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A note on pretopologies

by
D. C. Kent (Pullman, Wash.)

Introduction. A pretopology » on a set S can be defined by means
of a generalized interior operator I, on 8, that is, a set funetion which
has all of the properties of a topological interior operator except idem-
potency. Repeated application of I, yields a chain of pretopologies called
the ‘“decomposition series for p*” which terminates with the finest topology
A(p) coarser than p. The primary goal of this paper is to give an alternate
description of the decomposition series in terms of a primordial uniform-
like structure called a ‘‘diagonal filter.” In the process, we define the
notion of “symmetry” for pretopologies, a concept closely related to
the “weakly uniformizable convergence structure” discussed in [3].

1. Pretopologies and diagomﬂ filters. Let S be a set, F(S) the
set of all filters on 8, and (S) the set of all subsets of S. For each « in
8, let & denote the ultrafilter generated by {}.

DEFINITION 1. A convergence structure ¢ on 8 is a mapping from F(S)
into ¢(8) which satisfies the following conditions:

(1) ¥,8 in F(8) and FC§ implies ¢(F) C q(8);

(2) weq(d), all  in §;

(8) » e ¢(F) implies x e q(F ~ a).

If ¢ iz a convergence structure and # e ¢(F), then the filter ¥ is said
to g-converge to x. Let Uy(x) be the filter obtained by intersecting all of
the filters that g-converge to #; “U,(zr) is called the g-neighborhood
filter ot w.

DEFINITION 2. A convergence structure ¢ is called a prefopology
if Vg(x) ¢-converges to # for each # in 8.

Then term ‘pretopology” was introduced by G. Choquet [1]; other
discussions of this concept can be found in [2] and [3].

Let P(S) be the set of all pretopologies on S, partially ordered as
follows: p < ¢ means V() < Vy(w), all # in 8. With this ordering P(8)
is a complete lattice which contains the lattice of all topologies on §
(as a subset, not as a sublattice).
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DEFINITION 3. A diagonal filter D on 8 is a filber on §x§ with the
property that each member D of D contains the diagonal 4 = {(w, x):
zefl}.

Before investigating the relationship between pretopologies and
diagonal filters, it will be convenient to introduce some additional notation.
If D is a diagonal filter, let D' = {D™" D eD} (where D™ = {(w, y):
(y, ) € D}). The filter D is symmetric if D = D', Given a diagonal filter D
and z e 8, we denote by D[] the filter on § generated by {D[z]: D ¢ D}
(where D[z]= {yef: (®,y) eD}). If D is a uniformity, then D[z] is
the filter of neighborhoods at # in the uniform topology. The symbol A4
denotes the diagonal filter consisting of all sets in 8§ x § that include 4.
If ¥ and S are filters on 8, then let F X § be the filter on 8 X § generated
by the filter base {F X G: F ¢ ¥, & ¢ 8}, Given diagonal filters U and U,
we denote by U-V the filter on 8 X S generated by all compositions
of the form UV, for UeW, Ve V.

ProPOSITION 1. Let {D,} be a collection of diagonal filters.
1) (N D12l = {Dofal};
(U {DDie] = U {Dlw]}-

A dla.gonal filter D is said to be compatible Wlth a pretopology p it
D[x] = Up(x) for all z in 8. It follows from Proposition 1 that if {D,}
is a collection of diagonal filters, each compatible with the same preto-
pology p, that () D, and |J D, are also compatible with p.

PROPOSITION 2. To each pretopology p there corresponds an equivalence

class [p] of compatible diagonal filters. For any p ¢ P(8), [p] contains both
a least element and a greatest element; the latter is gwen by

W, = [ {&XVUp(®): wef}.

DErFINITION 4. A pretopology p is symmeiricif [p] contains a symmetric
diagonal filter.

TaEOREM 1. The following statements about a pretopology p are equiv-
alent:

(1) p is symmetric;

(2) W, ~ W, is compatible with p;

() @ e[} Vply) if and only if y e Vy(w);

(4) p s the infimum in P(8) of a set of completely regular topologies.

Proof. (1) and (2) are obviously equivalent.

(1) =(3). Choose D e[p] such that D= D-1. Let y e[| Vp(@). Then,
for each symmetric set .D € D, we have y € D[x], which implies # ¢ D™ '[y].
But this means that z e () D' [y] = (1) Vp(x).

(3)=>(4). If & is an ultrafilter which p-converges to «, then form
the diagonal filter U = A4 ~[(F A &)X (F ~#)]. It can be shown
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that U, & is a uniformity for 8; let 7, & be the topology compatible with
this uniformity. For any ultrafilter ¥, 7,4 is finer than p; when F =y
is a principal ultrafilter, one needs (2) to establish this result. A second
application of (2) enables us to deduce that

p = inf {-r:c : zef8, F an ultrafilter on 8, and & € ¢(F)}

(4)=(1). Let {r.} be a set of completely regular topologies such that
p = inf {z.}. With each 7., associate a compatible uniformity ., and
let D= {U}. Then D, being an intersection of symmetric filters,
is itself symmetrie, and D ¢[p] by Proposition 1.

2. The decomposition series for a pretopology. Starting
with a pretopology p on a set §, let I, be the set function on § defined
by I(A) = {weA: A eUp(x)} for each A CS. Except for idempotency,
I, satisfies the conditions for being a topological interior operator. The
collection {U C 8: I(U)= T} is a topology for § denoted by i(p); A(p) is
the finest topology coarser than p, and p = A(p) if and only if I, is idem-
potent. These results, in slightly modified form, are proved in [4].

We shall now give a recursive definition of a generalized interior
operator for each ordinal number a > 1.

DEFINITION 5. Let Ip= I,. If o is an ordinal number with an im-
mediate predecessor a—1, let Ip(4) = I(I3 (4)) for each ACS. If o
is a limit ordinal (that is, an infinite ordinal with no immediate predecessor)
then let I(4) = () {Ix(4): f < a}.

DEFINITION 6. For each ordinal number a, let p* be the pretopology
whose neighborhood filter at each point @ in 8 is given by Ug(z) = {4 C §:
w eIy (A4)}.

For each ordinal number «, I, satisfies the following conditions:

(1) I(4)C A4, all ACS;

(2) AC B implies I(4) C I3(B);

(8) Iz(4 n B) = Ip(4) n I(B);

(4) I(8) =

Let y, be the smallest of the ordinal numbers a such that
I;{I5(4)) = I3(4), all ACS.

PrOPOSITION 2. (2) If L < a < B < yp, then pe> pf.

(b) p™ = i(p).

Proof. (a) If is clear that pe > pf. Since a < f < yp, thereis ACS
such that I5(4) C I%(4), but I5(4) = I5(A). If zely(4) and = ¢ I5(A),
then A belongs to UZ(z), but not to Vi(z), and the pretopologies p° and p’
are distinet.

(b) Since I}? is idempotent, it follows from the remarks following
Definition 6 that p” is a topology; by definition of A(p), this topology
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must be coarser than A(p). But if I,(T) = U, the I3(U) = U for all ordinal
numbers a; thus the topologies coincide.

DEFINITION 7. The collection {p*: 1< a<yp} is called the de-
composition series for p. yp is called the length of this series.

The length of the decomposition series can be regarded as a criterion
for describing quantitatively how non-topological a given pretopology is.
Tn the example that follows, we show that decomposition geries can have
arbitrary length; that is, for any ordinal number & there is-a pretopology p
such that y,= 6.

Txampre. Let 8 be a fixed ordinal number greater than 0, and let §
be the set of all ordinal numbers less than é (including 0). We define
a pretopology p on 8 by specifying convergence on ultrafilters as follows:

(1) p(B) =18, p+1} all 0 << &;

(2) If a is a limit ordinal, then any ultrafilter finer than the filter &,
generated by sets of the form {y: 0 <y < B}, for f<a order converges
to a

(3) p(F)= O (e, F diverges) for all other ultrafilters F. It § is
a finite set, then y, = 8—1; if § is infinite, then y, = 4.

3. The decomposition series in terms of diagonal filters.
Recall that W,=[) {EXVy(®): w8} is the largest diagonal filter
compatible with p. )

DerINITION 8. Let Wy = W,. If o is an ordinal number with an
immediate predecessor a—1, let Wy = W™t Wy. I ais a limit ordinal,
leb WG = (M) {Wh: B < ak

LEMMA 1. Suppose U e W, and U[A] C IL(V) for some ordinal number a
and for subsets A and V of 8. Then there is W = Wy such that WU[A]CV.

Proof. (Transfinite induction on a) If U[A]CI,V), then Ilet
W= {{z}xVs: 2 €8}, where V=V for z in U[A] and V,= § other-
wise. If z is in WU[A], then there is y in § and @ in 4 such that (#,y)
isin U and (y, 2)isin W.y e U[A]implies 2 ¢ V= V. It is a simple matber
to verify that W e W,. . ‘

Next, assume that a is a limit ordinal. Then U[A]C IxV)=
N {I4V): p < a}. By the induction hypothesis there is, for each < a,
Wse W such that W,U[A]CV. It W= J{Ws: f < a}, then WeW,
and WU[A]= J{WsU[A]: f<a}CV.

Finally, assume that a is an ordinal number with an immediate
predecessor a—1. Let y e U[A]. Then y e I(V) implies that IHY) € Vp(y).
Tet TeW be defined by T= |J{{e}xV.: #¢8), where V,=I; (V),
for z¢ U[A], and V,= 8, otherwise. Then T[y]C I; V), all y « U[4],
and it follows from the induction hypothesis that there is W e W such
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that W,T[4]CV, all y e U[4]. Let W= W,T; then WU[A]CV follows
immediately.

TEMMA 2. If UeW, and Ve Wy, then Ulz] CI(VU[#]), oll ze8S.

Proof. (Transfinite induction on «.) When a=1, we have UeW,
and V € Wy. Let 2z ¢ Ulx]; then V[2] e Uy(z). But V(2] CVU[2], and hence
VU[x] € Up(2), which implies 2z ¢ I,(VU[z]).

When « is a limit ordinal, we have

TUeW, and VeWs= ) {WYVUs]: < a}.
By the induction hypothesis,
Uzl e IYVU[]: B < a} = L(VU[x]) .

Tf o has an immediate predecessor a—1, then let z e U[z]. Since
V WS, we can assume that VO V;W, where V;e W™ and W eW,.
By the induction hypothesis, we have

W& C I (V. W[e) C I; ((V[2]) C I;(VU[a]) -
Hence

I VU[#]) e Vglz), and zeI(VU[x]).

THaEOREM 2. For each ordinal number a, where 1< a < yp, and each
@ e 8, Wia] = VUg(x). (In other words, Wy e [p“] for each a.)

Proof. Let a be any ordinal number with an immediate predecessor
a—1. Let W e W% then there are U W and T « W*™* such that TUC W.
By Lemma 2, U[#] C I5(TTU[x]), all ¢ §, and henee I (T U[2]) € Vy(a),
which implies that TU[#] e V(). Thus W[z] e Up(z). On the other hand,
it Ve V(x), then I57(V) € Uy(w), and so there is U W such that Ul#]
CIZY(V). By Lemma 1, there is W e W ™" such that WU[#]CV. Bub
WU e W% thus V e W{a]. Finally, if a is a limit ordinal and § any non-
limit ordinal less than a, then we have UZ(z)= () Vi(z) = N Wa]
= WYz]. Thus the proof is complete.

Concluding remarks. Following the recent development of quasi-
uniformities (for example, see [4]) diagonal filters seem to be the next
logical step in the process of generalizing the notion of a uniformity.
Diagonal filters also provide some insights in the theory of pretopologies;
for instance, given a pretopology p, it is easy to see that A(p) is completely
regular if and only if W," > W for some ordinal number a.

It we define a “diagonal structure” to be the pair (8, D), where D is
a diagonal filter on S, then we can easily define such terms as Cauchy
filter, completeness, and total boundedness for diagonal structures by
analogy to the definitions currently in use for quasi-uniform spaces.
This Jeads to other interesting questions: for example, can a meaningful
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completion theorem be proved for diagonal structures? (The latter question
was recently answered in the affirmative for quasi-uniform spaces by
R. Stoltenberg [5].) .
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