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Pseudo-metrizability of quotient spaces*
by

C. J. Himmelberg (Lawrence, Kansas)

1. Introduction. In [1] we obtained a mnecessary and sufficient
condition that the image ¥ of a pseudo-metrizable space X under a quo-
tient map f be pseudo-metrizable. (See Theorem 2, below.) In this note
the principal result is the following.

THEOREM 1. Let f be a quotient map from o pseudo-metrizable space X
onto a space Y. Then X is pseudo-metrizable if and only if there ewists
a pseudo-metric space (Z, 0) containing X as a subspace and a continuous
ewtension g: Z—Y of f such that the function o defined by o(y, w) = §(g~[y],
g~ [w]), for y,we X, is a pseudo-metric compatible with the topology of ¥.
Moroever, it may be required that the space Z belong to the smallest class
of topological spaces which contains X and is closed under the formation
of one point adjunctions (1) and (finite or infinite) topological sums.

We note that, as a continuous extension of a quotient map onto ¥,
¢ must also be a quotient map onto Y.

As a by-product of our results we obtain a proof of Theorem 2 without
having to use quotient uniformities (as was necessary in [1]). In Section
3 we obtain some results on the pseudo-metrizability of orbit spaces.

The notation in this paper is in most cases the same as in [1]. In
particular, if (W, d) is a pseudo-metric space and if A, B are subsets
of W, then d(4,B)=inf{d(a,d)] acd, beB}; it ACW and >0,
then N J[A]= {we W| d(w, 4) < }. The word map means continuous
function. A map f: XY is a quotient map if and only if Y has the
quotient topology relative to f.

2. Proof of Theorem 1. In [1] we proved the following

TrrEoREM 2. Let f be a quotient map from a pseudo-metrizable space X
onto a space Y. Then Y is psewdo-meirizable if and only if the topology
on X can be defined by o pseudo-metric d such that X, d, Y, f satisfy

* Thiy research was supported in part by the National Science Foundation (GP-6490).

() If X, X, ave topological spaces, and if w, € X;, m, € Xy, then the space formed
by identifying », and @, in the topological sum of X; and X, is called a one point
adjunction of X, and X,.
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(C) for each member G of some base of X there ewists a family {e(y)| y « G}
of positive real numbers such that

(i) Nl Cre  if
(i) A(F 71, R = e(y) —e(2)

Theorem 1 follows immediately from Theorem 2 and the following:

yel,

if y,ze@.

THEOREM 3. Let f be a quotient map from a pseudo-metrio space (X, d)
onto a space Y such that X,d, Y, f satisfy (C). Then there exisis a pseudo-
metric space (Z,d) containing X as a subspace (isometrically if (X, d)
s bounded or if & is allowed to take the value oo), and there exists o continuous
extension g: Z—~Y of f such that the function ¢ defined by o(y, w) = (g~ [y],
g {w)), for y, we X, is a pseudo-metric compatible with the topology of Y.
It may be required that the space Z belong to the smallest class of topolo-
gical spaces which contains X and is closed under the formation of one
point adjunctions and (finite or infinite) topological sums.

We remarked that the proof in [1] of the “if” part of Theorem
2 (of this paper) leaned heavily on some facts about quotient unifor-
mities. However, this part of Theorem 2 follows trivially from Theorem
3, and, as will be seen, the proof of Theorem 3 makes no use of wuni-
formities.

Proof. Our argument allows pseudo-metries to take the value oo,
The theorem is true as stated for finite valued pseudo-metries, however,
since any pseudo-metric d for X such that X,d, Y, f satisty (O) can
clearly be replaced by a bounded pseudo-metric ¢’ such that X &, Y, f
satisfy (C). Moreover, if (X, d) is of diameter », and if (Z ,0) is as in the
theorem (with & possibly taking the value oo), then replace & by
¢' = min{d, r}. It follows easily that (Z, 6') contains (X , 4) isometrically,
and that o'(y,w)= 6'(g~[y], g~ [w]) defines a finite valued pseudo-
metric compatible with the topology of ¥.

‘We now proceed with the proof. Z, § and g are constructed in precisely
the same way that X, de and f. were constructed in [1]. However, for
the sake of completeness, we repeat that construction here.

For each ordered pair (u,v) of points of X such that F(w) = f(v),
let ¢ be a 1-1 isometry from X onto a space ®[X] such that the intersection
of p[X] with X is » and such that ®(u) = v. Let @ be the set of isometries
chosen in this way. For each X u p[X] define a pseudo-metric d, by

g(‘%:’n if m7y€X7

| a1, g1 i @,yep[X],

WO =, o) dlu,p-1y) H  oeX,yepld],
Upol, w)+d(v,y) i wep[X], ye X,
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and extend f to the map f,: X v [X]-+T defined by
fla) if 2zeX
fw(‘l’) = [ Ty : !
[fogmie] it aepX).

Next regard any two of the spaces X v ¢[X], X uy[X], with ¢,y
distinet members of @, as disjoint, and let

Y=UXvelX) ged}.
Define & pseudo-metric d; for X, by

[dw(myy) it e,yeXvpX),ge?,
h(@,y) = 1 oo otherwise

and extend all f,’s simultaneously to the funection
h=U{fl 9@} XY

We regard X, as disjoint from X, although it may help to keep in mind
that X, contains @ copies of X, on each of which f, d;, behave exactly
like f, d, respectively.

Obtain a sequence of mutually disjoint pseudo-metric spaces (X, d)
= (Xy, &)y (K15 d1)5 ooy (Xn, dn), ... and maps fo = f: XY, fi: XY, ..
ey fur Xp—=TY, ... by constructing @n, Xpi1, dni1, farr, from X, dn, fn
in the same way that @, X, d,,f, were constructed from X, d,f If
m < n, then X, containg @, X ... X P,_; copies of X, on each of which
P d,, behave exactly like fin, dm, respectively. Now define

Z—UXd n=0,1,.}, g=U{ln=0,1,.3,

dy(z,y) H  x,yeX,,
oz, y) = o it weXm yeXn m#En.

It is trivial that ¢ is a quotient mayp. It now remains to prove that g,
as defined in the statement of the theorem, is & pseudo-metric compatible
with the topology of Y.

To prove that g is a pseudo-metrie, it is sufficient to check the triangle
inequality. So let 4y, Y., ¥s € ¥, and let ¢ > 0. Then there exist «, € g~'[y,],
dy, # € g7 y,), and zy e g7 y;] such that

8@y, ) < 8(g7 )y 9w +6
and
O(@h, ) < 6(g7 (1], 97 WD) +¢
If either o(y;, %2) = oo OF (¥, Ys) = oo, then trivially ¢(%:, %) < 0(41, ¥2)
+ 0(¥2, ¥s). So we may assume that 8(z,, @,), 6 (x4, ) are finite, and that
there exist integers m and m such that ,,#, € Xm, and @, 3¢ Xyn. If
m < n, then there exist copies of @, @, in X, which are also in g~[1],
1*
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97'[%.], respectively, and which are such that the distance between the
copies is also 6(w;, #,). Argue similarly with @} and z, if m > n. Hence
We IaY asSume &, &y, 22, & € Xn. Let ¢ ¢ B, be the isometry of X, onto
@(Xn) such that @(w,) = #5. Then ®(®) e g7 y,], and now regarding
@y, &y, B3y %3 38 points of X, u o(X,) C X,p1, we have

e (¥, ¥s) = 0(g7[1:], 9~ [ws])
< 6(")"(371)7 ma)

Il

= 8o ()], ma) + 6 (%, 5)

O(®y, )+ 8 (25, 25)

3G~y 07w + 6097 wa], 0 [ws) + 2
= (Y1, Ya) + 0(Y2, Ys) + 2¢.

Bub & was arbitrary. 80 o (v, %) < 0¥y, ¥2)+ 0 (¥s, ¥s)-

The continuity of ¢: (Z, 8)-(Y, p) is a trivial consequence of the
fact that ¢ is a distance depressing function. We conclude the proof by
showing that the topology defined by p is larger than the given quotient
topology on Y. Let @ be an open set in the base for Y preseribed by (C),
and let y ¢ @. By proposition 5 of [1], there exists ¢>0 such that
Nz[g—l[y]] Cg~'[G]. It follows that the p-sphere about y of radius & is
contained in G. For suppose o(w, y) < &. Then (g~ [w], g7 [¥]) < ¢ and
there exists z € g~[w] such that 6(=, 97 y]) < e&. Hence z e 97YG] and
we@.

This coneludes the proof of Theorem 3.

There are cases in which the space (Z, 8) of Theorem 3 can be chosen
equal to (X, d). This may be done, for example, if X is a topological
group with & right invariant pseudo-metric d, ¥ is the quotient space X/H
of left cosets relative to a subgroup H of X, and f: XY ig the natural
projection. (For a proof see [2], page 36, or Theorem 4 below.) We extend
this example somewhat in Theorem 4 in the next section.

3. Pseudo-metrizability of orbit spaces. Let (X,d) De
a pseudo-metric space and let I7 be a group of homeomorphisms of X.
Let I7(2) = {p()| @ I}, for each © ¢ X. Then the collection {(z)] zeX}
is & decomposition of X which we denote by X/IT and which we give the
quotient topology relative to the natural projection f taking & to I7 (2)
if o ¢ X. X/IT with this topology is called the orbit space of X relative to IT.
For example, if X is a topological group, and I a group of right transla-
tions determined by a subgroup H of X, then the space X/IT i the space

X[H of left cosets. It is natural to ask when X/IT is pseudo-metrizable.
The next two theorems give a partial answer.

icm
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THEOREM 4. Let IT be a group of isometries of a pseudo-metric space
(X,d). Then the formula ¢(A,B)= d(A,B), for A,BeX|I, defines
a pseudo-metric compatible with the topology of the orbit space X|IT.

Proof. The proof is virtually the same ag the proof of the correspond-
ing theorem for topological groups. We first show that o satisfies the
triangle inequality. Let 4, B, C e X[II, and let ac A, b, b’ e B, and ce ¢
be such that d(a, d) < ¢(4,B)+¢/2 and d(V', ¢) < o(B, C)+¢/2. Choose
an isometry ¢ eIl such that ¢(b') = b, Then ¢(c) € C,

dlb, p(e) = a(b’, ¢) < o(B, O)+ef2,
and
o(d, 0) < dla,p(c) < e(4, B)+o(B, O)+e.

Sinee & is arbitrary, the triangle inequality follows. )
The topology on X/II defined by o makes the natural projee’gon
f: X—=X|IT a distance depressing, and therefore continuous, f}mctmn.
So there remains only to show that the topology defined by g is larger
than the quotient topology. Let I' be open in X/]I,. aed el and
e=d(a, X— |JI). Then ¢> 0, and the g-sphere of rad}ug e about the
point A is contained in I'. To prove the latter statement it 1s.clea.r1y .suf-
ficient to prove that the d-neighborhood N.[A] of the set A is contained
in \JTI. Solet bed, xeX— (JTI', and let ¢  IT be such that ¢(b) = a.
Then d(b, ) = d(a, p(x)} > d(a, X— \JTI) = & It follows that d(4, X—
— U T') = ¢, and hence that N.[A]JC | JTI. N N
In the next theorem we obtain a slightly sharper sufficient condition
for the pseudo-metrizability of X/I1. However, it will no longer be true
that we can choose (Z, 6) = (X, d). )
THEOREM 5. Let IT be a group of homeomorphisms of & pseudo-metric
space (X, d), and suppose that there ewists K >0 such that d (cp(m)_,qz(y))
< Kd(z,y) for all p e IT and all ,y ¢ X. Then X|IT is pseudo-meirizable.
Remark. Since IT is a group, it follows that K = 1.
Proof. Let f: X—X/II be the natural projection. We will show
that X, d, X/II, f satisty (C). .
LEmMA. Let A, BeX|II, beB, and ¢>0. Then there ewists a e A
such that d(a,D) < Ed(4, B)+e.
Proof. Let a,e A, byeB be such that d(ay, by) < d(4, B)+ /K.
There exists @ ¢ I7 such that @(b,) = b. Let a = ¢(a,). Then

ala, b) = d(p(as), p(bs)) < Kd(ay, by) < Ed(4, B)+e.

Returning to the proof of Theorem 5, let I" be an open subset of X/II.
We will find a set {s(A)| 4 ¢ I'} of positive reals such thatb

(i) Naafd]CUI it Ael,
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(i) d(A,B)=¢e(d)—e(B) if A,Bel.
It then follows from Theovem 2 that X/IT is pseudo-metrizable.
Define ¢(4) = n(4)/K, where
n(4) = sup{e[ e >0 and N[A]C | JIT if Ael.

We first prove that #(A)>0 for all Ael. Let aed and let
&= (1/K)d(a, X— | JI). Olearly ¢> 0. To show 7(4) > 0, it is sufficient
to show that N,[A]C |JI, or, equivalently, that d(4,X— JI) >e.
S0 let ze 4, we X— | JTI', and let @ e II be such that ¢(z) = a. Then

Rd(z,u) = d(p(x), p(v) = dla, p(u) = d(a, X— | I) = Ke¢,

so d(x,u) > ¢, and consequently d(4d, X— [JTI) >s.

Tt is trivial that N,[4]C | I'for all A «I'; thus (i) is true since &(4)
§ 7(A) for all 4 e I'. It remains to prove (ii). Let A, B ¢ I'. By the defini-
tion of £(4) and ¢(B), it is sufficient to prove that Kd(4, B) = n(4)—
—n(B), i.e., that #(B) = n(4)—Kd(4, B); and to do this it is sufficient
to show that the following implication is true:

d(z,B) < n{d)—Kd(4,B) =welJI.
Suppose d(z, B) < n(4d)—Kd(A, B). Then there exists &> 0 such that
d(x, B) < n(A)—Kd(A, B)—c¢.
Nowilet 6 >0 be arbitrary. Then there exists b ¢ B such that
d(z,b) < d(z, B)+4,

and by the lemma there exists a ¢ A such that

d(a,b) < Kd(4,B)+46.
It follows thatb

d(w, 4) < d(x,a) < d(z, B)+ Kd(4, B)+26 < n(4)—s-+26 .
Hence d(w, 4) < n(d)—e < n(4) and z I
This concludes the proof of Theorem 5.
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The first order properties of Dedekind finite integers

by
Erik Ellentuck* (New Brunswick, N. I.)

1. Introduction. It is well known that mathematics is offen
simplified by the introduction of ideal elements. In the past it has been
said that even when their existence is entirely fictitious (points at infinity
in geometry, for example), theorems about the original structure which
are proved with their aid may be interpreted as relative consistency
results. More recently, our firm belief in set theory has led us to take
ideal elements which are constructed in set theory as bonafide mathe-
matical objects. In this paper such notions are applied to the Dedekind
finite cardinals 4 (cf. [4]). In theorem 1 we show that just as the finite
cardinals & can be extended to the ring of rational integers &%, 4 can be
extended to the ring of Dedekind finite integers A*. Of course all of this
is going on in a set theory & which does not include the axiom of choice.
Next, a series of lemmas shows that every function defined on &* can be
extended to @ function defined on A* Since this extension procedure
depends in an essential way on the methods of [4], we must require that S°
contains the axiom of choice for sets of finite sets. This does not force
A* = & as is shown in [4]. In order to study the first order properties
of A* we define a language L which contains equations between terms,
which are built up by composition of function symbols, as atomic formula.
I is interpreted in &* by lefting the function symbols denote funetions
on &, and interpreted in A* Dby letting the function symbols denote
extensions to 4* of functions defined on &. The bulk of our work is con-
cerned with giving necessary and sufficient conditions that a sentence A
which holds in & will also hold in 4* Our main sufficiency result is given
by corollary 2, which says in essence that if % is equivalent in &§* to a Horn
sentence, then % will also hold in A4* This theorem easily follows by & rou-
tine transeription of [4], theorem 8. The more interesting part of our
paper is concerned with necessity. We use metamathematical tools. In
Jemma 5 we show that in the Fraenkel-Mostowski model W (ef. [11]),
A* is isomorphic to a direct limit of reduced powers of &*. In lemmas 6

* Research for this paper was supported in part by National Science Foundation
contract number GP 5786.
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