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is a continuous non-decreasing function on I with @,(0) = @,(0) = 0,
then the set {py(z)— gy(®): @ e B}, transformed affinely to lie in I, has
property (5). By giving an example of a Hamel basis with property (1),
the author has shown [1] that if & has property (1), then {o—y: ©,y e B}
need not have property (5).

Tn order to show that (3) does not imply (1), it suffices to observe
that N. Lusin’s argument [3] for the existence of an uncountable set K
with property (3) works in a Cantor set 0 contained in I with the relative
topology: there is an uncountable subset of ¢ such that if {y} is a count-
able dense subset of ¢ and O; is an open set eontaining y:, i=1,2, ..,
then card (E— |J 01) < .

1

The purpose of this note is to construct an example to show that (5)
does not imply (3). In our construction we need to assume the continuum
hypothesis.

Congtruction. Let {#} and {u.} be well orderings of the sequences
@ = {z;} of elements of I and the (non-trivial) non-atomic Baire measures u
on I, where each « has countably many predecessors. Let I, De a fivst
category F'-sigma which supports u, so that M, = L<J Fpis o first category
-sigma. Denote by ¥ the set of non-negative non-gfaomic Baire measures v
on I such that »(I) = 1. Let J, be a Cantor set in I— My, let », be an element
of ¥ which lives on J,, and let ¥N° = {N3} be a sequence of scgments such
that o} € N} and X #,(N3) < 1. There is a Cantor set K, in J,— Ltj NY.
Let §, be an unéountable subset of K, which satisties (1) with respect
to the space K,. Suppose that Jp, v, N, K, and S; have been obtained
for # < a such that Jp is a Cantor set in I—Mp v (Uﬁ.Ky), g is an element

7<

of V which lives on Jj, N” is a sequence of segments N% such that «f ¢ N
and X v(N%) < 1, Kj is a Cantor set in Jy— |J N}, and 8p is an uneountable
i i
subset of K which satisfies (1) with respect to the space Is. Then it
is clear how to obtain §,. Let B = | S.. If w = 2°, then 8, C (I— | N%).
@ k3
If p= e, then |J 8p is a subset of I—Fs, which is a set of u, meagure
B=e
zero, and uu(Sp) = 0 for each f and, hence, u(H) == 0.
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Polynomial factors of light mappings on an arc

by
Sam W. Young (Salt Lake City, Utah)

Introduction. In this paper we characterize light mappings of
an arc onto an arc by a factorization property. It is shown that a mapping
of an arc onto an are is light if and only if it is topologically equivalent
to a real valued continuous function f of [0, 1] onto [0, 1] such that f
can be factored f= Pg= P(g) where P is a polynomial and ¢ is arbi-
trarily near the identity. Only techniques of classical real variables are
employed.

DerFmviTioN 1. If f is a mapping (continuous funetion), then f is

light if and only if for each # in the range of f, f (wl) iy totally disconnected.

The class of light real-valued continuous functions on an interval
includes nowhere differentiable functions and nowhere monotone functions.
The latter type was treated, for example, by Garg in [1]. There are also

continuous funetions f such that each inverse set f(a;) is a Cantor set.
An interesting example of a function having all three of the properties
just mentioned was described by Jolly in [2].

DEFINITION 2. Tf f is a continuous function of [a,b] onto [¢, d],
then f= f,f, is a factorization of f, which means that there exists an in-
terval [a', b'] such that f, is a continuous function of [, b] onto [a’, b']
and f; is a continuous function of [a’, '] onto [¢, ] and for each # ¢[a, b],

fl@)=H (fz(m)) .

TaEOREM 1. If f s & continuous light function of [a, D] onto [c, d]
and &> 0, there exists a factorization f= Pg such that P is a polynomial
of [, b] onto [c, d] and g is & continuous function of [a,d] onto [a, b] such
that

lg@)—x|<e for all wela,b].

We will first establish four lemmas.

DErINITION 3. If f is a continuous function, V(f) = {t: there exists
an open interval Q containing ¢ such that f(x)—f(t) does not change
sign on £ [, oo) A domain of f or on £ A (— oo, ] ~ domain of f}.
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LevMa 1. If f 48 @ continuous function on [a, b, then V(f) is dense
in [a, D).

Proof. Suppose that £ is an open interval lying in the open inter-
val (a,b). If f is monotone on 2, then 2 CV(f). Suppose that f is not
monotone on . There exist ¢, d 2 such that ¢ < d and f(c) = f(d).
f must have a relative maximum or a relative minimum between ¢ and d
and such a point belongs to V(f).

LemMA 2. If f is & continuous light function on [a, b] and a, b e V(f),
then there exists a partition & = B, < & < ... < @y = b such that

F (@51, 2)) = [min {f(@;-1), f(@4)} , max {f(@is), fl@)}]
1=1,2,..,n

Proof. Let ayef (max f(m) The sequence {a;} iy defined by the

<z<h
following relations: If ¢ is odd,

@i, = least element of ™ min f()) .

a<T<Yy
If 4 is even,

least element of 7' max f(a)) .
asE<a

@iy =

Now ¢y =z a, 2, > ... >0>
(@), ... >f(¢). From the way {a;} is defined it follows that f(x) = f(a)
for all ¢ < o < ¢. Since f is light, ¢ = a.

Because aeV(f), there exists 6 >0 such that f(x)—f(a) does not
change sign in [a, a4 6]. There exists # >0 such that a < @pi1 < g
< a-+0. From the way {a:} is defined it follows that either f(as) or f(ant1)
= f(a) and therefore either a, = & or an1;= a. So finally we have a finite
sequence @ => @y > ... > ¢; = @ and in fact @, >4, > ... > a;= a since f
is light.

We can similarly obtain a finite sequence aq < b; < b, < ... < by = b.
The composite of the two sequences a = a;< ... < @y < by < ... < bp=b
forms the required partition.

LemMMA 3. If f is a continuous light funotion on [a,b] and &> 0,

there ewists a partition a =0, < < B < ... < B =1 of mesh < e such
that

a for some number ¢ and so f(ao) flay),

F((@i-1, 2)] = [min {f(w;-1), f(@e)} , max {f(@s-1), f(m)}],
t=2,3,..,n—1,
fl@,) = either max f(m) or min f(x)
a<T<: a<T<Ty

and

f(zc.,,_l = either max f(m) or min f(w)
o By <@ Tp—1 <<
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Proof. By Lemma 1, there exists a partition a=y, <y, <
< Yxr=b such that y1—yi1<e (i=1,2,., k) and 4 e V{f) (i=1,2, ...
., k—1). Let @, be a number such that & < 2, < ¥, and

If (@) —F(a)] = max |f(x)—f(a)|.
0<z<yy

Because of the lightness of f, #, > a. If #, = ¥,, then no further partition
of [a,y,] is necessary. If o, < y;, then », ¢ V(f) and
f(w) = either max f ) or min f(z).
a<z<Ty
We now similarly choose a number z from [y,_i, b] so that z ¢ V(f)
and

fle)=

either max f(a;) or mm @)
S
Now we partition each of the intervals [2, ¥,], [¥n—1,2] and [y, ¥i]
1= 2,38, ..,n—1 according to Lemma 2. The tefinement thus obtained
is a partition with the required properties.
Levma 4. Suppose that n is a positive integer, z;—, < vy and y;_y Ys

(t=1,2,..,n). Then there exists a polynomial P such that P ()=
(t=10,1,..,m) and P is monotone in each of the intervals [w;_i,x]
(i=1,2,..,n).

This was proved in [4].

Proof of Theorem 1. Let a = o, < & < ... < @y = b be a partition
a8 in Lemma 8. y, = opposite end of the interval f([a,x]) from f(z,).
Yn = opposite end of the interval f([an-i,b]) from f(z,—i). ¥i=f(®1)
(1=1,2,..,n—1). Now let P be a polynomial as in Lemma 4. Let P
denote the contraction of P to the interval [w;_i,m| (¢=1,2,...,n).
The function ¢ is defined to be g(x)= P;* f(x) for all w;;<ow <o
(t=1,2,..,n). g is consistently defined and continuous because g(ws)
=Py f(wt)-— P (ys) = wiand g(@:) = Piaf(we) = Prb(y) =mi (6=1,2,.

«.y —1). P is onto [¢, d] since one of the numbers {y;} must be equal

to ¢ and one of them must be equal to d. g is onto [a, b] sinee ¢([®s—1, #])
= Py f([@i1, 2i]) = -P—l([('/:—l’ Yi]) = [®i-1, 2] (‘b“ 2y ey ). Alsoif ;.
< @ < @, then #;; < g(#) < ¢ and 50 |g(w)— 2] < e. Finally, if 2, <@
< @4, then

P(g(@) = P(PT{f(@)) = P(P7(f(2))) = f(a) -
and the theorem is prowved.

We will consider now the converse of Theorem 1. Suppose that f
is a continuous function of [a, b] onto [e¢, d], ¢ < d, which is not light.

-1
Then there exists a #e[e, d] such that f(2) contains a nondegenerate
closed interval ¢. Suppose furthermore that there exists a factorization
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f= Pg as in Theorem 1 with |g{z)—@| < 1/2 length of 4 for all  ¢[a, b].

- -1 — - -1
iC f(;) =g 1P(;). Since P(,lz) ig finite, then i C g () for some #, ¢ [a, b].
Therefore there exists an 2, e such that |g(w,)— | > 1/2 length of 4.
A contradiction has been reached and so the converse of Theorem 1 is
proved.

We can now state Theorem 1 together with its converse and do so
in glightly more general terms.

TeEorEM 2. If T is @ mapping of an arc onto o non-degenerate are,
then T is light if and only if T is topologically equivalent to a mapping f
of [0,1] onto [0, 1] such that if & >0, lhere ewists a factorization f== Py
where P is o polynomial of [0, 1] onto [0,1] and g is a mapping of [0,1]
onto [0, 1] such that

lg@)—x| <e for all we[0,1].
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Multiple complementation in the lattice of topologies*

by
Paul S. Schnare ** (New Orleans, Louisiana)

1. Introduction. Hartmanis [4] showed that in the lattice of
all topologies on a finite set with at least three elements every proper
(i.e., neither discrete nor trivial) topology has at least two complements.
In the light of Steiner’s result [7] that the lattice of topologies on an
arbitrary set is complemented, the question of Berri [1] in this journal
may be rephrased as follows. Does every proper topology on an infinite
set have at least two complements? This paper answers the question
affirmatively. Further evidence of the pathological nature of the lattice
of topologies is the result that a non-discrete T, topology never possesses
a maximal complement (or a maximal prineipal complement). The result
of Hartmanis above is sharpened. It is shown that every proper topology
on a finite set with n > 2 elements has at least #—1 complements. Finally,
utilizing these results it is shown that every proper topology on an infinite
set actnally has infinitely many principal complements.

2. Basic facts. The paper of Steiner [7] provides an ideal reference
on the background material for this paper. It is possible to quickly outline
the basic facts needed here. If (X, f) is a topological space on the set X,
then the topology f consists of the open sets. (Note: Hartmanis [4] con-
siders the closed sets.) If ¢, and ¢, are topologies on X and #, is a subset
of ¢,, then ¢, <%, and under this partial order the set of all topologies,
Z, on a fixed set X is a complete lattice with greatest element 1, the
discrete topology, and least element 0, the trivial topology. If ¢,? e X
and: tvt’ = 1 while tAt' = 0, then ¢’ i3 a complement for 1.

A maximal proper topology is an ultraspace. Given a filter § on X
and a fixed point # ¢ X one can define a topology S(z,F)={4CX:
zed=>A4 eF). Afilter U on X with the property that A v B e U implies
A €U or BeW is an ultrafilter. An ultrafilter of the form U = {UC X:
p e U} is principal and denoted U(p). An ultrafilber on X is principal

* This paper is part of a doctoral dissertation written under the direction of
Professor M. P. Berri of Tulane University of Louisiana.
** The author holds an NSF Science Faculty Fellowship.
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