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One-point compactifications
of intuitionistic locally compact spaces

by
A. S. Troelstra* (Amsterdam)

1. Introduction. Brouwer introduced in his paper [1] the so-
called located compact spaces; they were described axiomatically by Freu-
denthal in [4]. In [6] an axiomatic treatment for a more general class
of spaces was given.

By specializing this treatment for locally compact spaces a non-
metric axiomatization was obtained, analogous to Freudenthal’s non-
metric axiomatization of [4] for the located compact spaces.

For locally compact spaces, one can try to congtruct one-point com-
pactifications. Professor J. de Groot suggested to the author the possibility
of a simplified proof of the adequateness of the non-metric characterization
of locally compact spaces in [6] by means of the one-point compactification
and Freudenthal’s axiomatic characterization of located compact spaces.

To this purpose the one-point compactification has to be con-
structed metrically. This construction is executed in this paper and is
fairly complicated. Once the one-point compactification i3 available,
the adequateness of the axiomatization is easily checked.

As a compensation for the lengthy construction of this compacti-
fication, the elaborate constructions of [6], 4.2.3. and 2.3.12 are no longer
necessary for the derivation of the axiomatization; a fairly simple proof
of [6], 4.4.1a is obtained as a byresult (theorem 4.6).

2. Notations and generalities.

2.1. Intuitionistic notions not explained in this paper can be found
in [5]. For most topological notions, we can take the usual definitions.
However, classically equivalent definitions need not to be so intuitionistic-
ally, therefore some of the more important notions in intuitionistic
topology are explicitly defined in this section.

* Part of the research for this paper was supported by a grant from the Nether-
lands Organisation for the Advancement of Pure Research (Z.W.0.).
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2.9. NOTATIONS. N denotes the natural numbers, zero excluded.
3,4,k 1, m,n always stand for elements of N. Denumerably infinite
sequences of objects @y, dy, ... are written as {(Guwn. {X: i eI} denotes
a species of objects Xi, indexed by a species I. d, &, 7 always denote
positive real mumbers.

The restriction of a mapping f to a species V is denoted by f|V. A spread
{0, 9 is a spread with gpread law © (identified with the species of admis-
sible sequences) and complementaiy law & (ef. [5], 3.1.2).

9.3. DEFINITIONS. A topology on a species V (topologies will be denoted
by T, T, ete.) is a collection of subspecies of ¥V which contains @ and V,
and which is closed with respect to finite intersections and arbitrary
unions.

A topological space (to be denoted by greek capitals I I, 4, ete.)
is a pair <V, I, T a topology on V. The elements of ¥ are the points
of the space. Speaking about a given space (V,I), the complement of
WCYV (denoted by W% is the species V—W.

W is called secured it W contains a point.

The elements of T are the open sets of the space.

We define for any space I'= <V, T> and any peV Tp:

WelprpeWel.
W is a neighbourhood of p it (AU « T)(UCW).

PpeW VU eTAg(ge UnW).

W is called the closure of W, and the points of W~ are the closure
points of W. W is closed if W =W. VU W= (Vv W)

Interior W (or Int W) denotes the maximal open pointspecies con-
tained in W.

A mapping f from I' into 4 is continuous if the counterimage of an
open species of 4 is always open in I

2.4. DEFINITIONS. {Vy: 4 e I} covers Wit WC | (Vi de I} {Vi: i e N}
is called a star-finite covering if W;= {i: Vi~ V; # @} is a subspecies
of a finite species for every j e N.

2.5. DEFINITIONS. A metric space is a pair (V, g consisting of a spe-

cies V with an apartness relation 4t and a mapping ¢ from ¥ XV into
the real numbers such that (p,q,reV, WCV)

() e(p, q) >0 piyg,

(0) elp, g KO,

(e) e(p, q) = o(q, p),

(@) o(p, @) > olp, ) +0lr, @)

i ©
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We put
Ule, W)= {g: Tp e W(o(p, ) <)}, Ule,p)="TUle, {P}) -

U(e, W) is said to be an &-neighbourhood of W.

The topology associated with g in the usual way is denoted by T(g).
To the metric space ¢V, g) corresponds therefore the topological space
¥, %(e)>. In many places where confusion is not to be expected, we
simply identify <V, ¢} and <V, T(e)>. .

2.6. DEFINITIONS. I'=(V,%y. Let WCV. Then I"=<(W,3I,
Y= {W:TAX W' =W ~ X & X I} is a topological space, and I’ is the
topology on W relative to I, or the relative topology.

Speaking about a given space I, “the topological space W for WCV
will denote I".

2.7. Remark. Let I'= (¥, T (o)), "= V', T(e")), and let f be
a continuous mapping from V into V. Then o'(fz, fy) > 0—+¢(z, y) > 0.
Or, if we put o'(z,y) > 0 = ad'y, o(®,y) > 0 vy, we obtain

JodEfy »wdy .

(This is seen as follows. Let ¢'(fx, fy) >e. f'U(e, fx) is open, hence
US, ) Cf U(e, fo) for some 5. o y ¢ U(S, ), i.e. o(y,®) «4.)

2.8. Remarks. The topological product of a finite number of spaces
is defined as usual. Especially

T, o) X<V, TP = VXV, ARV

where o'({@, ">, (¥, y">) = sup{e(®, ¥), o', 9')}
2.9. DEFINITION. Let I'= <V, Z). We call W CV located in I' (no-
tation W e () if

Vp e VVX e Tp(Ag(ge X A W)VAY e (Y ~n W= a)) .
We call W, W’ relatively located ((W, W' « &(I') if

Vp e VVX e LAY e Tp(Hg(ge Y A W) &Hglge Y n W)
>HglgeX A WA W).
9.10. THEOREM. "= (U, T).

(a) V,Wel(IN>VvwWel(l),

(b) Ve QI >V " eI,

(e) V, Wel(l) &<V, Wy e (I >V ~ Wel(I),

() VW e QUT) OV, Wy, KV, W, KV, W e 8X(D),
(e) V e QN & oV »>2eV
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@) V,V, V" el &F, V", KV, VD eBN&V' =V"" >
VUV AV =FAT)LI AT,

(@ V,VeQIN&W, VYD)V AV)LV' =FLV")~
AV UV,

L) V,V, V" eQ(I) &V, V>, <V, V" eI >V, V"o V") e 8I).

Proofs. See [6], Chapter I, 4; all proofs are straighforward.
2.11. DErFNITION. Let <V, ¢> be a metric space. WCV ig called
meirically located in <V, > it o(p, W)=1int{o(p, q): ¢« W} exists for

every peV. o
2.12. Remark. Every metrically located pointspecies is located. If W

is metrically located, then W too, since g(p, W)= o(p, W) for every p.
2.13. TarorEM. Let <V, 0> be a metric space, and let {Wadn be a se-
quence of metrically located pointspecies such that

o0
Vi(Ws C Wi C U (e, Wi)) ) ZEi < 00,

i-1
Then W= Cj W is again a metrically located pointspecies.
i=1

Proof. Straightforward, ([6], 1.4.12).
9.14. DEFINITION. I'= (¥, T). We define € by

WEW —Vp e VAW e Ty(W' n W=0vW'CW’).
2.15. TaeorEM. Let I'=(V,T) be a topological space, U, U, W, W'CV.
(a) WE W ->W"*°EWS,
D) UCEUGWEW>UVWET vW.
Proof. Trivial.

3. Separable metric spaces.

3.1. DEFINITION. A topological space I'= <V, I is called separable
if there is a sequence {padn C V such that (puyn = V. {Pnya is called a basic
pointspecies for I

3.2. DEFINITION. Fundamental sequences (Cauchy sequences) are de-
fined as usual. A metric space <V, @) is called metrically complete if every
sequence which is fundamental with respect to o is a convergent sequence.
I'={V,%y is called (fopologically) complete if for some metric ¢ T(o) =T,
and <V, ¢> is metrically complete.

3.3. DeFINITION. Let (V, o> be a metric space. We say that {V, o>
has a point representation if there is a sequence (P>. (the basis of the
representation) and a spread with a defining pair (@,¥> such that
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(@) gy ey T € O > By, ooy 02D = (D ooy P,

(b) Every spread element converges to a point of V,

(c) For every p eV there exists a spread element converging to p.

3.4. Remark. Suppose that ¢V, ¢> has a point representation and
T(e) = Z(c'). Then <V, ¢'> has a point representation (as is easily verified).
Hence we can say that the topologieal space <V, T(0)> has a point re-
presentation.

3.5. THEOREM. Let I'=<V,X) be a separable complete space and
let ICN. Then

(a) I' possesses a point representation,

(b)) VCU{Wu: 4eI}>V C | {Int Wy: i eI},

() XeLN»(XEYX CIntY),

() XEY X' uY=T,

(e) VC U {Ua: acA}, Uy open for a « A. Then there is an enumerable
subcovering {Usmpn of V. (Intuitionistic analogue to Lindelst’s theorem.)

() A mapping of I into a separable metric space is always continuous.

Proof. (b)-(f) are proved in [7], [8]. (a) is proved in [6], 2.5. We
describe the construction here.

Let {pnyn be a basic pointspecies for I"= <V, Z(0)y, <V, o> complete.
We construet (@, 9> such that

(A) {D)eB; ie N>{pe b,

(B) Ciry oy G4 € O >0 (Pipyss Pix) < 3.27%,

€ Cps ooy T € O & (D1, i) < 275> (iyy vy ik, > € O
(D) Bhyy ey T6) = (Diyy oory Dig)

The verification that (©,% is a point representation is straight-
forward.

3.6. THEOREM. A located subspecies of a separable complete space
which contains at least one point (is secured) is separable.

Proof. Let I'= {V,T(¢)> be a separable topological space, <V, o>
complete. Suppose g e W, W e 2(D).

Ce={U(e,p): e <27k & (U(s,p) n W =0V(Fr)(r e Ule, p) ~ w))}

is an open covering, hence there exists (3.5(e)) an enumerable subcovering
{U(ekmy Prn)>n such that

Vk, %(U(Sk,n, ?k,n) W= QVU(Sk,y,,,:p},,ﬂ) AW # @) .
We construct gr, for every k,n such that

Gisn € Uermy Prm) ~ WV (U (ehny Prn) » W= 0 & gion = g) -
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Take a p e W. For every k there exists an » such that p e Uletm) Prn)y
Lence o(gun, p) < k. Therefore W C {qua: &, € N}
The following lemma is useful on some occasions.
3.7. LEMMA. Let I'= (V, 0> be a complete separable metric space.
If o'(w,y) satisfies requirements (b)-(d) for @ metric and o'(z,x) =0 for
every x, then
VaVeds Vy (o(x, y) < §0'(2,¥) < g) .

Proof. o' is defined on VXV and is therefore continuous on the
complete separable metric space I'XI'. Hence for every pair <z, y> eV XV
and every & there exists a d such that

el@, o) < 8 & o(y,y") < 8—le'(@, y)— '@,y <&
Take # = y = ¥'. Then

o(@, ') < 8 & o(w, ®) < 6->|o'(w, #)— @'(&", ¥)| <&
Therefore
olw, o) < d>g'(@, @) <e.
3.8. DEFINITION. A located compact space is a separable complete
space with a finitary point representation.
3.9. DEFINITION. Let <V, ¢) be a metric space. A species {py, ..., Pu}
CV is called an e-net for <V, @) if

Vo e VEI(L <1< n & o(pe, ) < &) .

3.10. DEFINITION. A gspace is called compact if every open covering
possesses a finite subcovering. '

3.11. THEOREM. I'= (V,X). The following conditions are equivalent:

(a) I' 18 located compact.

(b) For a certain ¢, T = T(a), <V, @) 18 a complete meiric space, and
possesses an s-net for every e.

(¢) For a certain o, T = T (o), <V, o> is a complele metric space and Ir
is compact.

Proof. (a)—(c) was proved in [2], with a different definition of
the “located compact space”, but we can use essentially the same proof.

(e)~(b). {U(s,p): p eV} is an open covering of V, hence there is
a subcovering {U(e, py); ., U(e, pu)} of V. Cleaxly {p,,...,pa} i8 an
e-net for <V, ¢>.

(b)—(a). Let, for every &, (p¥, ..., pXwm> be a 27 "-net. We consider
the SeqUENCE (Padn== D1y ey Duit)s Piy -+ Dniay, PLy -y and we put m(k)
= n(1)+...+n(k). We change the construction of the point representation
in 3.5 by substituting (C') for (C):

(C) gy ooy 01> € O & 0 (07, p1) < 2777 & § < M) > gy voey By I € O
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3.12. THEOREM. Let I'= V, T(p)> be a located compact space, and
et <V, o> be complete. Then:

(a) Every mapping from I' into a separable metric space is uniformly
CONPINUOUS.

(b) Let P(e,p) be a vroperty such that & < e& P(e, p)~>P(8, p),
Vp e VeeP(e, p). Then HSVp e VP(4, p).

(e) If f(w) >0 for all eV, then inf{f(z): z eV} >0.
Proof. The assertions of this theorem are easily proved using the

fan theorem with respect to a finitary point representation for I'. For (a),
see e.g. [3].
3.13. Remark. From 3.12(a) it is easily seen that, if I'= <V, T(p)>
is & located compact space, then <V, g> is complete.
3.14. TeEOREM. Let I'= {V, T(0)> be a located compact space. Then
(a) (W is secured) > (W ¢« 8(I') — W is metrically located),
(b) KW, W e (I > VeHS(TU (8, Wy~ U8, W)C U(s, W~ W')).
Proof. (a). Let W be secured. W e £(I"),

Cro={U(e,p): < 27*& (Ule, p) n W=0 v Hglge Ule, p) ~ W))}
is an open covering, hence there is a finite subeovering (3.11(c))

{Uley, Py e U(Sn, Pa)} C G

We Suppose g: e Ueiypi) n W for 1<i<m, Ule,pi)n W=0 for
m< i< N {U(eg, P1)y ey Ulem, Pm)} covers W.
If ge W, it follows that

mt{e(p, q): 1 <i<m)<olg, p)+27 5.

This proves that o(p, W) can be determined within 27 for every k.
Remark that g, ..., ¢m i8 & 27 net for W.

If W is metrically located, we obtain immediately that W e £(I).
(Remark. We could also have proved (a) using 3.12(b), but from this
proof we can obtain useful conclusions.)

(b) Let (W, W) e @4I'). Consider the property Py, p):
peU(, WynUly, W)—peUle, Wn W).
We apply 3.12(b) and obtain a é such that

Vp(p e UG, W)~ U@, W)>peUle, WA W),
hence
UGS, W)y~nU@B,W)CU(e, WA W').
The converse of (b) is trivial.

Fundamenta Mathematicae LXII 6
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3.15. Rematks. (a) From the proof of 3.14(a) we can draw the
coneclusion: W 4s closed located in a located compact space <V, T(e)> iff W
is a located compact space in the relative fopology (with 3.11(b)).

() If W e (I, I' located compact, then W is emply or secured (see
proof of 3.14(a)).

(¢) If X, X are located, compact subspecies in a metric space <V, o,
then o(X, X) is defined, and if o(w,y)>0 for all ze X, ye ¥, then
o(X, ¥) > 0. (3.11(c), 8.12(c).)

3.16. THEOREM (compare [4], 7.10). Let I'= (V,Z(0)> be a located
compact space. Then

(a) For every e, there ewisis a finite e-covering, consisting of located
pointspecies.

(b) Let 6 < &, W e 2(I). Then we cam find a W', W' open, W’ ¢ 8(I),
such that T, WYCW CW™CU(s, W), and a located W* such that
Ule, W*CW*CW* C U, W)

Proof. (a). Let (O, d> be the finitary point representation according
to the description in the proof of 3.11, (b)—>(a). Let <oy, ..., om> be an
enumeration (without repetitions) of all sequences of length k+-4 in 6.
With every o; we associate a spread <@;,d:> (a subspread of <@,)) as
follows. @; consists of o; and all descendants and ascendants of o; in 6.

= #|@4. The point species represented by (O, 9> we denote by Wi.
Then, clearly, {Wy, .., Wn} covers I If we have chosen % such that
27% < &, we also have diameter W; < & for every 4, 1< i< m.

(b). We use (a). We first prove the existence of a W'’ e £(I'), such
that U(8, W) C W' C Ul(e, W), for any pair 8, ¢ such that é < e Let
n=2""e—0). Let {Wy, .., Wn} be an z-covering consisting of located
pointspecies; we may suppose the Wy to be closed. We select a subspecies,
say {Wy, ..., W;}, such that

(W, Wy)<d>i<<r, i<r>o(W,Wi)<e—n.
(Since for every i<m o(W, W) <es—nve(W, Wy) >, the selection
of this subspecies is always possible.)

We take W'= W, u..uv W,.

If ¢ U(8, W), then x e Wy for a certain 4, 1 << m; but since
o(W, W;) < 8, it follows that ¢ <, and v e W C W".

Let e W’. Then z e Wy, ¢ < r for some i. Since o(W, Wi) < e—1n,
there exist ye W, zeWt, o(y,2) < e—n; and since diameter W;< 7,
o{#z,2) < n, hence o(y, ») < &; therefore e U(e, W).

Now let <nads be a sequence such that %' = ) n, < ¢— 6. We eon-
=1
struct a sequence (Wp), such that W= Wy, "
U2 "y Wa) C Wass C Uy Wa) - .
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U Wa is open, metrically located (2.12; hence W’ is Ioca,ted),
and U(d W) CW CW™CUle, W).

The construction of W* is effected as follows. We select a subspecies

of {Wy, ..., Wu}, say {Ws, Wsis, ..., Wn}, such that
e(W, W) >e—n>izs, i=s>p(W,Wy)>8.

Put W*= Ws v ... v Wy. We remark that sup{diamW;: 1 <i<m}
=9"<n

z¢ Ule, W)—=o(z, W) 4 ¢, 80 & ¢ W; for some . For arbitrary y ¢« Wy,
2¢ W we have .

ez, y)<n"<n, oly,2) Kle(w,2)—elz,y).
Hence g(y, 2) < e—mn", hence o(y, W) 3 e—1n", and therefore o(Wi, W)
P e—n' <e—1n, 50 128 and xe W

Let conversely #e W*. Let o(W, Wi)>d+7" for s<i. Then
there is an yeW;, i=s, o(®,9)<n". o(W,y)>d+7", hence
o(W,2) > 6.

3.17. TurorEM. Let (V, o> be a metric space, and let X be located
compact, X, YCV. Then X € YU(s, X)C Y for some e.

Proof. U(e, X) C Y implies X C Interior ¥, hence X € ¥ (3.5(c)).
Suppose X € Y. Voo ¢ X He(U (s, #) C ¥). If we take in 3.12(b): P(e, 3) «>
— U(e, w) CY, we see that Ve ¢ X (U(5, #) C ¥), hence U(s, X)C Y.

3.18. THEOREM. Let I'= (V, T (o)) be a located compact space.

(@) Let {Wy, ..., Wa} be a covering of I. Then there exisis an 7 >0,
such that for every & € V an i, 1 < i < n can be found such that U(n, ) C W.

(b) Suppose X v Y =7V. Then there are closed located X*, Y*, such
that X*CX, ¥*C Y, X*u Y*——V

Proof. (a). {Interior Wy: 1 <i < n} is a covering of I' (3.5(b)),
hence VoeVHT (1Ki<n & U(e, z)C Wi). We apply 3.12(b) to
obtain the z we looked. for.

(b). Let Vo eV (U(n,2) CXVU(y,2)C T). Let {Wy,..., Wa} be an
27'y-covering of I" by loeated species (3.16(a)). For every i, 1 <i <,
U(27, Wi) C XV U2, Wi) C Y (for we may suppose Wy to be secured).
Let @ € Wi. Then U(n, z)CXvU(y, ) C Y; since diameter W;< 27,
it follows that U(27'y, W) CX or U(2 7, Wi) C ¥. So we are able to
divide {W,, ..., W,} into two groups, say {Wy, ..., W,} and {Wy11, ..., Wa},
such that U(27'y, W) C X for i <, U(2™"y, Wi) C Y for ¢ > r. Hence we
can put X*=W, U .. UW,, Y*= W, U...U W,. Then X*v Y*=17,
X*CX, Y*CYX.

3.19. DEFINITION. A space I'== <V, T(o)> is called locally compact,
if I" is complete, separable, and if every point of ¥V possesses a located
compact neighbourhood.

6*
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3.20. Remark. Equivalently in 3.19 we can require that every
point & of V possesses an open neighbourhood Uy such that Uy is located
compact (hence U, is located). This is seen as follows. Let W be a located
compact neighbourhood of ®. Then U(8, %) C W, for some d. Then we
construct an open located neighbourhood U, (3.16) such that U278, x)
CU,CU,x), U CWy

4, Compactifications.

4.1. DEFINTTIONS. A located compact space I" = V', T(e')> is said
to be a minimal compactification of the locally compact space I" if I" is ho-
meomorphic to <V, (), VCV’, g=¢'|[V XV and

@) V=",

() o'(®,y) >0>xeVVyeV.

I is said to be a one-point compactification of I' if I' is homeomorphic
to V,ZT(o)y, VCV', o= o[V XV and

(@) V'—=V = {w},

(b) eV —=>p'(z, 2) > 0.

Our aim is the construction of one-point compactifications. To achieve
this we hawve to prove a number of lemmas and a theorem first.

4.2. LemMaA. Let {V, o) be complete, separable, metric, and let W v W'
= V. Then W and W’ are relatively located.

Proof. Int WoInt W =7V (3.5(b)). Let z¢V. We can find an g
such that U(y, ) CWvU(n,s) C W’'. Take a éd <, and suppose that

2e U, m) ~ W',
U, 2) CW >y e W W .

yeU(@S,2) n W,
U, 2) CW>ze W W

In both cases e U(d, W~ W’'); this proves relative locatedness.

4.3. LmMA. Let (V, o> be complete, separable, metric, and let W € W'
EW'CV, ZCV, W' and Z closed, W' located and secured, W ~ Z = @,
W' wZ=W" Then

(a) WU Z=W°UZ,

L) (WL ZyAnW'=2Z,

(e) If W and Z are relatively located in W', then W and W Z
are relatively located in V,

(d) If Z is located in W', then Z v W' is located in V.

Proof. (a). Let 2z« W°U Z. For every # there exists a point ys
such that yne U(n™, @) ~ (W° L Z).
R Since W' € W', there exists an % such that U(y,z) C Wy U(y, )
CW'. I U(y, ) C W thenz e W° U Z. Suppose therefore U(y, x) C W".

icm
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Since W'’ is closed, located and secured, W'’ is comyplete, separable, metric,
hence (8.6) (Int W A W) u (Int Z ~n W)= W".
So, for some %'<7,
Uy, ®) CW'VU(y',®)CZ .

I U(y,s)CZ, then ze W°u Z. If U(y',2)C W', then for an =
such that o(¥n, #) < 72 < 7/, we have m > % —~>ym € Z. Z is closed, hence
s=limyneZ so xe W°u Z.

m—o0

The proof of (b) is simple, and the verification of (¢) and (d) is routine,
using the existence of an % for every « such that
Uy, ) CW’'vU(y,2) CW"°.

4.4. Levva. Let V,T(o)> be a locally compact space. Then there

ewist sequences Vadn, {Wapn such that the Vn are located compact spaces,
the Wy are closed located, and Van, W relatively located for every pair n, m,

V= U Vn, Vo Wn = G, Vn+1 w W'n, :I‘T, Va € Vn-}.:[, Wn-{»l c Wn fOT’ all n.
n=1

Proof. €= {W: Hp(pe W) & W open & W~ is a located compact
space} is an open covering of I, and contains therefore (3.5(e))
an enumerable subcovering {(Uspn. We construct a sequence <{n(i)¢,
n(l) =1, Vi{n(i+1)>n(4)), such that Vi(T,Y..U UuyC U v..v
U Upgizny), and we put Vy= U7, Vi= U, U ... U Uy. This construction
is carried out by induction.

Suppose Vi to ‘be constructed. Since Vi is compact, (Unds must
contain a finite subspecies which covers Vj. Therefore we can find an
n(k-+1) > n(k) such that Vi C U, v ... v Uniy-

Sinee {Ui, ..., Ung+n} is an open covering of Vi, we have

V_p EVkﬂs(U(S,_’p) C Ul o W Un(k+1)) .

Applying 8.5(c) we conclude to Vi € Viys.

‘We now proceed with the construction of Wa.

Let (8.17) U(e, Vi) C Vii1. We can construct (3.16) a located V} such
that T(37%, V&) CV%C U(2.3 %, V). This proves Vi EV; C Viyy (3.17),
and if we take 37'c = 8, we conclude

UG, Ve)CVi and U@,V CVir.
We construct a closed located Z (3.16) such that
Viin U@, Vi) CZC Vi~ U478, V)"
Remark that Vi~ Z =@, Vi and Z relatively located in V4.
% e Visr~o(a, Vi) > 2 %8ve(z, Vi) < d,
hence 2 e Zvz e Vi, 80 Viv Z = Vi
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Eventually we put Wy=Z o Vi’. Then We ~ V=&, Vita v Wip=TV.

Applying 4.2, 4.3, we obtain that Wy is located and W, Vx relatively
located for all , k. From the method of construction we also see that
Wk+1 Cc Vi+1 € V;,c C Wk, hence Wk+1 € ch

4.5. LEMMA. Let <V, o> be complete, separable, metric. Let W, W’
be non-empty located compact spaces, and let W € W'.

Then @ continuous mapping f can be found such that

zeW-sflw)=1, z¢W >flz)=0, Va0 }fla)P+1).

Proof. Let (8.17) U(e, W) C W'. Take f(x) = sup {1— o(z, W)s?, 0}.
f is everywhere defined (3.14(a)) and satisfies the conditions. The con-
tinuity follows from 3.5(f).

4.6, THEOREM. Let {V, o) be locally compact. T'hen there exists a metric o
such that

(@) T(e)= (o),

(b) <V, o> is metrically complete,

() every secured located W CV is metrically located with respect to o,

(d) o’ is bounded by 1. :

Proof. Let (Vudn, (Wada be the sequences construeted in Lemma 4.4,
We put :

X, =V,, Xp=VaprnWp for n>1,

X=X, UX,, X,=X,,UX,UX,, for #n>1.

oo k3
1.Ul X;=17V, since | JX;= Vy41 can be proved by induction.
= . i=1

We remark that

XinX;#0>i—jl<1; XinXj#0-i—j<3.

Hence (Xu)n and (X3, are star-finite coverings of V.

X;, X7 are located compact spaces and X; € Xj for every j. (In fact,
.X; = Vj+2 ~ Wjﬂz, Wj..;l € Wj_z, Vj+1 € Vj.].g, 850 .X.j € X;; (24(1’))).) We
apply Lemma 4.5 to obtain f;, 0 3 fi=z) > 1,

Xj=@—>fle)y=0 for all w.
X;#0>weX;>fia)=1& o ¢ X}~>flz)= 0.

We define a metric:

0”@, 9) = (@, y)+ O [fal@)—fuly)] -

n=l

Convergence is proved thus:
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Let ©,y eVy. Then

|fm(@)—Fm(y)| = O for

gince X Vo=@ for m > n-+2.

o, y) = 0"y, ®), o"(®,y) > o"(w,2)+0"(2,9), ¢"(=,¥) KO, and
o'(%, ) = 0 are immediate.

By 3.7 we obtain

Vo Veds Vy (o(z, y) < 8>0"(%,9) <) .

m>=n+2

Since, on the other hand, ¢”(z, y) < d—>o(w, y) < §, it follows that o
is a metric and T(o) = T(e"”)-
Put
o'(w,y) =inf {1, 0" (=, ¥)} .
¢ is again a metric and T(g) = T(e').
Let © e X,, and let W be located and secured, say p ¢ W. Then

Co={U(e,9): <k ' &[Ule,9) n W=0VHg(ge U(e,9) A w)j}

is an open covering of V. Since X;, is compact, there exists a finite sub-
species of Gy which covers X, (3.10(c)), say {U (e, y1): L <4< m}. Leb
Ulety ) " W=@ «>i>1, and let gse Ulei, 9) n W for 1 <it

We put inf {o'(g:, ), 0'(p, ®): 1 <3<t} =dy. We want to prove
that <(ded>x converges and that the limit d Tepresents o'(x, W). Suppose
geW. If geXp, then ge U, yg) for some i, 1 <<t In that case
¢'(g, g:) < 2k, Hence since ¢'(w, ¢s) > o', )+ ¢'(s, 9,

o(r, @) < o'(z, @)+ 2k .

We conclude to di < o'(@, g)+2k™", so dp—2k"° < ¢'(=, q).
Tf q ¢ X4, it follows that o'(z, g) = 1, henee dx—2Kk ' < ¢'(z, q). We
obtain therefore:
qgeXnvg e Xo—>di— 2k < o'(=, 0,
and hence
—|—\(q € .X;.,qu € X;t)_)db_ 2k—1 } Q'(%, Q) .

Since the premiss is valid, we have
Vo eV VgeW (d—26" % o', ) .
At the same time it is clear that
VoeVAgeW (o'(z,q) < detk7).
Now consider a fixed @, and let g, gx4p be chosen such that

(0, q0) < Gt K, @@, Gran) < drent (BHD)
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At the same time we have

', Qeap) L u—2k"", o', r) € drrp—2(h+p) 7.

Hence
d— 287" 3 0'(@, rip) < Aript (k+2) 7,

orp—2(k+9) " b o'(w, ) < de 57
Therefore

< dsp+ 3K, Ay < A+ 351, 80 |dr—dpiy < 371

for every p. This proves the convergence of {(dn),. That d = limd, =

N=->00
o'(W, ) follows immediately.

¢’ is also a complete metric. For let (y.)s be a fundamental sequence.
Let, for example, n,n’ > m->0'(Yn, Y¥u) < 27" Then n > M —>0"(Yn, Ym)
<27\ Let ym e Xs. If Yn ¢ X5, then o'(Ym,yn) =1, hence for n>m
~n € X;. Since X iy located and closed, we have —, e Xy, e X}
(2.9(e)). Therefore (Ynimyn is a fundamental sequence in X3, 50 <Ypimdn
converges to a point of X, since Xj; is complete.

4.7. COROLLARY TO THE PROOF OF THEOREM 4.6. Let <V, o> be locally
compact and let Vydu, {Wndn satisfy the conditions in 4.4. Put X, =7,
Xn=WprnVpu for n>1, X=X, UX,, Xpn=X,,UX,UX,,,.
Then there exists a metric o' such that T(o) = T(o’), o" complete, and
TeXy &y ¢ Xn—>0'(®,9)=1, o' bounded by 1.

4.8. LEMMA. Let (V, 0> be locally compact, and let <Vadn, <Wudn
satisfy the conditions of 4.4. Then there ewists a function @, continuous on
V, such that 0 < ¢(z) 3> 1, and © € Wa—>p(@) 3 27" for every n.

Proof. We construct for every & a function gy.

Let (Xndn, {(Xidn, o' be defined as in 4.7. Suppose # ¢ X,. We put

Win Voo = 0>pix) =1,
Win Vase # B—>pi(a) = o'(®, Wi Vaga) .

¢ is uniquely determined by this definition. In fact, if © € Xy ~ Xn,
then jm—n| < 1. Suppose m = n--1. If Wi Vygs # !Zi then Wi A Vs

#9. Y €Vnis—Viyo implies y ¢ Xnys, 50 0w, ) = 1 < 0'(@, Wi A V).
Moreover,

Y eVaren Wivy € Vors—Viss @' (@, Wi A Vars) 3 0'(w, 9) .
We have 9 € Vays n Wis—(y € Vg A Wivy € Vigs— Vayio), hence
0@, Wi Vars) = ¢'(@, Wi A Vaga) -

If Win Vn+2 = Q Win Vn+3 #* ﬂ then ] (m W{ a) Vn+8) = 1. Thls
proves that ¢; is umquely determined.
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Now we define

= ) 2 p(a)

i=1

For we X, Wanie ~ Vpyas= 9, hence gnio(z) = 1. So @(z) > 0 for every
zeV.

Let again # ¢ X,. Then gi(z) = 0 for 1 < i < n. Hence ¢(x) 3 27"
%€ Wp—>% € Xp, for some m > n. Hence ¢ Wy—>g(x) 3 27"

4.9. LEMMA. Let I' =V, T(e")> be locally compact and let ¢ be a con-
tinuous function on I' suchthat 0 < @(x) > 1 for all x. Suppose {pid; = V.
Then

ole, ) = D)2 o) o'(ws, 1)~ p(¥) 0'(pi; )i+ o (@) — p(y)]

is a metric for which T(g)= T (o).

Proof. The convergence of g is immediate. o(z, ¥) = o(y, ®), o(z, ¥)
+o(®,2)+ ez, ¥), eo(r,y) <0, o(x,x)==0 are trivial So (3.7)
Yz Ve d8 Vy (g'(m, y) < 8~po(#,y) <& holds. Let £>0, ©eV. There
exists an m such that ¢(z) > 27™. So if o(x, y) < 27", then (y) > 27",

Suppose 2% < ¢, and find a p; such that o'(ps, ©) < 2~ %™ Then
(@) ¢'(w, pr) < 27HFHD,

Suppose o(w,y) < 8 = inf {27, o~ EFmTEN mpep

27 |p(x)

i+2)
’

(P, )~ (y) o' (e, 9)] < o(w, y) < &~ T

hence

— (k4m+2)
H

lp(@) o' (s, @) —p(y) @'(ps, )| < 2

80

@) o' (Ps, 9) < 27 F Lo (a) o' (p4, @) < 3.27FFH

—m~1

Since ¢(y) >27™, we obtain ¢'(ps, 9) < 3.27**¥ and

0@, ) > o' (Pe, )+ (P, y) < 27 FD 48270 =97 F <,

Therefore
Vo Veds Vy (o(z,y) < 6>0'(x,y) <) .

4.10. THEOREM. Ewvery locally compact space possesses a one-poini-
compactification.

Proof. We consider a locally compact space I'= <V, T(0)); Vadn,
{Wanys are constructed according to 4.4, ¢ is constructed according to 4.8,
and ¢ has been constructed from some given metric o' (bounded by 1)
for I', according to 4.9.


GUEST


icm

90 A. 8. Troelstra

We consider V u {z,}, and extend the natural apartness relation on ¥
(z4ky « o(z,y) >0 by putting z3a, for every » <V. We extend ¢ to
(Vo {#}) X (V u {z}) as follows.

At first we extend ¢ by putting @(s,)= 0. Then we define

oo, @) = o, @) = Z«p(w)e (pe, @2 + (@) -
We have to verify the properties for a metric after this extension.

ol@, y) = oy, ), o(z,¥y) L0 are trivial.

For the triangle inequality we must verify the special cases:

(1) o(®,y) > ol@, @)+ eol@, ¥), @,y eV;

) e(wo, @) 3 0@, ¥)+ o(y, »),
which is routine.

Also, z3ky < o(#,y) > 0 must be valid.

gyt ->x e V. Then o(w, @) << p(x) > 0.

0(%g, ) > 0 >¢(2) > 0. This implies ¢V, so ik,

Pinally we consider the metric closure 7' of V v {z,} with respect
to p, which determines a topological space, say I".

We shall prove that I is compact, by proving that for every e there
exigts an g-net (3.11).

If {pudn i8 a basic point species for I', then <pn>n v {%} is a basic
point species for I".

Suppose 27" < &, and let {g;, ..., ¢;} be a 27™
Then {qy, ..., ¢, %} i8 an ¢-net for V'.

Infact, if # € V', then there is a ¢ € {pnYn v {#y} such that g(z, ¢) < 27™.

If g =, then o(z,2) <2 " < &

I g = p¢ for some 4, then p; e VipysVpi € Winyo. In the first case we
have g(g;, pi) < 27 for some j, henée o(z, g;) < 2~ ™" < &; in the second
case, @(pi)) > 27" "< 27™ " hence g(a,pi) < 2™, therefore o(w,, @)
<27 <.

Now we must show that p(z,z,) >0z V.

Let g(®, @) > 2% Since

~net £0r Vipes (3.11(D)).

e(@, ) = p(@)(1+ Y ¢'(pe, 2)27) 3 2p(a)

=1
it follows that @(z) > 27%. @(#)>27% >u ¢ Wy, hence @ ¢ Vy..,. If therefore
o(w, &) > 275" and <(sudn C {Pwyn v {m} such that Vn(o(ss,s) < 27 """)
we see that (swdaC (Pudu. Since now () CV and Vu (o(sa, z5) > 27%),
we have {($npn C Vii1. Vi is compact, and closed with respect to every

adequate metric (3.14), 50 @€V, CV. Therefore p(z, @) > 0>z eV.
The converse is trivial.
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@y € V'—V. Suppose also y e V'—V. g(x,, y) > 0>y € V, hence p(x,, ¥)
= 0, which implies ¥ = #,. This proves V'—V = {z,}.

4.11. LeMmA. Let I'=<V, o), I"= V', ¢'>, and let f be a homeo-
morphism from I' onto I". Suppose g, o' to be uniformly equivalent with
respect to f, d.e.

Ve d3 ((o(e, y) < 8—¢'(fa, fy) < &) & (¢'(Fz, fy) < 80 (@, 9) < ¢)) -

Then the completions of I', I'" with respect to p, o' respectively are also
homeomorphic (by an extension of f).

Proof. Trivial.

4.12. TEEOREM. Let I' be a locally compact space. Every two one-point
compactifications of I' are homeomorphic.

Proof. Let I'= <V, T(0,)> = <V, T(ga)>, and suppose I = V', T(o1)>
and I = V", T(pz)> to be one-point compactifications of I', |V XV
=01, 0| VXV =10, VCV', VCV".

Let {Vyu)n be as in 4.4, and suppose {ps>» to be a basic pointspecies
for I'. e-neighbourhoods with respect to pi, g2 will be denoted by Ul(e, W),
U*(e, W), respectively.

Let p, e V'—V, pt e V/'—V; we put U4 ', p,) = W. Then we have
V= V'—W)ou U(27%, p,). Since I" is a located compact space, we
can find located closed W,, W,, (3.16) such that W, v W,= V', W, C W°,
W,C U2 %, p,). As a consequence, W, CV, and since W, is compact,
W, is covered by V,, for a certain m. So Vi v U1(2:fe yPo)=TV".

In the same manner we obtain for a certain n, Vo v U¥(27%, pg) = V.
Taking k = m-+n, we have Vi w U2 7%, po) = V', Ve U2 %, pi) = V",
hence V''— 7V C U2 %, pg).

We introduce a mapping f from <(pndn v {Pe} Onto <Pudn v {Po},
defining fpn = pn, fpo = pi. We want to prove that gf, e; are uniformly
equivalent with respect to f on (ppdn v {De}y <Padn v {po}. We can find
and n such that Ul('l?, V]g) C Vk+1; Ul("], Vk+l) C Vk+z.

Viees 011V kr2 X Vigad a0 (Viyay 02V it X Vies2y aTe homeomorphie.
Therefore we can find an %'_such that (3.11(a))

Vi, y e Viss (0ile, y) < 0’ —oa(@, 9) < ¢} .

Finally we put %" = o' (po, Vi) (0" > 0 since gi(po, #) > 0 for every
% eVy (3.12(c))), and & =inf {n, v, "'}

Tor every pair {p, ¢} C (Prpn v {po} We want to show:

(%) oi(p, @) < b—>oip, Q) <e.
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The proof is given by cases.

(l) P,qe€ <p7ﬂ>”' .

(@) g eV & ailp, 9) < 8->0a(p,q) < &

(b) ,q e V—Vi—>0x(p,p8) < 27" & 04(g, Po) < 2™ "s, hence os(p, ) < e.

(©) PeVir1 &qeV—Tr & oi(p, q) < 0-+g € Visa. Henee p,qeViy,
& oi(p, 9) < 8, 50 0x(p, @) < &.

(d) p e V—Vi & g € Vi i3 treated likewise.

(2) P = D0, q€<Pr>n-
oi(p, @) < 8->0ilp, g) < 7',

80 q e V—7V4, hence g e U2 "%, pi). This implies oi(pq, q) < &.
(8) p= q= p, is trivial.
This proves ().
In the same way we prove the existence of a ¢’ such that for

D, B CPwnv i}, op, )< >oilp,)<e.

Together with Lemma 4.4 this proves our theorem.

4.13. We are not able to prove for every locally compact space that
it possesses a minimal compactification, as is illustrated by the following
example.

Let IT(x) stand for: » is the number of the last decimal of the first
sequence of ten consecutive numerals 7 in the decimal representation
of . (Hz)II(x)v—(Ho)II () is an unsolved problem. We define a locally
compact space I'= <V, 0) by V= {s: o =1vII(z)}, o is the natural
metric on N.

Classically, I' is compact; intuitionistically, we are not able to prove
this.

Now suppose I = (V’, ¢'> to be a minimal compactification of I
Let f be the homeomorphism from <V, o> onto {fV, ¢’| fV>, such that fV
is dense in V.

Since f is a homeomorphism, we have H5 Vy (o'(f1, fy) < 6 >o(1, ¥)
<1). o1, y) < 1-y =1, so it follows that ¢'(f1,fy) < d—>fy = fl.

We can determine

diam V' = sup {o'(w, y): x V' &y e V'}.
diam 7' = diam fV  and diam V' < dvdiam V' > 2735 .

In the first case fV = f1, hence —(dx)Il ().
In the second case there are x,y eV’ such that o'(fx, fy) > 274,
hence w3y, so (dx)I(»).
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The assumption that I" possesses a minimal compactitication therefore
leads to a proof of (Hw)II(z)v—(Hz)Il(z).

This implies that we are not able to prove the existence of a space I
as deseribed.
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