Adjunction of locally equiconnected spaces*
by
William D. McIntosh (Columbia, Missouri)

1. Introduction. The following problem has been posed by
Borsuk (cf. [1] and [6]). Suppose that X is a compact ANR and that {4}
is a sequence of mutbually disjoint compact AR subsets of X such that

lim diam (4,) = 0.
n—00

For each #, let f, be a map from 4, onto a compact AR space ¥,. Let Z

be the quotient space whose members are the sets ( Fa) " ¥) for Ye¥y,
o0

and the points of X— UlAﬂ. Is Z an ANR? Lelek [6] has solved this
ne

problem affirmatively in the case in which Z is finite-dimensional.

In attempting to generalize Lelek’s results, it seems natural to con-
sider a class of spaces which contains the class of all ANR’s, and which,
for finite-dimensional metrizable spaces, is the same as the class of ANR's.
The class of locally equiconnected spaces, defined by Fox [4], has this
property. -

Let X be a topological space, and let ¥ be a subset of X2 = Xx X
which contains the diagonal A(X) of X®. Then a map Ai: VX I X,
where I is the closed unit intérval, is said to have the connecting property
if and only if

Mw,y,0) =2, Az,y,1)=y, and Az,x,t) = o for all (z,y,t) eV X I.

If ¥V = X* then 1 will be called a connecting map for X. If V is a neighbor-
hood of 4 (X), then 2 is a local connecting map for X. A topological space X
i equiconnected (abbreviated EC) if and only if there is a conneeting map
for X. X is locally equiconnected (abbreviated LEC) if and only if X has
a local connecting map. It is not difficult to show (see [3] and [5]) that
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every ANR (resp., AR) is LEC (resp., EC), and that every LEC space
is locally contractible. Thus for finite-dimensional metrizable spaces,
the concepts of ANR and LEC space are equivalent.

One of the results essential to Lelel’s proof is a theorem of Borsuk
([2], Theorem T), which says that if X, ¥, and 4 are compact ANR’s
with AC X, and if f: 47 is continuous, then the adjunction space
X u; T of X and Y by f is locally contractible (and hence an ANR if
it i finite-dimensional). Whitehead ([7], Theorem 1) established, without
the Testriction of finite-dimensionality, that X v; ¥ is an ANR. The
main result of this paper is a corresponding theorem for LEC spaces,
without the hypothesis of finite-dimensionality, but with an added re-
striction on A and f(4). Specifically, it will be shown (see Theorem 3.1)
that if X and Y are compact metrizable LEC spaces, if 4 is an EC neigh-
borhood retract of X, and if f: 4 7Y is a continuous function such that
f(4) is an EC neighborhood retract of ¥, then X v, ¥ is LEC. Of course,
in the case of Borsuk’s problem, the requirement that f(4) be a neigh-
borhood retract of ¥ is no restriction since in that case, f(4) = Y.

Before proceeding to the proof of this theorem, we need a number
of preliminary lemmas.

2. Preliminary lemmas.

Lemma 2.1, Let (X,d) be a compact metric LEC space with local
conmecting map A VXI—>X, where V is a closed neighborhood of A(X).
Let A be a closed subset of X and suppose that r: UD A is a retraction of
a closed neighborhood U of A onto A. Suppose further that (w, r(@)) eV for
each z e U. Let g: U°— A*—1I be a continuous function such that if {(2n, yu)}
is a sequence in U°— A® converging to (z,y) e A*— A(A), then limg(2n, ¥n)

= 1. Let ¢ > 1. Define s: U*—~X by

M, r(2), og(@, 9)

if (z,y) e UP— A% and g(z, y) < 1fe;

if (z,y)ed?, or if (@,9)e U*— A% and g(z,y) > 1/c.
Then s is uniformly continuous.

Proof. It is clear that s is continuous on U?— A and on A2 It will
now be shown that ¢ is confinuous on Bd(42). So choose & > 0. Since 1 is
uniformly continuous, there exists 6 > 0 such that

s(m, y) =
r(®)

‘l(}‘(w’w: t), A(wyﬁ’/:t)) <ef2,

or, equivalently, d(z, i(z, y,t)) < /2, for all (z,y,t) eV X I with d(z,y)
<4d. Fuﬂ;her;uore, there exists # > 0 such that d(r(z), r(y)) < §/2 for all
(®,y) e U* with d(x,y) <. We may also require that 2y < 8 < &.

icm
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Now let (x,y)e A and suppose that {(wa,yn)} is a sequence in

U?— A? converging to (z,y): If = =y, then limg(en, yu) = 1, so that
N> D0

lims(an, ¥p) = Hmr{e,) = r(x) = s(x, ¥) -
n—>00 7n-00

On the other hand, suppose & = y. For sufficiently large n, d{(=, &) < 5.
Choose such an n. If g(@n, ys) = 1/¢, then

A(s(z, )y 8(@n, yn)) = dlr(@), r(@)) <02 <e.
1f g(2n, ¥n) < e, then, since »(x) = », we have
Al 7(@n)) < A, @)+ dA[r(@), 7(a)) < 7+ 02 < 65
it, follows (note that s{x,y)= ) that

(Z(S((L‘, ), § (@, Un)) < l](.’t, ﬁl’n)+d(a'nv Z.(.‘t‘,,, 7(&n), €g{Tn, yﬂ)))
<ntef2<e.

Thus s is continuous, and therefore uniformly continuous. Q.e.d.

The following lemma is due to Himmelberg.

LEMMA 2.2 ([], Lemmia 1). Let X be a metrizable space, and suppose
X = A u B, where A and B are closed. Let V.4 be an X*-neighborhood of
4(4), let Vg be a B?-neighborhood of A(B), and let 1. VaixXI->X and
Jp: VaxX I-—>X be such that:

a. ip(VexI)CB and Ap i a local connecting map for Bj;

b. A4 has the comnecting property on A* A V.45

. Aalm,y,0) =z and Ay(z,y,1)=y if (&, 9) Va4

d. Az, y,)CB if (z,y)eVan (X—AY

Then X is LEC, and there is a local connecting map A for X such that A4
is defined at each point of (42X I)~ dom(1) and agrees with i there.

Leanra 2.3. Let (X, d) be a compact metric LEC space, and let A be
an EC neighborhood retract of X. Then there exist a neighborhood V of
A(X) u A? and a local conmecting map A: VX I X such that AA2x I)C A.

Proof. Let A4 be a connecting map for A. Then by @& theorem of
Himmelberg ([5], Theorem 7) there exist a closed neighborhood Vx of
A4(X) and a local connecting map Ax: Vxx I+X which agrees with 14
on (Vx A% XTI Let 2, = s v 1x. Without loss of generality, we may
assume that

Ve={(z,9) e X| d@,y) < &

for some ¢ > 0. There also exist a closed neighborhood U of A and a re-

traction »: U; D 4.
12*
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Sinee U, is compact, r is uniformly continuous, 8o there exists 6 > 0
such that dfr(z),r(y)) <ef2 for all (,y) e (Uy)? with d(z,y) <. We
may also assume that 6 < /2, and that

U={zeX| d(z, 4)<82)C ;.
Note that if e U, then there exists y ¢ A such that d(z,y) <9, and
hence
dlw, r (@) < d(e, y)+dlr@),r@) <dts2<e.
Thus {z, (%)) € Vx for each ze U.
Define g: U*—A*—>I by

. d(ma y)+ Id(my A)—d(ya -A)‘
90,9 =30, )+ ale, AL dly, 4)

forall (z, y) e U?— A% Ttis clear that g is continuous. Now defines: U*-»X
and s': U*>X by

}-1(-""; 7(z), 29(2, ?/))
if (z,9) e U*—4* and g{o, ) <1/2;
r(x) if (,y) € A, or if (#,9)c U'—A4® and g(=,y) = 1/2;

8w, y) =

and s'(z, y) = s(y, x) for all (z,y) ¢ U Note that s(z,2)= s'(z,2) =2
for all ¢ e U, since if « ¢ A, then g(z, #)= 0.

It is now easily seen that the hypotheses of Lemma 2.1 are satisfied.
Thus $ is uniformly confinuous, and hence 8 is also uniformly continuous.
Consequently there exists # > 0 such that

d(wr 8(, y)) = d(s(a’ﬁ ), 8(w, y)) <egf3

and dy, s'(z, 9)) <e¢/3 for all (z,y) < U® with d(z,y) <. We may also
agsume that % < 26/3.
Let

W= {reX| d@, 4) <92},
and suppose (2, w) ¢ W*. We will show that (2, s(z, w), #), (s(z, w), s'(2,w), 1)
and (s'(z, w), w, i) all belong to the domain of 4, for each telI. If
g{z,w) >1J2, then, since WC U, we have d(z, (2, w)) = d(z, 7(2)) <&,
dw, s'(z, w)} < ¢, and
(s(e, w), s'(2, w)) € 42
On the other hand, suppose ¢(z, w) < 1/2. Then (see the definition of g)
2d(z, w)+2|d(z, A)—dlw, 4)| < d(z, w)+d(z, 4)+d(w, 4),

so that

d(z,w) < d(z, 4)+dw, A) < 92442 = 7.

icm
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Therefore d(z, s(z, w)) < £/3, d(w, s'(2, w)) < ¢/3, and

a(s(z, ), 8'(2, 0)) < Afs(z, ), )+ Az, 0) + A, (3, )

<g84+nte8<e.
We can therefore define 1,: W*XI—>X by

Jaf, s(x, ), 31) if  (z,y)e Wand 0 < t<1/3;

L, y, 1) =1 his(®, 9), '@, y),8t—1) it (r,y) e Wand13<1 < 23;

Als'(®, y),y, 3t—2) if (z,y)eWrand 2/3<<t<L.

It is easily seen that A, is continuous and has the connecting property.
Now let

W,= {xeX| d(z, 4) < 5/3}.
By Lemma 2.2, with 4 = W, B=X, Vi= W* Vp="Vx, s =k, and
i = Ax, there exist a closed neighborhood V' of 4(X) and a loeal con-
necting map A': V'xI—X which agrees with 4 on (V' ~ (Wyf)xI.
Let V=V’ u (W,)%. Then V is a neighborhood of A(X)w 4> Let

A= 20 (a] (WoPx D)) -

Then it is clear that A: VX I—X is a local connecting map.
Finally, let (z,y)e A% Then since s(z,y) =4, §'(z,y) =y, and
Aa(A2x I)C A, it is clear that A(z,y,t) ¢ A for each tel. Q.e.d.
LeMMA 2.4. Let X be a topological space, let {xn} be a sequence in X,
let veX, and let {A,, ..., Ay} be o finite family of subsets of X such that

k
{n! n > 1} C | As. Suppose furiher that for each Ai containing infinitely
i=1

many terms of {wa}, the subsequence consisting of thase %’s belonging to Ay,
converges to x.. Then: limzy, = @.

00

Proof. Every neighborhood of @ contains all except & finite number
of terms of each of the finitely many subsequences into which {z,} has
been decomposed, and hence all except a finite number of terms of {#,}.
Q.e.d.

LEMMA 2.5. Let X and Y be compact metrizable spaces, let f be a Sfunction
from X o ¥, and let {z(n)} be a sequence in X. Suppose further that y e ¥
is such that Ikimf(m(nk)) =1y for every comvergent subsequence {z(nx)} of

{w(n)}. Then limf(x(n)) = y.

Proof. Since Y is compact, there is a subsequence {fla(ma)} of
{7 {#(n))} which converges to some point 2. Since X is compact, {z(nz)}
has a convergent subsequence {z(ny)}, and by hypothesis,

tim f () = 9 -
j-rc0



GUEST


180 W. D. MelIntosh

But we also must have

glolof (z(ne)) = 2,

so that z=y. Thus {f(z(n))} has exactly one cluster point, namely y,
and since Y is compact, limf(x(wy)) =y. Q.e.d.
N—roG

3. Main results.

Trrorey 3.1. Let X and ¥ be compact metrizable LEC spaces, let A
be an EC neighborbood retract of X, let f: A—>Y be a continuous function
such that f(4) is an BEC neighborhood retract of ¥, and let Z =X v; Y.
Then Z is LEC.

Proof. Without loss of generality, we may assume that XAnY=0.
Let W=Xu Y, and let & be a metric for W such that diam(X) <1,
diam(Y) <1, and @(X, Y)>1. There exist a closed neighborhood U
of A and a retraction 7: U D A. Also, by Lemma 2.3, there exist neigh-
borhoods Ty and V3 of 4(X)u A? and 4(X)u (f(4)), respectively,
and loeal connecting maps Ay: VxX I—->X and Ay: Vyx I-+Y such that
Ax(42x I) C 4. Without loss of generality, we may assume that

U=f{zeX| d(z, 4) <e),

Vx= {(.’x;,y)eXal d(z,y) < e} v U21
and

V= {(z, y)e ¥*| dlz,y) < &} © {(@,9) € V] dlo, f(4)) <e; dly, f(4)) <e}
for some ¢ > 0. Let
U = weX| dz, 4) < dle, X—U).
Now define g: U*— 4*—1 by

a(w, ) +lilw, 4)—aly, ) |
d(z, y)+diz, 4)+d(y, 4)

xr{l—(min{% s 1}) (miniﬁ(g%% , 1})]

forall (, y) € U*— A2 It is clear that ¢ is continuous. Next define s: U° - X,
s P>X, q: U*—~42>X, and ¢: U*—4*->X by

gz, y) =

Ax(w,r(m),gg(m, '.‘/))
i (z,9)e U?— 4* and g(@,y) < 4)9;
r(z) if (@, ‘_i/)eA27 or if (w,y)e U*—4* and gz, y) = 4/9;

for all - (2,9)e U%

s(®,y)=

8(@,y) = s(y, @)
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s{x,¥) it (2,y) e U*— 4% and gle, y) < 4/9;
Al (@), Zxlr s riy), 112), 296, 1)—2)
gz, y) = it (r,y) e U7~ 4% and 419 < gle,y) - 2/3;

r(y), 12}, 3—3g(x, 1))
it (@, y)e 17— A2 and gl{o. §) = 273;

/"»Xv(:l?), Axtr ey,

s, ) if (¢,y)e 0~ 4 and gl ) 49
ax(r), Ax(r@), rw), 1/2), dgle, 1) —2)
g, y) = it (e, y) e T2 — 4% and 419 < gla, ) - 2035
Ax\r(y), /'.x('r(;n), r(), 1/2), 3 =3¢z, y)}

it (e, ) e UP— A% and gle,u) =23

The hypotheses of Lemma 2.1 are satisfied, x0 s und &' are uniformly
continuous. It is also clear that ¢ and ¢’ arve continuous, and since 4 and U
are compact, ; and r are uniformly continuous. Thus there exists & >0
such that

Az, s(@, 1)) = sz, o), s, 1)) <3

and dly, s'(@, y)) < &3 for all (@, ¥) e U? with d(, y) <9, and such that

A(f(x), f(m) < ¢f2 for all (2,y)e A% with d(r,y) < 4. There also exists

7>0 such that d(r(z),r(y) <9 for all (z,y)e r?* with d(r,y) <n.

In addition, we may require that 5 <d <3 <2
Let

Vip = (2, 4) € (W— AP dl,y) <nj2} o {2, y) e X Az, ) <nl4)

Then it is clear that Vi is a neighborhood of .1 (W). Note also that since
72 <1, we have T CX*u T Let p: W—Z be projection, and note
that p is closed since W is compact and Z is Hausdortf. Thus {p~(a)l & € Z}
is an upper semi-continuous decomposition of W. Let

¥ — U{lp0rale @] a2}

We claim that V is a neighborhood of J(Z). So let beZ. Then
Vy[p~1(b)] is an open neighborhood of p~(b). Since {p~*(a); @ € Z}is upper
semi-continuous, there is an open union T of equivalence classes such
that p~(b) C T C Vye[p (0)]). Then (p(T))° is open in 72, and

(b, b} € (p (D) C (p(Frlp @Y CT -

Thus V is a neighborhood of (b, b), and hence of A(Z).

'We now proceed to find 2 Jocal connecting map i: VxI-+Z. For
each a e Z, denote by h(a) the unique member of p~1(a) ~n (W—A4). In
order to insure that the definition of 1, to be given below, is meaningful,
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a number of preliminary observations are needed. First of all, it must pe
shown that

(1) i (@, 0) eV [(p(U—A)~(p(X— T, then
(2) (@), s{h(a), (D)) € Vx;
(b) . (s(h(a), 3(0)), g(h(a), B(D))) € Vx;
© (¢(h(a), 1), ¢ (hia), B(®)) V= i  g(h(a), h(D) < 4/9;
(@) (q ), B(b) ,q'(h(a),h(b)))eA2 if  g(hia), h(D)) = 4]9;
(e) (fa(h(a), h(v)), fa'(h(a), BB)) Ve if g(h(a), h(D)) > 2/3;

) (¢' (n(a), h(b)) ‘( (@), () € Vx;
(@) (s'(m( yh(b)) e Vx.
We will also show that
(2) if (8,0) eV A (p(X—T")), then (h(a), h(b)) e Vx;
that
(3) if (@,0) eV ~ (p(X)), then (h(a), h(b)) € Vi;
that
(4) i (4,0) €V ~ (p(X—A)x p(X)), then
(a) k(a) e U;
(b) (t(@), rh(a)) € Vx;
(¢) (fri(a), h(B)) € Vy;
and that

(5) i (@,0) eV A (p(X) X p(X—A)), then

(a) h(db) e U;
() (h(a),ﬁ‘h(b)) «Vr;
(e) {rh (D), h(b ) eVx.

Finally, in order to guarantee that the domain of i is actually V x I, it
will be shown that

(6) VAapX-4)fCV A [p(U—a)7 o (X —T)].
Let (a,b) ¢ V. Then there exists ¢ ¢ Z such that
(@, 0) € (3 (Vwlp=(e)]))"

©
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Thus

pa) ~ Vwlp~ie)] # O
and
) N VwlpHe)] £ 0.

Note first of all that (1d) is trivial, that (1d) implies (Le), that (4a)
implies (4b) and that (5a) implies (5¢).

Oase 1. There exists we W—4 such that d(k(a),w) <2 and
d(h(b),w) < /2. Then d(h(a), h(b)) < &, establishing (2) and (3). Now
guppose

(@, b) € (p(T—A)'— (p(X— T
Then since d(h(a), k(b)) < 8, we have
d(h(a), s(h(a), h(D))) < &/3

and

d(s'(h(a), h(B)), h(b)) < 8)3 ,
which establishes (1la) and (1g), If g(h(a), k(b)) < 4/9, then

q(h(a), B(B) = S(h(a), h(b) and  g'(k(a), k(b)) = §'(k(a), R(D)),
whereas if g(h(a), (b)) > 4/9, then

(s(r(a), n()), glh(a), h(b))) € 42
and

(' (h(a), B(B), 5 (1(a), B(D))) € 47

Thus (1b) and (1f) are established.. Again, if g{h(a), h(b)} < 4/9, then by
what has been said above,

dq(n(a), n(D)), g'(1(@), (D)) < d[s(k(a), R(B), h(@))+d(h(a), B(B)) ~
+a(n(d), s'(k(a), B(B)) < ef3+0+e3 <e.

“Thus (1e) holds. Finally, we remark that under the hypothesis of Case 1,

we cannot have
(h(a), R(B)} € (X —4)Xx X) v (¥ x (X —A4)),
80 that (4) and (5) hold vacuously.

Case 2. There does not exist we W—.A such that d( (a),w) < nf2
and d(k(d), w) < /2. We claim first of all that

(h{a), h(B) ¢ (X—T').
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For suppose otherwise. Then p~'(a) = {h{a)}, s0 Rh{a) e Vip[p~t(c)]. Hence
p=le) ~ X =+ G, which implies that k(c) ¢ ¥—f(4). So suppose h(c) € f(A4).
Then there must exist w ¢~ (h(c)) such that (R(a), w} ¢ Vi, 50 d(k(a), 4)
< d(bla), w) < g/t <ef2. Tb i8 then clear that d(h(a), X—U) > &2, so
that h(a) ¢ U’, contradicting the supposition that h(a) e X — U’. We must
therefore have h(c) ¢ X — 4. But then (h(a), h(¢)) € Vi, and, by a similar
argument, (k(b), h{c)) € Vw, so that d{k(a), h(e) < u/2 and d{h(b), h(e)
< 5/2, contrary to the assumption of Case 2. Thus (2) holds vacuously.

Case 2a. (a,b) ¢ (p(U—4)*— (p(X~ U9). Then we must have
h{a) e Vip[p~4e)] and R(b) e Vir[p~H(e)]y ‘which, as above, implies that
hie) ¢ Y—F(4). Again, as above, it h(¢)e X—A, then the hypothesis
of Case 2 iz contradicted. Thus h{c) e f(4), so there are points w and v
of f{h(e)) such that (h(a), w) « Ty and (1 (), v} € V1. Tt follows that
Anla), A) </t and d(h(D), A) < nj4. Hence ah(a), X—T) = ¢ -nj4
- 3pl4, and o

dlh(a), 4)+afh(b), 4) < nj2 < dlb(a), h(0)

by the Casxe 2 hypothesis. Thus

d(h(a’)i A) E

< A

aiia), X~ 1) B3
Similarly,
a(h(b), 4) .<1
dr(@), X—1) 3
Therefore

d(h(a), h(b)) ( Lhy

a(h(a), k(D) +a{h(a), D)\ 3 3/ 9’

Thus (le) holds vacuously. It also follows that s(h(a), lz(b)) = rh{a) and
'(h(a), h(b)) = rh{b). Since dlk(a), w) <gyf4 and r(w)=w, we have
dlrh{a), w) < b, so that

g(hia), h(D)) >

d[h(a), s(h(a), h,(b))) < dlh(a), w)+ dfw. rh(@)) < nfd+d -«
Similarly, ’
dls'(h(a), h(D)), h(B)) < ¢,

s0 (la) and (1g) are estajalished. Moreover,
(s(R(a), (b)), g (B(a), h(BY) € 4*
and '
(¢ (B(@), R(B)), &'(h(a), h(b))) e 4,
trom which (1b) and (1f) follow.

©
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Case 2b. (a,b) e {p(X))% If h(c) ¢ T —F(4), then Vy[p~Yc)]C ¥, so
that (h(a), h(c)) e Vi and (h(b), k(e)) Vi, contrary to the assumption
of Case 2. Next suppose h(c)e X—A. Then Vyp~Ye)]C X, 50 we must
have h(a) e f(4) and k(D) ¢ f(4), frqm which (3) follows. Finally, suppose
h(e) ef(4). Then we claim that d(h(a), i{e)) < /2. For suppose d{h(a),
h{c)) > /2 > 5/2. Then (R(a), h(0)) ¢ Vi, 50 it is easily seen that k{a) e f(4)
and that there exist w e f'(k(a) and v ef*(h(e)) such that (w.v)e Vi,
i.e., such that d(w.») <n/4 < 4. It then follows that

d(h(a), k{e)} = d(f(w), flv)) < &2,

which is a contradiction. Similarly we establish that d(h(b), k(c)) < &/2.
Thus d(h(a), k(b)) < e, which verifies (3).

Case 2¢. (a,b) e p(X—A) X p(Y). Then k(a) e Vy[p~(c)], which, as
has been seen above, implies that h(c) ¢ Y —f(4). So suppose first that
h(e) e X—A. Then Vy[p~Yc)] C X, so it is clear that A(b) € f(4), and that
there exists w < f (b)) such that (w, k(¢)) ¢ Vi, ie., such that dfw, hie))
< yj4. But we also-know that d(k(a),h(c) <n/2, so that d(h(a),w)
< 37J4, which implies that h(a)e U, establishing (4a) and hence (4b).
Moreover, (frh(a), h(b)) ¢ (f(4))°, so that (ic) holds.

Now suppose that h(c)ef(4). Then there esists vef k() such
that (h(a), v) € Vir, ie., such that d(h(a), ) < 5/4. Thus h(a)e U, estab-
lishing (4a) and (4b). Now if h(b) e f(4), then (4c) follows immediately
from the fact that (fri(a), h(b)) € f(4))". On the other hand, suppose
h(b) e Y—f(A4). Then h(b) e Vi[p~i(e)], so that d(h(b), k(c)) < 7/2. Since
d(h{a), v) <7, we have d(rh(a), ) <6, so that

a(fri(a), h(c)) = d(frh(a), f(v)) <&f2.

Thus d(frh(a), h(b)} < &/2+7n[2 < e, which establishes {4c).

Oase 2d. (a,b) ep(T)Xp(X—A). Then the same argument as in
Case 2¢ shows that (5) holds.

We have thus verified (1)-(3). To establish (6), note first that X—4d
= (X—U)u(U—4), that (X—-U)—(U-4)=X-T, and that
(U—4)—{X—T") = U'—A. Tt then follows from a trivial set-theoretic
identity that

(X—A)»
S (XU o (U—dAP o (X- DU —4) o (T =) x(X-0)).

Now suppose (a,b) eV ~ (p (X—4))° but that
(@, b) ¢ (p(T— 4 v [p(X—U)-
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Then
(h(a), h(b)) € ((X— U)x (U’——A)) v ((U’WA) X

Suppose, to be specific, that (k(a), k(b )) (X-TU)x(U'—A). Then
h(a) e Vig[p~(c)], which, as before, implies that h(c) ¢ ¥ —f(A). If h(e) ¢ f(4),
then there exists wef'(h(c)} such that (h(a) )eVW, and hence
d(h(a), 4) <nj4 <&, contradicting the fact that h(a) e X—T. We
therefore must have h(c)eX—A4, a,nd hence (h(a), h(e)) e Vi and
(h(0), 1(0) € V. Tt follows that d(h(a), h(D) <7. But since h(b)e T,
we also know that

(X—-TD)).

a(h(d), 4) < d(1{b), X— U) < a(h(d), h(a)) < 7,

80 that

d(h(a), 4) < d(h(a), h(b))+A(h(b), 4) <29 < e,

again contradicting the fact that h(a) e X— U. Similarly, we show that
{h(a), () ¢ (U'—4)x (X— U). Formula (6) is thus established.
Finally, note that (lc) and (1d) together imply that

(g(r(a), h(D), ¢'(R(a), (D)) € Vx
for all )
(@, ) eV A [[p(U-A)P~(p(X— T

Because of formulas (1)-(6), we can now define A: Vx I -+Z as follows.
pix(hla), s(hia), h(b)), 61)

it (a,b) eV ~ [[p(T—A)°~(p(X— U] and 0 < 1 < 1/6;
Pix(s(b(a), h(b)), g(h(a), h(D)), 6t - 1)

it (@,5) eV A [(p(T—A)f~(p(X— U] and 1/6 <t < 1/3;
pix{g(hia), k(b)) ¢'(R(a), (b)), 3t-1)

if (e, byeV A [(p(U— A —(p(&X—- U], 13 <

and ¢(h(a), h(b)) < 2/3;

piv{fa(h(a), R (b)), fi'(h(a), (D)), 3t—1)

if ta,b) eV A [[p(T—A)f—(p(X— U], 1/3 < t < 23,

Ala,b,t) =
t < 2/3,

and g{h(a), h(b)) = 2/3;

Aa, b,t) =
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pix|g'(h(a), h(b), s'(h(a),
if (a,b) eV A [[p(U- A))

h(b)), 61—4)
—(p(X—U")*] and 2/3 <t < 5/6;

pix(s'(R(a), h(b)), h(b), 6t—5)

it (a, b) eVn[p(U AN~ (p(X— U] and 56 <t<1;
Ph(a)

if (a, b) eVn(p(X—- U and 0 <t < 1/3;

pix{h(a), B(b), 3t—1)

if (@,b) eV ~ [p(X— U and 1/3 <t <234
Ph(b)

if (a,b)eV ~(p(X— T and 2/3 <t <1;
Ph{a)

if (a,0) eV A (p(X))* and 0 <t <135
pix(h(a), h(b), 3t—1)

if (a,b)eVn(p T))* and 1/3 <t << 2/3;

Pph(d)
if (a,8) eV A (p(X)) and 23 <t <T;

pix(b(a), rh(a), 61

if (@,0) eV A (p(X—4)x p(¥)) and 0 <t < 1/6;
(a)

if (a,0) eV A (p(X—A)xp(Y)) and 1/6 <t < 1[3;
plr(fri(a), k(b
if (a,b) eV A (p(X—A)Xp(¥)) and 13 <t < 2f3;

ph(b)
it (a,b) eV ~ (p(X—A)xp(¥)) and 23<I< L

ph(a)
if (a,b) eV A (p(T)xp(X—4)) and 0 << 135

pix(h(a), fri(d
it (6,0) eV A (p(Y)xp(X—4)) and 1/3 <1 <203

prh

), 3t—1)

), 8t—1)
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[ pri(d)
I if (a,b)eV ~ (p(l")xp(X—A)) and 23 <t < 5/6;
Ala,b,t)= |
lplx(ﬂz , 61— 5)
[

if (@,b)eV r\( (Y)x p(X—4)) and 5/6 < t

It is easily seen that 2 has the connecting property. It must now be
shown that 4 is continuous. First of all, it is clear that A is continuous
on each of the sets

VA llpU-a)f—p@-v))]x1. [V~ p@E-o)x1,

VAp@P]xI, [VA@pE-4)xp(V)]xI,
and
VA (N xp@E—-4)|xI,

since p| (X —A4) and p] T are homeomorphisms, and

(Bl (X—A))e) it eep(X—A);

h(e):
(p! )" Y(e) it eep(¥).

Now let {(as, ba,s)} be a sequence in ¥ I converging to (a, b, t)
¢ VX I. By Lemma 2.4, we may assume that {t,) # > 1} is contained in one
of the intervals [0, 1/6}, [1/6,1/3], [1/3, 23], [2/3,5/6], or [5/6, 1].

Suppose first that

(@ny bn) € (p(T—A)f'~ (p(X— T")*
for each n, and that (e,b) e (p(X— U'))". Then {(h(an), h(bs)} is a se-
quence in (U—A)*—(X— U")? converging to (h(a), (b)) e (X — T'). Since
g(h(a), B(b)) = 0, we have
gg(h(an), R {bn)) =
80 that
Lim g (h(an), h(ba)) = lims (k(an), h(ba)) = h(a)
and

Eﬂq'(h(an), B(bn)) = Ums' (h(an), B(ba)) = h(b) .
Thus if each t, €[0, 1/3], then

WA (an, buy tn) = phia) = A(a,b,1).

e ©
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Similarly, if each t, ¢ [2/3, 1], then

hm/(a,,,b,, tn) = Ala.b.1).

A==
If each ty €[1/3,2/3], then

Lma (g, by, ta) = pix(h(a), k(b), 3t—1) = A(a, b, ).
We have thus shown that 2 is continuous on [V ~ (p(X—4))* ]xI
Now in order to show that A is continuous on ¥x I, it is clearly

sufficient to consider only the cases in which the sequence {(a, bs)} is
contained in one of the sets (p(X—A), (p(T)), p(X—A)xp(T), o
p(¥)Xx p(X—4), and in which (a, b) belongs to a different one of these
sets. It is also clear that no sequence in p(T) can converge to a point
of p(X—d). Moreover, if {e,} is a sequence in p(X—4) converging to
eep(Y), then eep(d); for otherwise Z—p(X) is a neighborhood of ¢
which does not intersect p(X—.4). Furthermore, p(X— U") is closed,
since X — U’ is closed, and hence we need not congider the case in which
(Gny bu) € (1J(X — U’))2 for infinitely many n. Since 2 may be thought of
as the composition of two functions, the first of which takes (a,b,1?)
into (h(a), h(D), 1), it follows from Lemma 2.5 that in order to show that

Lim A(an, bu, tn) = Ala, b, 1),

n—ro0

it is sufficient to show that
lm A (@n, buy, tne) = @, b, 1)
Je—oc

for every convergent subsequence | (h(@n), R(buy), tni)} Of {{((@n), B(Ba), ta)}-
Without loss of generality, then, we may assume that {(k(an). k(bs), t)}
converges, say to (z,y,1).

Suppose first that

(7) (@n, bn) € (p(X—A)°  for each n and (e, b) e (p(T)).

Then (h{a), h(ba)) € (X—A)* for each u, and (k(a), h(D)) e (flA). We
claim that )
: Limd(h (ax) ), (h@)) = 0.

For let N be an X -neighborhood of f~ ( ) Then N v Y is a W-neigh-
borhood of p~1(a). Hence there is an open union M of equivalence classes
such that p~4a)C M C N o T. Then p(3) is a neighborhood of &, and
therefore contains all except a finite number of the a.’s. Since each
h(as) € X, it follows that N contains all except a finite number of the
h{an)'s. Similarly,

hmd(h( j) =0.
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Thus
(@, 9) S (h(a)) x F (R (D)) .
We will show next that
lims(h(am), h(bn)) = limq(h(an)v h(bn)) =a.

By Lemma 2.4, we may assume, without loss of generality, that |{g(h(ay),
h(bw))| m > 1} is contained in one of the intervals [0,4/9], [4/9, 2/3], or
[2/3,1]. T£ g(h(an}, h(br)) < 4/9 for each u, then

lim g (k(aa), h(bs)) = lims (h(an), h(bs))
N-+00 N0
= limix(h(an), vh(an), $9(h(an), h(ba))) = @ ,
sinee limrh(an) = r(x) = x. Note that if &=y, then
lim7h(as) = lim7rh(b,) = @,
and if # s y, then
limag (h(an), h{bs)) = 1.
It is then easy to see that if g(h(an), (bn)) = 4/9 for each u, then
gs (% (@n), (ba)) = limg(h(an), h(ba)) == .
Similarly we establish that
Yimns(h(an), B (b)) = g/ (1(an), h(b) =y .
Therefore, if each 7, ¢[0, 1/3], then
Lim 7 (s, ba, tn) = p(2) = ph(a) = A(a, b, 1) .
Similarly, if each t, €[2/3,1], then
11..5‘;1(“"’ buytn) = Aa, b, t) .

So now suppose that each 2, e [1/3,2/3]. As in the
we may assume, without loss of generality,
S 2f3 for each n or g(h(an), B (bs))
observe that z— Y (since otherwise

preceding paragraph,
that either g(k(an), h(bs))
> 2/3 for each n. In the first case,

limg(h(an), h(ba)) = 1),
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and hence h(a)= h(b). It follows that if g(k(an), h(bs)} < 2/3 for each n,
then
Hm A(@n, buy ta) = p (@) = pAy(h(a), k(D), 3t—1) = A{a, b. ty.
n—o0

On the other hand, if g(h(aa), k(b)) > 2/3 for each n, then

lim 2 (an, b, ta) = pAr(f(a), (1), 3—1) = p2r(h(a), k(D) 3t~1) = ita,b,0).
Next suppose that

(8) (@n,bn)e (p(X—A)® for each n and (a,b) e p(X—4)x p(T).

Then it is clear that @ = h(a) and, as above, we see that yef '{R(b)}.
Note also that
ﬁm.‘}(h(a’ﬂ)y k(b’n)) =1,
so that
lims (h(an), b(ba)) = limg(h(an), h(ba)) = rh(a) .
N->00 Nn—+00
Similarly,
Lims'(k(an), h(bn)) = Umg'(k(an), h(bn)) = r(y) =y .
N0 N0
It now requires only a straightforward argument to show that
Um A(an, bay tn) = Ala, b, 1) .

Similarly, we show that if
9) (Gny ba) € (P(X A)‘)2 for each n and (a,b)ep(¥Y)xp(X—-A4),
then

lim A(@n, ba, tn) = Aa, b, t) .

n—ee

Now suppose that

(10)  (Gn, bn) ep(X—A)x p(Y) for each n and (a,d) e (p(X))-
Then (k(a), 1(b) e f{A)x ¥,y = k(D), and = ef*(h(a)). Again, a straight-
forward argument shows that

HmA(@n, bn, ta) = Ala, b, 1) .

n—>00

The desired result is obtained similarly if

(11)  (@n, bn) ep(¥)x p(X—A) for each n and (a,d)e (2(XT)" -
Note that since a sequence in p(Y) cannot converge to a pc.oint of

p(X—A4), (71)-(11) are the only possibilities which must be conmdex"ec}

Hence 2 is continuous, and so is a local connecting map for Z. Thus

is LEC. Q.e.d.
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A similar but easier argument establishes the following result,

THEOREM 3.2. Let X and Y be compact metrizable EC spaces, let A
be a retract of X, let f: A Y be continuous, and let Z = X w; Y. Then Z
iz EC.
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Decomposable circle-like continua *
by

W. T. Ingram (Houston, Texas)

1. Introduection. In [6] J. B. Fugate proved that a necessary
and sufficient condition that the sum of two chainable continua be
chainable is that the sum be atriodic and unicoherent. In this paper it
is proved that a necessary and sufficient condition that the non-chainable
sum of two chainable continua be circle-like is that the sum be atricdie
and the common part of the two continua be not connected. The techniques
used in proving this also yield a strengthened version of Fugate’s theorem.

Space is assumed to be metric with metric . For definitions of terms
such as chainable (snake-like) or circle-like, see [2]; the conventions used
there for denoting chains (or circular chains) are employed in this paper.

The subcontinuum H of the compact continuum M is said to be
a terminal subcontinuum of M if and only if for each two subeontinua K
and L of M which intersect H either K is a subcet of H w Lor L is a subset
of Hu K. .

A chain € is said to be regular (taut) if and only if the distance
between non-intersecting links of C is positive. In [4], Theorem 1, p 12,
H. Cook proved that if M is chainable and D is a chain covering M then
there is a regular chain covering M which is a strong refinement of D

TEEoREM (Fugate, [6], Lemma 1, p. 461). If H is a terminal sub-
continuum of the chainable continuwum M and e > 0, then there is & regular
e-chain C(cy, €y .., Cn) covering M such thal e,— (6, ~ Cy) intersects H.

2. Terminal continua and decomposable atriodic continua.
Theorem 1 is a generalization of a theorem of Bing ([1], Theorem 14, p. 661)
concerning opposite end points. The argument is similar to that given
by Bing.

TarorEM 1. If H and K are mutually exclusive terminal subcontinua
of the chainable continuwm M and M is irredueible with respect to containing
H o K and & > 0, then there is an e-chain G(ey, 65y vy ¢n) covering M such
that ¢,— (¢, ~ &) intersects H and en— (6o N En-1) intersects K.

* Work on this paper was supported in part by NASA Grant NGR 44-005-037.
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