Proof. The sufficiency is nearly trivial (cf. theorem 3 of [1]). The
necessity follows from theorem 3 of [2], as the operation fie ... (®,¥)
satisfies the conditions characterizing the partition functions, which
follows from (1), lemma 2, (vi), lemmas 3 and 4 and (v).
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Some remarks on sums of direct systems of algebras

by
J. Plonka (Wroctaw)

0. Introduction. In this paper we give some additional remarks
concerning the notion of a sum of direct system (with the least upper
bound property) of abstract algebras defined in [1]. At first we recall
the following definition:

Let 4 be a direct system of abstract algebras of a fixed similarity
type without nullary fundamental operations, indexed by elements of
2 partially ordered set I, the ordering relation of which has the least
upper bound property. Moreover, we assume (which is not an essential
restriction) that the carriers of the algebras s (¢ ¢ I) of this system are
mutually disjoint. The sum S () of the system 4 is an abstract algebra
of the same similarity type as the algebras %;, the carrier of which is the
sum of the carriers 4 of all algebras of the system 4 and whose fundamen-
tal operations are defined by .

B, ..., Tn) = Ft(‘pix.in(wl)_’ ey 'pim‘o(wn)) 3

where @, € Aiy, ..., %o € Ai,,y o= Lb. (4, ..., ), {F:} is the seb of funda-~
mental operations of the algebras in the system #, and g; are the canonical
homomorphisms of #.

Let us also recall the definition of a P-funetion (partition function)
of a given abstract algebra U= (4,F) without nullary fundamental
operations.

A mapping f: A2— A is called a P-function if it satisfies the following
conditions:

(1) f@,8)=q,

@) fle,fy,2) = e, fz9) 5

(3) Ff @, 9),2) = fle, fly,2) ,

(4) [P @1y ey #0), 9) = B (@1, 9), oy f(2n, 9)

(5) FIE @, ooy @), 22) = F(@yy s ) (L<E<0),
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