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On a class of plane acyclic continua
with the fixed point property

by
K. Sieklucki (Warszawa)

1. Introduction. Let X be a space and F a family of mappings
of X into itself. We say that X has the fized point property for the class F
if for every f ¢ F there exists an # ¢« X such that f(z) = x. Tt is unknown
‘whether a plane continuum which does not separate the plane has the
fixed point property even for homeomorphisms. &. Choquet proved
in [4] that a plane continuum which does not separate the plane has the
fixed point property for homeomorphisms which are extensible to periodic
homeomorphisms of the plane with period # 2. M. L. Cartwright and
J. E. Littlewood proved in [3] that the same is true for homeomorphisms
which are extensible to orientation preserving homeomorphisms of the
plane.

Other partial results follow from some theorems of K. Borsuk. Name-
ly, [1] implies that every Peano continuum which lies in the plane
and does not separate the plane has the fixed point property for continuous
mappings. Moreover, it follows from a theorem of [2] that any plane
acyclic continuum which is a boundary set and is arcwise connected
hag the fixed point property for continuous mappings. Another class of
planar acyclic continua with the fixed point property for continuous
mappings is the class of snake-like continua [5]. More details concerning
the problem can be found in the book of van der ‘Walt [9].

O. H. Hamilton proved in [6] that if D is a bounded simply connected
plane domain whose closure does not separate the plane and whose bound-
ary is hereditarily decomposable, then D has the fixed point property
for homeomorphisms. The purpose of the present paper is to give a gener-
alization of the theorem of Hamilton. Namely, we prove that any plane
continuum which does not separate the plane and whose boundary is
hereditarily decomposable has the fixed point property for continuous
mappings. More precisely, we shall prove the following

1.1. TusoreM. If X is a plane continwwm which does mot separate
the plane B, and f: X ~E, is a continuous mapping such that f(FrX)C X
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and f(x) # @ for every w € X, then there exists an indecomposable continuum
X, CFr X such that f(Xy) = X, (%)-

2. General definitions and notations. All sets eonsidere_d
in this paper are subsets of the Euclidean plane F,. If A C F,, then by 4,
Int 4, and Frd we shall understand the closure, the interior and the
boundary of A, respectively, with respect to the plane H,.

A dendrite is a 1-dimensional locally connected continuum which
does not contain any simple closed curve. A dendrite which is the union
of a finite number of simple arcs is said to be finite. If D is @ dendrite,
then by ram(d) we shall denote the order of ramification. of D at a point
deD. We also define ramD = ;ug)mm(d). By D we shall understand

the set of those points of D for which ram(d) = 1. Moreover, we write
D= D—D. ‘

Let D be a finite plane dendrite and let d e D. A set L C B, is called
a local cut of D at the point & provided L is the union of ram(d) simple
closed arcs which are mutually disjoint and disjoint with D beyond their
common origin 4 and L is such that for a sufficiently small neighbourhood U
of d each component of U— L contains exactly one component of (U ~ D)—
—{d.

{ If a,p are real numbers (or the symbols — co, +4o0) and a < B,
then we write [a,f]={:ae<ti<Bl (¢,f]={t: a<i<B}, [a,f)
={t: a<t<f}, (e,f)={t: a<t < B} The use of the same symbol
to denote an open interval and a point with two coordinates will not
lead to any misunderstanding. If @, b ¢ E,, then by [av,T], (a, b], [a, b),
and (a,b) we shall denote the closed, half-closed, and open segment,
respectively, with the end-points a,b. Any closed, half-closed, and open
simple arc with the end-points «,d (which is obviously not uniquely
determined by the ends) will be denoted by [E,\ bl, (ﬁ b], [a’,\b), and (a, b),
respectively.

The unit interval [0,1] will be denoted by I. 'We write I* for the
Cartesian square I xI. The unit circle will be denoted by S*. The vector
from a point a € &, to a point b ¢ B, will be denoted by @, b. The open
ball with radius 7 about a set A will be denoted by B(4, r); the same
symbol will be used when the set A reduces to a point. Any plane set
homeomorphic to the closed unit dise is called a fopological dise. A. topo-
logical disc is said to be e-lanky if it does not contain any geometric disc
of diameter z. If 4 # 0 == B, then we write dist(4, B) = jnz,f Bg(a, b).

aed,be

(*) After giving the paper to the editors I got from Prof. H. Bell a copy of the
galley proofs of his paper: On fized point properties of plane continua, to appear in the
Transactions of Amer. Math. Soc., in which he obtained an equivalent result.
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For any set X C B, let us define X to be the union of X and of all
bounded components of H,— X. We shall prove some lemmas concerning
this notion.

2.1. LexmMa. If X C E, is a continwwm, then X is ¢ continuum which
does not separate the plane B,.

Proof. Bach bounded component U of B,—X is, in this case,
homeomorphic to an open disc and FrUC X; hence -X is connected.
Moreover, it can easily be seen that Fr(X— X) C X and diam X = diam X,
whence X is closed in #, and bounded, and thus compact. Finally, if U
is a component of B,— X, then Fr T/ C X and this implies that U must
be unbounded. Thus, there exists only one component of B—X.

2.2, LemuA, If X, CX,C B, then X,C X,.

Proof. If o effl, then either p leCXZCXZ, or pe U, where U
is a bounded component of E,— X,. In the second case, Fr U separates p
from oo, and since Fr U C X, C X,, we have P eiz.

2.3. LEMMA. If X = X C B, and C CFr.X are continua, then Frl = C.

Proof. If p e Fr (?, then since Lemma 2.1 implies that ¢ is compact,
we have pe 0. It P eU, where U is a hounded component of E,— C,
then p e Int §, which is impossible. Thus p € C.

Conversely, let us now suppose that p ¢ ¢ CFrX. Then any ball
about p meets both ¢ and E,— X; hence it meets hoth ¢ and E—X
= B,— X C B,— (. This implies that p ¢ Fr{.

3. Trees. Let O, be the standart Cantor set in the interval [0, 1]
and let ¢, (i=1,2,..,2"") denote the centres of the open intervals
removed in the nth step of the construction of €, (n=1,2,..). Let
6= (1/2,1)e B, and = (e,2 ™ eH,, where i=1,2,.., 2"
n=1,2,.. Let 0 be the closure of the union

—_— o0 2n-l - =
oo, el v O U fek, it o Tek, i)
el
(Fig. 1). It is easy to see that C is a dendrite, ram € = 3, and = Cyw
v {¢,}.

A bounded set D C F, is called a tree with origin d, if there exist
a dendrite 0'C (¢ such that ¢ e (' CC,u {¢,} and a homeomorphism
h: (0'— Cp) =, D such that h(cy) = dy. If €' is a simple arc, then the
tree D is said to be simple. Tt dy ¢ Dforn =1, 2, ... and dist(h (), Cg) >0,
then we write conventionally d,->oco. Let us also adopt the notation
LimD= D—D.

3.1. LeMMA. If D is a tree and a connected set H C.D satisfies the
condition H ~LimD s 0, then there exisis a simple tree D C H such that
Lim D C Lim D.

18*
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Proof. Suppose that : (¢'— () 22 D, where ' is a subdendrite
of C and ¢, ¢ 0’ C C, v {6}, is the homeomorphism existing by tllle de-
finition of the tree D. The set ' = b *(H) is a connected subset .of ¢'—0,.
Since H ~ Lim D + 0, there exists a sequence of polints c'l,, e H with dy —oo,
Hence, there exists a sequence of points ¢x € F' Wlt}._‘l dist(en, Cp) >0, Eﬂd
this yields F ~ C, # 0. There exists, therefore, a simple > closed arel[a, zf)
CF, where ac0'—0C,, beCy. Let us write D= h{{a,d)). Then evi-

dently D is a simple tree and bcaH.

Ca

TFig. 1

Moreover, since D C HC D, we have (ﬁ)Cﬁ, and since [a’ﬁ)) is
closed in G'—Cq, D is closed in D. Thus if p e LimD = (D)— D, then
p e D; turthermore, p ¢ D, for otherwise D would not be closed in D.
Hence p e LimD and the proof has been concluded.

3.2. LemumaA. If D is a simple tree, then LimD is a non-empty con-
tinuum.

Proof. By the definition of a simple tree, we can assume that there

1
exists a homeomorphism h: [0,1) 22, D, Let Dp— h([lm%,l)) for

n=1,2, ... For each n the set D, is non-empty and connected. Moreover,
Dy41C Dy for n=1,2, ... Hence {D,} is a decreasing sequence of non-

X = .
empty continua and consequently () D, is a non-empty continuum.
. fn=1

‘We shall prove that LimD = ﬁ Dy.
n=1

icm°®
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Let us note that D A Dp= D, for n=1, 2, ... Indeed, evidently
DnCD ~ Dy. On the other hand, if d = h(t) e D Dy, then there exists
a sequence di= h(t;) e Dy (¢=1,2,..) such that d;—~d, whence t;—t.
Since 1—%—%—1 <t <1, we infer that 1*7%1 <t<1, thus deDy.
This proves the inelusion D ~ D, C D,.

‘We now have

=1

0=()Du=((D~Dyy=Dn~(3 Dn.
n=1 n n=1

On the other hand, t};e well-known formula

yields for F,=h ([1—%, 1— n—l—l» the following equality
D=Dov()D,.
n=1

oo P
From what we have proved it follows that LimD — D—D = [ Dn
n=1
and the proof of the lemma has been concluded.

4. Canals. Let X CE, be a continuum and let DCE,—X be
a tree. A set L is said to be a bridge from a point d e D to X if I is a local
cut of D at the point d and I C X.

A tree D C E2~.f is called a canal in X if for every d < D there exists
a bridge L(d) from d to X such that diamZL(d)->0 if d->co. The canal D
is said to be simple if the tree D is simple.

41. LeMmA. If D is a canal in X, then D is a canal in FrX.

Proof. The lemma follows from the obvious remark that in the
definition of & eanal the ends of a bridge from d e D to X can be chosen
in FrX.

4.2. Lemma. If D is a canal in X, then LimD C FrX.

Proof. If p ¢ LimD, then there exists a sequence d, ¢ D such that
d,—~p and d,—>oco. Hence diamTL(d,) ~0, where L(d) is a bridge from
deD to X. It follows that every ball with centre p meets FrX. Thus
peFrX,

4.3. LemMA. If D is a canal in X and DCD is a tree such that
LimD C LimD, then D is also a canal in X.

Proof. Tt is easy to see that if d ¢ D C D and L(d) is a brigge from d
to X with respect to the tree D, then we can choose a bridge Z(d) CE(d)
from d to X with respect to the tree D). Then evidently diamZ(d)
< diamL(d) and it remains to prove that if dy—oo in D, then dy-sco
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in D. But if it were false, then there would exist a subseyuence dr, —d € D,
whenee @ eLimD— LimD, contrary to the assumption that LunD
C LimD.

4.4, Tmanwa. If D is a simple canal in X ond LimD = X, then X is
indecomposable.

Proof. By Lemma 3.2, X is a continuum. Let us suppose that it
is decomposable and X = A w B, where A,B are continua different
from X. The sets A—B and B—A are, therefore, non-empty and open
in X. Tet ae A—B and b« B— A be interior points with respect to X,
and let us suppose that B(a, 9)nXCA B, B(b,r)n XCB—A4,
B(a,r) ~ B(b,r)=0. By the definition of a simple tree, there exmtb
a homeomorphlsm 7:[0,1) 2. D. By the definition of a canal, for every
d « D there exists a bridge L(d) from d to X such that diamZL(d)-0 if
PN d) 1

There exists, therefore, a number 0 <f, <1 such that diam L (h (1))
< #)2 for {>1,. Since LimD = X, there exist numbers f < fo <1 <&’
such that d;= h(ls) e Bla,r2), dd = h(t{,’)ﬁ(a, r/2), and d; = h(t)
e B(b, r/2). Let M be the union of the arc [ds, da'] C D and the segment
[dZ, d]. Let N be a simple closed curve contained in M and containing dp.
Since L(dp) cuts D locally at the point dp and since diam L (d,) < 7/2, the
two ends of L(dy) are contained in B(b,r) n X CB—A and separated
by N. This implies that N separates B, which in .view of the evident
equality N ~ B = 0 contradicts the connectedness of B.

5. Auxiliary constructions

B.1. Lemuma, If X CHE, is ¢ continuum which does mot separate the
plane B, then there exists a sequence of topological discs Qn with polygonal
boundaries, B, (n=0,1, ...) such that

o«
©Hx ="Oo On;

(i) Qnt: CIntQs (n= 10,1, ..);

(iii) For every b e By there exists an x(b) e Fr X such that writing I(b)
= [b, #(b)] we have I(b) By = {b}, diamI(b) < 27", and I(v') ~ I(3") =0
for ¥ #b” (n=0,1,..).

Proof. Let T, (n= 10,1, ...
closed squares

) be the covering of the plane E, by the

o—k-27" N <27 =127 <2 (R, 1=0, +1,..).

., K are those squares of §, which meet X.

R

Let us suppose that K,, K,,
P

o

Let us define @, = | J K;. From the construction it follows that @, is
i=1 :

a topological disc whose boundary B, is a polygonal line.

icm°®
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To prove condition (i) it is sufficient to show that ﬂ QnCX for

'bhe mvelae inclusion is trivial. Let a ¢ B,— X and let us conudel an are

= [a, ¢] such that ¢ e H,—Q,, LnX— 0. Let & = dist(L, X) and let n
be an integer number such that 27" < e, Then a € E,—@,. Indeed, other-
wise I ~ B, # 0 and for a point beL ~n B, we would have dl%(b X)

< 27" < e, contrary to the definition of e Thus E,—XC L» — @),

‘whence L/ Q. CX.

By vu‘tue of Lemma 2.2, we have Q.1 C(, for n = 0,1,.. Since
evidently X CQ, for n=0,1,..., we can assume, choosing a sunitable
subsequence if necessary, that condition (ii) is satisfied.

It remains to verify (iii). Let b ¢ B, and let us suppose that b e A,
where A is a side of a square K <9, such that KCQ@u. Then K ~ X 0
and let #(b) e K ~ X be a point nearest to b. From this definition we
infer tha,t I(b)=1[b,=(b) #(b)] meets B, only at the point b and diamI(b)
<27 Let b, e¢B, and b’ £ b"”. We are going to prove that T(b')
~ I(b") = 0. This is evidently true if 5’ and b belong to sides of different
squares, for each square is convex and contains the segment I(b). Let us
suppose that 5’, 5" belong to the boundary of the same square K T,
such that K CQ,. Then x(b’), #(b"') belong to K ~ X. Let us assume that
eel(b’)~I(b"”). Then

e(bye)+ofe, (b)) = o (b, 2(b) < oft', @

whence gfc, (b)) < gfe, #(b”")). By symmetry we get ole, 2(0") =
= g(e, #(b"")). Furthermore, we infer that

et 2(6") = e(t', &)+ oo, (6")

b")) < po(d,c —|—g(c z b”)

and

e(6”, 2(v) = o(d”, &) +oe, 2(¥") ,

for otherwise, by the same reasoning as above, we would get either
efe, z(b) < ofe, (b)) or ofe,2(2")) < ole, 2(b")), contrary to what we
have proved. Thus ce[d’, #(b")] ~ [, x(b))]. Since b’ b, we infer
that ¢= x(b’) = 2(b""), but this implies I(d") ~ I{d")=0.

5.2. LemuA. Let us suppose that Q C B, is a topological disc with the
boundary M and that ¢ > 0 is a number such ﬂmt Q is g[12-lanky. Let deM
Jor j=10,1, ..., & be points such that diam[d’, d’ﬂ] <eforj=0,1,..,k
mod k. Thm ihew exists a finite dendrite D CQ such that r&mD<3,
D=Dn M= U (@, and cach component U of Q—(D v M) satisfies
diam U < 2e.
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Proof. Let H be the union of the straight lines @, = k-¢f12,
@, = l-¢/12, where k,1= 0, +1, ... Since @ does not contain any square
with a side of diameter ¢/12, there exists a homeomorphisms h: B, =~ F,
such that o{p,h(p)) <¢/6, (M) is a polygonal simple closed curve,
and 2(Q) does not contain any point of the form (k-¢/12, I-¢/12). Thus we
ean assume that M and Q themselves possess those properties, and prove

the lemma under the assumption diam[d, &™) < 8+~§=§-s for the

L=

: : j &
conclusion diam U’ < 2e— =3¢

w

Now, H ~Q is the union of mutually disjoint closed segments H,
with the end-points in 3. We can evidently assume that @ is neither
a vertex of M mnor a vertex of any H, for j= 0,1, ...,k Let p, be the
centre of H, and let Hy= | J H,— {pa}. Let V; be open polyhedra.l neigh-

bourhoods in @ of vertices in M such that for V= | J Vs we have eV
7
forj=0,1,..
dise.
The set Q,= Q— (V v Hy) is simply connected. Let g, eInth and
let D be the shortest polygonal arc joining g, with 4’ in ¢ forj =0, 1, ..., k.

x .
The set D = | ] Dlis obviously a finite dendrite satisfying DCQ, D= D ~
j=0

s &, Do ¢ V for all o, and Q—V is still a polyhedral topological

% o —
~ M = {J{d"}. Let us assume that D’ ~ D' = [¢;, p;] and let us write
=8

Li={d,pjvp;, d*CD, =[@,dMCcH
(j=0,1,...,k; modk).

It is easy to see that the arc L; passes only through those p. (except p;)
for which H, meets M;. It follows that if U’ denotes the component of
Q— (D v M) bounded by L; v M;, then we have

5
e=g¢.

3

Making a sufficiently small modification of D, if necessary, we can
agsume that ramD < 3.

5.3. LeMuA. Let hy be a homeomorphism of FrI? onto the boundtwy M
of a topological disc Q, let (I x(0)) =B, ho(I x(1))= UB’ where

diamUi<dia,mM;+4ma,xdiazmH,,<§e+4‘I1§

[b’ L b for j= 1,2,..,%k and let DCQ be a finite dendrite such
that amD <3, D=Dn M= ;U {@’}, where A’ e B’ for j=0,1, ...,k
=0
Then there exist:
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) . .
(i) @ retraction r: P=TntQ u B —~D such that r(B)=d for
i=0 )

j=0,1,..,k and r(U)CFrU for each component U of Q— (D v M);
(i) a homeomorphic extension h: IP 22, Q of h, such that if
h(s,t) e P, then

/“\
rh{(8) x [0, €]) = [rh(s, 0}, rh(s, )] C D.
Proof. To begin with we shall construct a retraction ¢: P—+D o
ko
u |J B such that ¢(U) CFrU for each component U of Q—(D v M)
i=0

and a homeomorphic extension h: I* 22, Q of h, such that if k(s, ?) € P,
then

gh((s) x [0, 1) = [gh(s, 0), gh(s, 1)1 C D v ,_UOB .
‘We proceed by induction. Let us suppose that k = 1 and let & = ha(d)

for j=0,1; 4=1[d,d] Let I’ be the component of I*— (4w Frl?)
which contains (j) x I on its boundary for j = 0, 1. Let

m: T=TntI* o | (% () >4 © Oo(lx(j))
7=0 j=

be the retraction Whieh projects I from the point (j,4) onto 4 v
1)] for j= 0,1. It is clear that if (s,

v [6% (4, 0)] v [6%,( 1) e I, then
P
x((s) x [0, t]) = [={s, 0), ={s, i)]CAu {Ix(0) v (Ix(1).
Let k be a homeomorphic extensmn of ky such that h(I?) = Q and h(4) = D.

Then evidently 2 and ¢ = hah ™' have the required properties.

Let us now suppose that the assertion is true for k—1 > 1; we shall
prove it for k. Let d € D be a point of ramification of D which does not
lie between d° and any other point of ramification. We can assume without

real loss of generality that d « L = [@**, @] C D (see Fig.
——
%= 3). Evidently b* e § = [, d*]C M.
Let M'= (M uL) 8§ and let Q" De the topological dise bounded
by M'. Let Z‘— ko Y(S) and let hi: FrI*—>M' be a homeomorphism such

2 for the case

that hj|FrI’— X = ho|FrI’— X, b(Z) = L, and hg (d) = h‘l(b""]) de X
Let D'= (D— L)u{d}, BB and d'=d for j=0,1,.., k=2,
B*¥ =", @ v Lo [d", ¥*1C M, @*" = d. By the inductive as-

k-1 . k-1,
sumption, there exist: a retraction ¢’: P’ = IntQ v jU B’ »Dvu ;Uij

=0 =
such that ¢(U’) CFr U’ for each component U’ of @'—(D' v M), and
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a homeomorphic extension h': I* 222 0’ of hf such that if h'(s, i) e P’
then

?

T k-1 .
¢r((5) x10, 1) = [gWs, 0), W (s, YIC D" | B

Let A be the half-circle in I* with the diameter X. Let I be the topo-
logical dise bounded by 4 u X. Let #: I* 2. (*—TI) U 4 be a homeo-
morphism such that for each peI® the points p, #(p) have the same
first coordinate. Let us define the homeomorphism g= h'9 ™" (P=I)yo
v AL,

r 82 o2 P

12 q

80 4° —
Fig. 2

Let T, be the component of @— (D w M) bounded by L 8, and

let g ', U, uLu sl be a homeomorphism such that g,|4 = g| 4,
Gol2 = hy] 2. Then

h:{g on (IP—-I'u 4,
9 on I,
is evidently a homeomorphism of I® onto Q.
Let o2 I'— {8} >(4 v Z)~ {5} be a retraction such that
offe, 70 ~{ 7% poo=)
[o 19( NCAwZ-{8, i oeZ—{5).
Let us define a mapping g by the formula
q:{q' B on _P’, .
oo on  Ty— (¥}
Then evidently ¢ is a continuous retraction of Pto Do U B and ¢(T)
CFrT for each component U of Q—(D v M).

Ny
=
pet

A class of plane acyclic continua
It remains to prove that if %(s, ¢) e P, then

P
qh((s) x[0, t]) = [gh(s, 0), gh(s, t)]CDub B,

By the inductive assumption it is obvious if h(s,t) e P’. Thus, let us
assume that h(s, ) e TUo— {b*™"}, ie. that (s,1)el'—{}. TLet ((s)
%[0, t]) ~ A= (s,%). Then, by the definition of the retraction g, the
ares ¢h((s) x [0, 1)) and gh{(s) X[t #]) have only the point gh(s,?,) in
common, which completes the inductive part of the proof.

To conclude the proof of the lemma, let us consider the retraction

k N
¥: D UB1—>D such that »(B')=d’ for j=0,1,..,k Then the

retnctmn 7 = r'q and the homeomorphism % satisty conditions (i) and (ii).

5.4. LeMMA. Let us suppose that Q C E, is a topological disc with the
polygonal boundary M and that ¢ > 0 is a number such that Q is e[12-lanky

and no side of M is longer than e. Let hy: FrI* 2 I be a homeomorphism
such that ho((0) X ), ho(I X (0) = B, ho((1) x I) are consecutive sides of M
and To{I x (1)) és a broken line with sides B! (j=1,2, ..., k). Let &’ be the
centre of B’ for j=0,1, .., %k Then there exist:

(1) a finite dendrite D C Q such that

. k
ramD <38 and D=D~M=J{d};
=0

(i) @ local out J(d) C @ of D (at each point d € D) such that J (d) is con-
tained in the set of vertices of M and diamd(d) < 4s;

& .
(iii) @ retraction v: P=TIntQ w | B —>D such that r(B)=d jor
j=0

i=0,1,...,k and o(p,7(p)) <2 for peP;

(iv) a homeomorphic extension h: I? 2. Q of h, such that if h(s, ) ¢ P,
then

T
rh{(s) x [0, t]) = [rh(s, 0), 7h(s, )] CD .

Proof. By virtue of Lemma 5.2, there exists a finite dendrite D
satisfying (i) and such that each component U of Q— (D v M) satisfies
diam U < 2¢. Hence we can construct a local cut J(d) satisfying (ii) for
each d e D. Now, we can apply Lemma 5.3 and note that 5.3 (i) implies (iii),
while 5.3 (ii) is exactly (iv).

5.5, LEpMA. Let X C H, be a continuum which does not separate
the plane and let 5(g) be a real function defined for e > 0. Then (see Fig. 3):

(i) There ewists a sequence of topological dises Qn with polygonal boun-
daries Bp, where n= 0,1, ..., such that

B
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hd N
(a) Xz,QOQ’“ Ont1 CIntQn, @uC B(X, 8(en)) for n= 0,1, ..., where (b) if p=h(s,t) e P*, then +"h{(s) X [0, t]) = [r"h(s, 0), "k(s, )] C D"
g =1 and &, = dist(X, Bp—y) for n > 1, (»=1,2, .., m).

) if B, B, ., B BTN B ape the comsecutive vertices of B Proof. Let us consider the sequence @, satisfying conditions (i)-(it)
of Lemma 5.1. Choosing a suitable subsequence, if necessary, we can
assume that QnC B(X,d(e)) for m=0,1,.., where =1 and
en = dist(X, Bu—1) for = > 1. Thus eondition (1) a) of our lemma 1s
satlsfled Moreover, by the same argument, we can assume that Qn—
is 12-27"-lanky for n = 0,1,

Subdividing B,, if necessary, we can assume that condition (i)(b)
is also satisfied.

For every vertex by e By let I (b%) be the segment deseribed in 5.1 (iii).
It evidently meets Bpii; let c,H.l el n) A By be that point of the mter-
section which is nearest to bi. We can evidently annex the points ¢f,,
to the set of vertices of B,..H Thus starting from n = 0 we proceed by
induction and define bf,(.;l ¢n+1. Condition (ii) of our lemma now follows
from 5.1 (iii).

Conditions (iii)-(v) will be verified simultaneously. It is elear that

8" %[0, co0) such that
9(Bx) = 8" x(n) and g(¥i) = g bn)xtn,n+1] for i=1,2,.., My
n=0,1,

Let Q,’; be the topological dise bounded by the polygonal simple
closed curve

A . . i1
M= NIOUBLU NG

and Bj = [bi, bi*"], then diamBL<2™ for i=1,2,..,mp;
n=10,1,.;

there exists a homeomorphism g: U B,uN-=

o(i+1)—v(4) F—
U BRFTY for i=1,2, .., m
=1

Since we have assumed that Qn—X is 12-27"-lanky, we infer that @,
is also 12-27"-lanky. Obviously, no side of M} s longer than 27" Let
d; be the centre of B for 'b_l,.,,. y My B= 0,1,

(ii) For every b} there ewists a byPy such that if N = = [b%) b"“)] then The homeomorphls_m hy = g~ restricted to g(M,‘,) can be considered
Nic Inth Ont1, Npn N,‘. =0 jfor i'#i", and diamNi < 2™ for as a homeomorphism 4], defined on Frl" We can now apply Lemma 5.4
i=1,2, .., m n=0, 1, to each of the topological dises @ and & = Thus foreachi=1,2,..,ms

and n = 0,1, ... there exist: a finite dendrlte Dj, a retraction r;,, and an

o0 mﬂ .
ii) If N = by () —
I nyo ¢L=J1N"' ond P’ (»=1,2,..,m,) are components of extension hn of han satisfying conditions (i)-(iv) of that lemma with

Qo— (N v X), then for every v=1,32, ..., m, there emists a canal D*C P* suitable adaptations.
in X; It is clear from the construction and from 5.4 (i) that each com-
(iv) For every v=1,2,..,m, there emisis a retraction 1": P*—>D" ponent P’ of Qo (NuX)(»=1,2,..,m) contains exactly one com-
such that o(p, 7"(p)) < 2 Rar fo'r PeP nQu (n=0,1,..); ponent D’ of U 'Di; and that D" is a tree for »=1,2,...,m,. By
v) The: 1 4 n=0i=1 . .
i 2) h_l(re wiats o homeomorf; hism h: 8" x [0, oo) - 0"* Q@— X such that 5.4(ii), for every d e D, there exists a local eut J(d) C @, of D, such that
Bu) = 8 x(n), AN = BB X [, 1 =1,2,.. . 3 ) (D) —~o(d) +1 ) . o
s 1 0’ T 5’ M n) X[, n+1] for 4 )y 2, J(d) C @iy o Y o U o1y and  diamd (d) < 270

=1
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Since each vertex of By can be joined in N with X by a simple closed are
of diameter < 27", we easily infer that for each d « D* ~ Q, there exists
a bridge I(d) from d to X such that diamL(d) < 27", It follows that D*
is a canal in X for »=1, 2, ..., m, and condition (iii) is satisfied.

By virtue of 5.4 (iii), the retractions 73 (i=1,2,,mp;n=0,1,..)
defipe for each »=1,2,..,m, a retraction r": P'-D" satisfying con.
dition (iv).

Finally, the homeomorphisms hi define a homeomorphism h: § x
% [0, 00) 22, 9, X. Condition (v)(a) follows directly from the properties
of hy. Condition (v)(b) follows from 5.4(iv).

6. AuxtLiARY THEOREM. If X C B, is a continuwm which does not .

separae the plane and f: X > B, is a continuous mapping such that f( (FrX)
CX and f(x) # « for every v € X, then there exists a simple canal D in X
such that f(Lim D) C Lim D.

Proof. By the compactness of X, there exists an ¢ > 0 such that

(&) olz, f(@)) >4e for wmeX.
We can evidently assume that
(2) e>1.

There exist an open set U C X and an extension f*:
ping f such that

(3) elp, f*(p)) > 3¢  for
Since f(FrX)C X, for every > 0 there exists d(e) > 0 such that
(4) i peU—X and dist(p, FrX) < d(e), then dist (f4(p), X) < ¢ .

U B, of the map-

pelU.

Moreover, replacing U by a smaller set if necessary, we can assume that
(5) dist(B,— U, X) = 6(1) .

Making use of Lemma 5.5, we infer that conditions (i)-(v) of that lemma
are satisfied. Let us adopt the notation of that lemma and let us define Q¢
and B: by the formulae

Qe = B8 x[t, oo)) , Bi= h(S‘ X (t)) for 0
Conditions (4) and (5) imply that we can assume

(6) bt B, F@n1—X)C IntQ, for
It can also be assumed that

(1) i p="h(s,?) e N, then f*(p) ¢A((s) x [0, o)) .

Indeed let N=N'"U N, where N’ is the union of those N for
which &y is of the form b2, and N** is the union of the remaining Ni-

<t < oo.

n=0,1,..
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If p=his,t)eN' and f*(p)<h{(s) [0, o0)), then, by (6), » and fp
would lie in the same component of N, which is impossible because of (3),
(2), and 5.3(ii). Let V. be (hgjomt neighbourhoods of the segments
N.CN" such that diamVi <27, and let ¥ be the union of those V,,,
Let f* e a continuous mapping satisfying (6) and such that f**Q,—

= [*|Q,—V, f*(Ni) = F*@)) for each N.C C N"and o(f*(p), f*(»)) < an
= maxdiam f*(V%) for P €Qn—0Qnt1. Since a, -0 as n->oc0, f** is another

extension of f satistying (6). Moreover, if p = h(s, t) « N C N” and *(p)

= f¥(bnh) € h{(s) X [0, o0)), then bk = (s, n-+1) e N and f*(32%, € hi(s) x
%[0, co)), which is impossible by the preceding argument. Thus b i
satisfies (7) and we shall simply write f* instead of f**. However, con-
dition (3) must now be replaced by

(8) olp, f(p) >2¢ for pegQ.

For every t e [0, oo) let m: 8" x[0, o0) 8" x [£, co) be the retraction
defined as follows:

_ &), i vz
® m(s’r)_l(s,t), it r<t.
‘Moreover, let ¢ @Q,—@Q: be defined by the formula:

P, it peX;
1 [ :
(o) MO = V), pe@o

Finally, let fi: @, —F, be defined by the formula:

(@), i peX;

wf*(p), # pe@—

It is clear that the mappings m and ¢ are continuous for each ¢ € [0, co).

Let us note that, in fact, f; is continuous as a function of (¢, p).
Let us define K; by the formula

(11) fip) =

(12) Ki={peQy fip)=p} for 1e[0, o0, K=‘€[%:Jm) K:.
The definition implies, by (11), that

(13) K C@—

Let us note that if p = k(s, 1) e @p— X, then

(14) peXK; if and only if 7= ¢ and f*(p)= h(s,7’), where 7" ¢[0,7).

Indeed, if p ¢ K;, then by (12), (11), and (13), we have p = fi(p)
= gef*(p). If f*(p) e X, then by (10), p = quf*(p) = f*(p) ¢ X, contrary to
peK;CECQ,—X. Since f*(p) €@, for p e Ky C K CQ,— X, this implies
that f*(p) e @—X; let f*(p)=h(s’,7'). Then, by (10), 2= o f*(p)
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= b~ h(s’, ') = hm(s', 7). TE v = 1, then (9) would imply p = hm(s’, ")
= k(s’,7') = f*(p), contrary to (8). Thus ¢' <t and, by (9), we get h(s, )
= p = hm(s’, v") = h(s', 1), whence s = s’ and v = t; thus f*(p) = k(s, "),
where " €[0, 7).

Conversely, if f*(p) = h(s,7’), where 0 <7 <v=1, then by (i1),
{10), and (9), we get fi(p) = @if*(p) = hp:sh~ h{s,v') = hm(s, ') = h(s, 1)
= p; thus p ¢ K;.

Condition (14) implies, by (13), that

(15) K;CB; for te[l,o0).

The definition (12) of K; implies now that K: is closed in B; for every
te[l, co), whence

(16) K is closed in ¢@,—
Moreover, (7) and (14) imply
) EAN=0.
Let Fy(p) = p,ft( )y for p €@, and te[0, oo); thus Fi(p) = 0 if and

only if p € K;. For each simple closed curve M C Q,— K; let 94(M) denote
the characteristic of the vector field #; on M. Since homotopic vector
fields have the same characteristics, we infer that .

(18) it ¥MCQ,— , H K, then &4 (M) = %,(M).
Let us note that
0 it i<zt
19)  9(B.) !
{19) & {#‘_0 it >, for every t¢[0, oo),7 e[1, c0).

Indeed, in both cases (B.) is correctly defined, because (15) yields
B, C@,— K;. Moreover, if ¢ <7, then by (15), K;~ Q.= 0; hence F}
is & non-vanishing vector field on Q.. This evidently implies that #:(B.) = 0.
If however ¢t >z, then (9), (10), and (11) give f(B.) C Q: C @., whence
evidently &(B:) = 0.

Let by = h(s;,0) for »=1,2,..,m,. For every »=1,2,..
and 1<7v <7’ <oo let QU= h([sh, sTIx [, 7)) and let My.
= FrQ7 .. Since My » C By v By v N, we infer from (15) and (17) that

(20) My CQ—EK, for ' #t#7".

oy Mo

Moreover, if ¢ ¢ [z', 7"'] then by the same argument K; ~ Q7 .~ = 0, whence
{21) WMy =0 for té¢[v,7"].

I 15414 5 2, then by (15) and (20), the numbers &(B,), F¢(B,), and
%(M3,) are correctly defined for each »=1 ;2,...,m, and we have

©
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(B = H{B 219,(31[}, Moreover, if 1 <t< 2, then by (19), 9By

#= 0= 1%(B )y Whence there exists a v, such that ﬂ;(Ml,g) s 0. By virtue
of (20) and (18), we can assume that », is the same for all t e (1, 2). Hence

(22) M) =0 for te(l,2).

We shall show that if v > 2, then also

(23) D(M2) #0 for te(l, 7).

. Indeed, if 1 <f, <2, then by (20) the numbers m,,(MZ ), Bl M%),
and dy(Ms%) are correctly defined and Buol H1%e) = D M1's) + D M 2.
By (22) and (21), we have ﬁtn(Ml %) # 0= ﬁt,,(Mz ), Whence ﬂto(er EKIN
On the other hand, if 1 <%, <7, then by (20) and (18), we infer that
(M%) 5 0, which is exactly (23). Com
Let P be the component of Q,—(N v X) which contains by, bs

on its boundary, and let L' = (s x[0, 00)), L = h((se® ) %[0, o0)).
‘We shall show that

(24) PAK cuts P~ @, between L' ~Q, and L' ~ @, .

Indeed, otherwise there would exist a simple closed arc L= [f’?l”]
such that LC(P~Q)—K, e’ ~nQy, I"eL" ~@,. By (16), we can
assume that L ~ B; = 0. Let us consider 7 sufficiently large to ensure
LCQ,—@.. Thus L v M;‘j, is the union of two simple closed curves M’
and M’ with the common arc L. Let us assume that M’ ~ B, # 0. Making
use of (15), we infer that the numbers 9,(M"), (M) are correctly defined
and, since ¥, is not vanishing inside M’ nor F., is vanishing inside M,
we have o(M')= 0= 8,(M’). Moreover, since (Lv L' vL')~nEK=0,
we can apply (18) and infer that S.(M") = 0= %(M’) for every ¢ ¢ (1, 7).
Hence D M%) = S M)+ (M) =0 for te(l,r), contrary to (23),
and this contradiction proves (24).

Making use of Theorem 52.IIL.1 from [8] (p. 335) we infer that there
exists a connected set K,C P ~ K such that

(25) K, cuts P ~Q, between L' ~Q, and L ~ Q.

be the canal and the retraction described in
is a connected subset of D. Moreover

Let D=D" and r=7"
5.5(iii), (iv). The set H = r(K,)
(26) HALmD=0.

Indeed, (25) yields Ky ~Qu#0 for n=1,2... Let pne K, @n
for n=1,2,..; choosing a subsequence if necessary, we can assume
that p,-+p,. Making use of 5.5(iv), we infer that 7(ps)->p,, whence
PoeLimD ~ H.

Fundamenta Mathematicae, T. LXIII 19
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Lemmas 3.1 and 4.3 imply that there exists a simple canal D CH
in X. We shall prove that

(27m) ) f(Lim D) C Lim D' .

Let d, be the origin of D and d, the origin of D). We can obviously
assume that the arc [d,, d;] C D is disjoint with D beyond the origin d,.
Let n, be a natural number such that [d,, d,)] A @n, = 0. Let us suppose

that o e LimD. Then there exists a sequence doeD such that dy->m.
‘We can assume that d, € @, for n=1,2,... Since dye bc H, we have
dn = 7{kn), where &k, e K, for n= 1,2, ... Condition 5.5(iv) ensures that
0(@ny ka) < 27", whence algo ky—>2. Thus f*(ks) —f(x). We infer from
(12) and (14) that if ky = h(ss, tn) for n =1, 2, ..., then f*(kn) = h(sn, ),
where t, € [0, #;). Thus 7f*(k,) is defined, and since ® < FrX, we have
flz) e X. Thus dist(f*(kn),X) -0 and by b5.5(iv),

(28) 7f*(kn) >f (@)
‘We shall show that

(29) f*(kn) € D for m > no+1 .

VS
Indeed, by 5.5(v), D= rh((ss)x [0 tn)) = [rh(sa, 0) ¥R ($n, t)]
= [do; dn]. If 1 > my, then D, = [do, }fo] [do, dy). Since 7f*(kn)= rh(sp, tn),
where &, € [0, %,), we have 7f*(ky) € Dy. But if n > n,+1, then evidently
7*(Kn) € Qny, Whence #f*(ka) € [dy, du] C D.
From (28) and (29) we infer that f() ¢ B. Bus since # ¢ LimD'C FrX,
we have f(z) € X, i.e. f(x) ¢.D Thus f(«) €« LimD and we have proved (27).

This completes the proof of the theorem.

7. Main theorem. In this section we give the proof of the theorem
announced in the introduction. We begin with a lemma whose proof is
a standard application of Brouwer’s reduction theorem.

7.1 Iemua. If 0 £ X =XCH, is a continuum and [t X~E, is
a mapping such that f(Fr X) C X, then there emists Z, trreducible with respect
to the following properties:

() Z is a non-empty subcontinuum of X;
(i) Z= Z
(i) FrZ CFrX;
(iv) f(FrZ)C Z.
Moreover, if there exists a Z satisfying (i)-(iil) and also
(iv') f(FrZ)CFrZ,
then there ewists a Z, irreducible with respedi 1o properties (i)-(iii), (iv)’.

icm°®

275

A class of plane acyclic continua

Proof. Sinee X satisfies conditions (i)-(iv) and there exists a Z
satisfying (i)-(iii), (iv)’; by Brouwer’s Ieduction theorem ([8], p.27),
it is sufficient to pmve that if Z, satisfies (i)-(iv) (resp. (i)-(iii), (iv)") and

Zp41CZy forn=1,2, ..., then Z = ﬂ Zy, satisties also conditions (i)-(iv)
n=1

(resp. (i)-(iii), (iv)’).

(i) Z is a non-empty subcontinuum of X as the intersection of a de-
creasing sequence of non-empty continua.

. o0
(i) Z =%, for B,—Z = | (B,— Z») is connected as the union of
n=1
connected sets with a non-empty intersection.

(iii) Since F, is locally connected, we have
FI‘( U (B— Zﬂ)) C U Fr(B,—Zn)
n=1 n=1

(comp. [8], p. 168), whence FrZCCjFan. Since FrZ, CFrX for
n=1

o
n=1,2,.., we have | J¥rZ, CFrX, whence

Nn=1

) FrZ,CFrX

=1

and FrZCFrX.

(iv), (iv)’. Let us note that if A= ACX and Frd CFrX, then
Frd= A ~FrX. Hence FrZ,= Z,~FrX for n=1,2,.. and FrZ
= Z ~ FrX. Thus

f(¥rZ)= f( ﬂ1 Zn nFrX)C ﬂlf(Z,, NnFrX)= ﬂlf(FrZ,,) .
n= n= n=

Now, if f(FrZ,)CZ, for n=1,2, ...,
C¥rz, for n=1,2, ..., then

then f(FrZ)C Z. But if f(FrZ,)

F(FrZ)C () FrZn—= () (Zn ~FrX) = Z ~ F1X — FrZ.
n=1

7.2. Proof of Theorem 1.1. Let Z,C X be a set irreducible with
respect tio properties (i)-(iv) of Lemma 7.1. By the Auxiliary Theorem 6,
there exists a simple canal D in Z, such that f(LimD)C LimD. By
Lemmas 3.2 and 4.2, LimD is a non-empty subcontinuum of FrZ,. By

N
Lemmas 2.1, 2.2, and 2.3, we infer that Z; = LimD is a non-empty sub-
confinuum of Z, such that Z, = Z, and FrZ, = LimD. Hence

FrZ, = LimD CFrZ,CFrX and f(FrZ)=f(LimD)C LimD = FrZ, .
19*
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Thus 7, satisfies (i)-(iii), (iv)’ and there exists a set irreducible W.ith respec
to those properties. We can assume without any loss of generality that Z,
is the irreducible set.

Since Z, satisfies conditions (i)-(iii), (iv)’ and Z,C Z,, we have
Z, = Z,. Hence FrZoz FrZ,= FrZ, = Lim D, and since by Lemma 4.1,
D is a canal in FrZ,, we infer from Lemmas 3.2 and 4.4 that X, — Frz,
is an indecomposable continuum.

‘We have, moreover,

Xy=FrZ,CFrX and f(X,) = f(IfrZ.,) CFrZ,= X,.
To prove that f(X,)= X, let us notice that f(X,) is a non-empty sub-

S
continuum of Z,. By Lemmas 2.1, 2.2, and 2.3, we infer that? X, = f (X,,)
is a non-empty subcontinuum of Z, such that X, = X, and FrX; — f(X,).
Hence

Fr¥, = f(X,) C X, = FrZ,CFrX and f(FrX,) = ff(X,) C f(X,) = FrX,.

Since X, C Z, and Z, is irreducible with respect to properties (i)-(iid), [dv)’,
we have X, = Z,, ie,

f(X) =FrX, =FrZ,=X,.

8. Corollaries and problems. From Theorem 1.1 we get the
following

8.1. CoroLrARY. If X ds a plane continuum which does not separate
the plane and every indecomposable subcontinuum of FrX has the fiwed
point property for continuous mappings, then X has the fized point property
for continuous mappings.

Hence, in particular, we get the following

8.2. CorROLLARY. If X is a plane continwum which does not separate
the plane and FrX is hereditarily decomposable, then X has the fived point
property for continuous mappings.

8.3. COROLLARY. Let X be a plane continuum which does not separate

the plane and let Int X have a finite number of components. If FrX = HXz,

where X; for i =1, 2, ... is a continuum which has hereditarily (with respect
o subcontinua) the fized point property for continuous mappings, then X
has the fized point property for continuous MaPpings.

Indeed, otherwise there would exist a fixed point free mapping
f1 X=X and an indecomposable continuum X,CFrX such that
f(X,y) = X,. If there exists an i = 1 such that X, C X, then by the assump-
tion, there exists a fixed point in X,. Let us therefore assume that the
sets A;= X, ~ X are proper subsets of X, for i=1,2,.. Bvidently

iom®

A class of plane acyclic continua 277

o0
X, = .UIA;-. Moreover, since Int X has g finite number of components,
=

Janiszewski’s Theorem ([81, p- 355) easily implies that each of the compact
sets 4; has a finite number of components. Thus X, has been represented
in the form of the union of a countable number of continua, which is
impossible in view of [8], p. 150.

In particular, the Corollary can be applied to X’s which are snake-
like continua [5].

8.4. COROLLARY. Let X be a plane continuum which does not separate
the plane and lot ITnt X have o finite number of components. If any two points
of Fr.X can be joined in FrX by a hereditarily decomposable subcontinuum,
then X has the fized point property for continuous mappings.

Indeed, otherwise there would exist an indecomposable continuum
X, CFrX. Let o', 2" € X, be two points belonging to distinct composants.
of X,. By the assumption, there exists g hereditarily decomposable con-
tinuum X; CFrX such that x5 e X,. Consequently, we infer that
Xy~ X, is not connected and, by Janiszewski’s Theorem, X,u X,
separates the plane. Since X, contains uncountably many composants.
([8], p- 150) and IntX has finitely many components, this easily leads
to a contradiction.

In particular, the Corolliry can be applied to FrX which is arewise
connected.

The eample of 8. Kinoshita, [7] shows that there exists an acyclic
2-dimensional arcwise connected continuum without the fixed point.
property. However, the space of Kinoshita is not planar and this fact.
seems to be essential. The following hypothesis would be true:

8.5. HyroTHESIS. If X is a plane continuum which does not separate
the plane and is arcwise conmected, then X has the fized point property for
continuous mappings,
provided the following problem had a positive answer.

8.6. PrROBLEM. Let X be a plane continuum which does not separate

the plane and is arcwise conmected. Is Fr.X necessarily hereditar@}y de-
composable? -
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Post algebras as semantic bases of some
many-valued logics

by
V. G. Kirin (Zagreb)

1. Introduction. The subject of the present paper are the many-
valued functional calculi of the first order of Turquette-Rosser (without
equality) and the role of Post algebras therein which is fully analogous
in many respects to that played by Boolean algebras in the classical two-
valued case.

The main results are obtained by means of a certain formalism of
Gentzen and the diagram of formulas due to H. Rasiowa and R. Sikorski
introduced by them in [6].

The author desires to express his profound indebtendness to Pro-
fessor H. Rasiowa for the problem itself and for the kindly advice as well.

2. Post algebras. A distributive lattice with zero (e,) and unit
{én-1), which contains an »-element chain e,, e, ey €nog, bny (With n > 2)
and is such that for each » there are n y’s with the property that

&= (6VYo) AELVYIIA eee A{ro1 VY1)
if
r#s and

YrVYs= oy for Yoh - AYpy = &,

is called a Post algebra of order m (*). Together with the additional con-
ditions: for every »
ZVeiy=e; implies x=e¢ (i=1,..,0—1)
and
#he = ¢ implies z=¢,,
Post algebras are fully characterized. (Cf. [1] and, for another axiomatiza-
tion, [7].)
Since the uniqueness of those y’s has been proved in [1], we write
henceforth
Yi=kix) for i=0,..,0—1.

(*) One obtains Boolean algebras, for n = 2, by putting y, = and y, = ] »
(the complement of ).
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