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On ordered topological spaces

by
R. Duda (Wroctaw)

1. A topological space X is called ordered if there exists a transitive
relation <, called order in X, satisfying the following two conditions
(see [2], p. 38):

(i) If %,y « X, then one and only one of the relations z <y, =y,
y < @ holds.

(ii) If #,yeX and o<y, then there exist neighbourhoods U ()
of # and U(y) of y such that # <<y’ and 2’ <y whenever #' ¢ U(x) and
¥ e Uly).

Condition (ii) can be, as is easy to observe, replaced by the following
one

(ii") If p e X, then the sets {weX: 2p} and {xeX: p <a} are
both open in X. ]

In what follows an ordered space will always mean an ordered topo-
logical space.

There are many examples of ordered spaces. Such are, for instance,
the diagrams {(z, f(#)): ¢ B}, where f: R>Y is any function mapping
the real line R into a topological space ¥, with the topology inherited from
R x Y. A great variety of such diagrams, interesting from the topological
point of view, can be found already in the case of ¥ = R, cf. [14]. Another
set of examples of ordered spaces is provided by metric separable spaces
whose all quasicomponents are single points (cf. [10], IT, p. 93; see also
the Remark following Theorem 6 of this paper).

Ordered spaces bave several interesting properties (for instance,
they are all Hausdorff spaces) and they have already been studied to some
extent, e.g. in [2]. The aim of the present paper is to conduct this study
further.

Thus, in part 2 of this paper we shall show that in ordered spaces
quagicomponents coincide with components (Theorem 1) and we shall
discover a close affinity between ordered connected spaces on one hand
and irreducibly connected spaces on the other hand (Theorem 3), both
results to be applied later.
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Eilenberg proved [2] that a connected space X is ordered if and
only if

(«) the Cartesian square X x X is no longer connecfed after removing
its diagonal,

and this theorem became his most useful tool in discovering the properties

of separable connected ordered spaces. Then he obtained a theorem stating

that a separable connected space X has property () if and only if

(B) there exists a contraction of X into the real segment I = [0, 1]}

(by a contraction we mean a one-50-one and continuous mapping,
cf. [15] or [17]).

Tn part 3 of this paper we refrain from the assumptions of either
separability or connectedness. We find in it a generalization of Rilen-
berg’s latter result, providing in Theorem 4 a necessary and sufficient
condition for an ordered space to have property (f), and in this way
promoting (B) to one of our main tools.

Theorem 4, which can be viewed as an internal (nexus) characteriza-
tion of ordered topological spaces having property (), has in part 4 of
this paper a counterpart in Theorem 5, which contains an external (con-
nexus) characterization of all metric separable ordered spaces by means
of embeddings into irredueible continua of type 4, thus revealing an affinity
between the two. As a corollary we receive some new characterizations
of irreducible connected metric separable spaces (Corollary 5).

In part 5 we give an effective construction (i.e., without using the
axiom of choice) of punetiform ordered metric separable connected spaces
of arbitrary, finite or infinite, dimension (Theorem 6).

The final part—6—is devoted to compactifications of metric separable
ordered spaces: it contains an estimation of the deficiency, i.e., of the
lowest dimension of the set of points which must be added to a metric

separable ordered space in order to obtain a metric compact space (Theo-
rem T).

2. If X is an ordered space and << an order in it, then one can define
in X the so-called order topology! more precisely, the << order topology), i.e.,
the topology which has a subbase consisting of all sets of the form

Ap={zeX: s<p} and Bp={reX:p<Jz}, where peX.

The two topologies on X do not in general coincide (for if they do,
then dim X <1, and we-shall construct in the sequel ordered spaces X
of any dimension dimX =n >1). All that can be said here follows
from (ii’). Namely, the topology in an ordered space X is finer than the
topology induced by the order in X (let us recall that topology =’ is finer
than topology 7 if each v-open set is t'-open; see [6], p. 38).
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In particular, A, and By are separated for each p e X, and if X is
connected, then it is not hard to prove that both Ap v (p) and (p) v Bp
are also connected (*).

The gquasicomponent of a point & in a topological space X is, by de-
finition, equal to the intersection of all closed-open subsets of X con-
taining #. In other words, the quasicomponent of # in X consists of all
points y of X such that X is connected between = and y, and, as such, it
contains the component of # in X (ef. [10], IT, p. 92 £f.). As simple examples
show, a quasicomponent is generally bigger than a component.

If X is an ordered space and << an order in it, then for any two
points ¢ and d of X such that ¢ < d symbol 12 will denote the set

I2= Ag~ B:.

TEMMA 1. Let X be an ordered topological space with an order <
and let ¢ and @ be two points of X such that ¢ < d. If any of the four sets 12,
() v IZ, It o (@), (¢) v 12 U (d) is not connected, then X itself is not connected
between ¢ and d.

Proof. Let A be any of the four sets and suppose that A is not
connected. Then

1) A=CuD, where C#0%#Dand CnDulnAD=0.
Take points ¢, ¢ ¢ and d ¢ D, suppose ¢, <3 dy, and consider the set
Ay = (o) v Ie v (dy) -
Put 0,=C~ A, and D, =D ~ 4,.
As easily follows from (1), we have
4,=C,uD,, C#0#D;, CnDvwlnD=0.
And since, in view of ¢, < d;, we have also

7 Aclml—%dlch,an,=07
the union
X=(4y v C) v (D, v Ba) ,

is a decomposition of X into two non-empty and separated subsets the
first of which contains ¢ and the second d.

TaeoreM 1. If X is an ordered space, then the components of X
coincide with the quasicomponents.

(*) Mrs. D. Zaremba—Szczepkowicz has observed that connected ordered spaces
can be characterized by the following property: for any 3 points of X, one of them se-
parates X between the other two.
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Proof. To prove that the quasicomponents of X coincide with the
components, it suffices to show that each quasicomponent is connected.
Assume, a contrario, that a quasicomponent @ is not connected.
This means that there exist points ¢ €@ and d @ such that ¢ < d and
that @ is not connected between ¢ and d. Hence @ does not contain any
connected subset containing ¢ and d, and so the set (¢) v %o (d) is not
connected between ¢ and d either. Therefore, by Lemma 1, X itself is
not connected between ¢ and d, and this is a contradiction of the assump-
tion that both ¢ and d belong to the same quasicomponent of X.
THEOREM 2. Let X be a connected ordered space and < an order in it.
A subset A of X is connected if and only if there exist in X points ¢ and @
such that A s equal to one of the following four sets:

{2) 12, (&) v IZu (d).

Proof. By virtue of Lemma 1, any of the four sefs in question is
connected. -

To prove the converse implication, consider a connected subset 4.
If ¢',d ¢ A and ¢’ < @, then, in view of Lemma 1, I C A. Let

@vlt, Iiu(d,

Consider now two cuts of X: the first defined by the equalities
Xi={reX: 2} for all ¢’ ¢ 4 and X, =X—X,, and the second by
the equalities X, = {weX: v <Xd’} for some d' ¢ A and X, = wal.
Each cut determines a point. Let ¢ be the point determined by the first
cut, and d—by the second. It should be obvious that A is equal to one
of the four sets (2) (and to which of them depends on whether ¢ ¢ A and
ded).

CorOLLARY 1. Let X be a connected ordered space and < am order
tn il If f: X I 43 & coniraction and W a connected subset of f(X), then
W) is a connected subset of X.

In faet, the contraction f either preserves an order in X or reverses
it (ef. [2], p. 42), and therefore, by Theorem 2, connected subsets of X
a,freIin & one-to-one correspondence (yielded by f) with connected subsets
of I.

A connected Hausdorff space X is said to be irreducibly connected

between a and b (shortly, drreducibly conmected) if X contains ¢ and b but
no proper connected subset of X does.

TeEoOREM 3. If X is an irreducibly connected space, then it is an
ordered connecled space with a first and o last element.

‘ AM, conversely, if X is am ordered comnected space, them either it is
irreducibly connected or becomes such after completing by one or two points.

icm°®
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More precisely, if X has both a first and o last element it is irreducibly
connected between them, and if X lacks one of them or both, we must add
one or, respectively, two new points to make it such.

Proof. If X is irreducibly connected between its two points a and b,
then the set E(a,d)= X—[(a)w (b)] of all points of X separating a
and b possesses a natural order (cf. [16], p. 43). This order makes X an
ordered connected space with & and b as the first and the last elements.

To prove the converse consider an order in X. If X contains a first
and a last element (in this order) we add nothing. If it lacks a first element,
we add a new point a to X which precedes all the elements of X and the
base of neighbourhoods of which is formed by the sets of the form
(@) v {z e X: 2y}, where ye Y. Thus ¢ becomes the first element of
the augmented X. Similarly, if X lacks a last element, we add another
new point b which serves as the last element of the augmented X. The
augmented X remains a connected ordered space and is irreducibly con-
nected between its first and its last elements, because any point of X
lying between them separates X into two parts one of which containg
the first element and the other the last.

3. An ordered space (at the moment not necessarily topological)
with order <% is said to be of ordinal separability s, (Novotny [13]) if
there exists a countable subset D C X which is dense in the sense of Haus-
dorff (cf. [4], p. 89), i.e., such that for any two elements a, b ¢ X, if a < b,
then the set J%= (a) v {z e X: a <o < b} u (b) contains at least two
elements of D.

We shall say that an ordered topological space is ordinally separable
if there exists an order in it with respect to which it is of ordinal separa-
bility ,.

If X is a connected ordered space, then topological separability
coincides with ordinal separability. In general, however, the two notions
are distinct. There are examples of ordered separable spaces which are
not ordinally separable (cf. [13], footnote on p.98), and, conversely,
of ordinally separable spaces which are not separable (such is, for instance,
the set of irrational numbers with the usual order and diserete topo-
logy).

TeEoREM 4. A topological space X has property (8) if and only if
it is an ordinally separable space.

Proof. If a topological space X has property (8), then there exists
a one-to-one and continuous mapping f: X —I. A transitive order <
in X defined by the formula

r<3y if and only if fl#) <f(¥)

3)
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satisties both (i) and (ii), which means that X is ordered. And since every
subset of I ordered according to < is ordinally separable, in view of (3)
also X is ordinally separable. Hence the condition is necessary.

To prove that it is also sufficient take any ordinally separable space X.
Being ordinally separable, X can be transformed onto a subset of the
real segment I in such a way that @ precedes ¢ in the order of X if and
only if f(x) < f(y), where f is this transformation (cf. [13], Théoréme 1).
Clearly, f is ome-to-one, but in general it is not continuous. However,
if we constrnet a mapping g: I —I such that g is one-to-one on f(X) and
¢ = gf is continuous, then the proof will be completed, because ¢ will
satisfy (B).

With this end in mind consider a component J of I—f(X). J is an
open interval and three cases are possible: both end-points of J belong
to f(X), one end-point of J belongs to f(X) and the other does not, no
end-point of J belongs to f(X). Only the second case is important and
requiring intervention, and we contract such a J to a single point. Doing
this with all such J’s we receive a continuous rapping ¢ of I onto itself
which is one-to-one on f(X) and does not alter the < order in f(X). We
shall show that ¢ = gf is a continuous mapping ¢: X —I.

To prove the continuity of ¢ it suffices to show that if U is an open
subset of I, then the counter-image ¢~'(U ~ p(X)) is open in the order
topology in X. Without loss of generality we may assume, in view of (i),
that U is an element of a subbase of I, that is, say, U= {a ¢I: a < b}
for some bel. If bep(X) or be U ~ p(X), the proof is achieved, for
then ¢ U (X)) = {meX: 6<¢b)} in the first ecase and

U np(X) = nL=J1{x € X: #<X s}, where 2, ¢ X, p() < b and Limg (w,)
= b, in the second case are both open in the order topology in Xﬂf—)an if

.b e I—[p(X) v U ~ ¢(X)], then the component J of I—¢(X) containing »
is such that .elther both end-points of J belong to ¢(X) or neither of them
does. Denoting by b’ e ¢(X) the right-hand end-point of J in the first
case, we have]

eHT A (X)) = {z e X: <07 Yb)} .

In the second case, choosing a sequence {z,} of points of X such that
@(2x) <b for n= 1,2, .. and for each = € X, if p(x) < b, then also ¢(x)
< p(zs) for some n=1,2, ..., we have

o U A p(X)) = "Ejl{w eX: 52w} .

Thus in both remaining cases g=(U ~ ¢(X)) is also shown to be an open
subset of X in the order topology, and thus the proof is completed.
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CoROLLARY 2. If X is an ordinally separable space, then X contains
at most 8, components distinct from single points.

Indeed, if f: X I is a contraction asserted by Theorem 4, then
each component of X distinct from a single point goes under f onto a cer-
tain subinterval of I and the images under f of any two distinet components
are disjoint.

COROLLARY 3. Let X be an ordinally separable space. If X is connected
and, moreover, either locally connected or peripherally compact, then it is
homeomorphic to a subset of the real line.

More precisely, if X has both a first and o lasi element, then it is
homeomorphic to a closed segment, and if X lacks one of them or both then
it is homeomorphie to a segment without one or, respectively, two end-points.

The proof follows from Theorem 4 and from a result of V. V. Pro-
izvolov [15] and G. T. Whyburn [17] which states that a contraction into
the real line of a connected Hausdorff space which is either locally con-
nected or peripherally compact is a homeomorphism.

4. A continuum (i.e., a compact metric connected space) K is said
to be irreducible between a and b if K contains a and b but no proper sub-
continuum of K contains them. An irreducible continuum K between a
and b is of type A if there exists a continuous mapping #: K I such thab
n(a) = 0, n(b) = 1 and that each section n7'(1), 0 <t <1, is a non-dense
subcontinuum of K ([10], II, § 43).

THEOREM 5. A metric separable space X is ordered if and only if
there exist an irreducible continuum K of type A and a homeomorphism
h: XK such that h(X) meets each section of K at one poini at most.

If, moreover, X is connected, then a continuum K of type 2 and a homeo-
morphism h: X ~K can be found such that h(X) is a dense subset of K
meeting each internal section n~(t), 0 <t <1, at precisely one point and
each boundary section 77X(0) and 57(1) at one point at most.

Proof. The condition is clearly sufficient and so we shall only prove
that it is necessary. Let X be a metric separable ordered space. Being
meétric separable, it can be topologically embedded into a Buclidean or
4'Hilbert cube. We may then assume that X C I" for some n = 1, 2, ..., Ko-

Let

f: X1

be a one-to-one and continuous mapping (existing by Theorem 4) of X
into I. Tf X is connected, then so is f(X), and therefore in such a case
we may assume that f(X) is dense in I

As is well known, the correspondence #->(f(#),%) is a one-to-one
and bicontinuons mapping (ie., a homeomorphism) befween X and the
diagram {(f(2), #): @ e X}C I"™" of f. Identifying the sef X with the


GUEST


302 R. Duda

diagram of f we shall assume in the sequel that X C I"™ and that the
projection of X onto the first axis of I""' =T xI" is one-to-one and
that, for X connected, it covers I (with the possible exception of the
end-points of I). )

For the sake of simplicity, a point of the cube I"*' will be denoted
by (¢, ), where 1 is its first coordinate and 2 a system of n others, and D
will mean the set of all dyadic-rational points of I.

For construction purposes we must slightly modify the position
of X in I"™}. Let 8 be a subset of X countable and dense in X. Clearly,
F(8) is then a subset of f(X) countable and dense in f(X). Condensing
and distending where necessary (but without altering the order in f(X))
we may secure for § a position in which f(S) consists of dyadic-rationa
points only. Therefore we shall assume that :

(4) the set {(t,2)e X: { ¢ D} is dense in X .

Having thus modified the position of X in I"™* we can begin the
construction.

First we shall subject the cube I"*?, and together with it the set X,
to a non-continuous deformation by pulling apart I"** to a Cartesian
product O xI", where € is the ternary Cantor set lying in I.

Let

s: O—1I

be ,,la fonetion scalariforme’ of Cantor mapping ¢ onto I by glueing the
end-points of intervals contiguous to ¢ to dyadic-rational points in I
(ef. [10], X, p. 236).

Being continuous, the function s induces an upper semi-continuous
decomposition of O, ¢ = 'Lé §7(t). In particular, we then have ([1o0], 11,
. 42)

(8) iftaelfor n=0,1,.. and limt, =1, then Lss(t,)C s-1(z) .
n—>00 n—>00 .
The ,,pulling apart” of I"*" consists in the conversion of a point

(t,2) of I into a subset (s~1(1), 2) of O xI" consisting of one point or
two. Denoting it by v we then have

p: IO x I,
where p(t, 2) = (s(t), 2) for each (t, 2) « 1",
One can say that each cube tx 1", where te D, is doubled and the

two are pushed apart, and that each cube ¢ xI" with teI—

D is onl
slightly shifted. il
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Now we insert a straight-line segment parallel to I between any two
pushed apart cubes ' xI” and ¢ x I", where s(t) = s(t'") =t is dyadic-
rational, in such way that
(6) pX)CH,

where H is the union of all those segments.

Namely, if §ef(X), that is, if there exists a point (t,x) ¢ X, then
we join by a segment the two points (', #) and (¢”, x), both belonging to
p(X). And if 1 e I—f(X), then p(X) does not meet s} (t) x I"=t' x I"u
v " x I" and we join by a segment an arbitrary pair of points (¢, 2) and
(", 2), zeI".

, Adding to O xI" the union H of all segments thus defined we come
to a continuum (C xI") v H containing y(X). Moreover, (4) implies (6).

The second step of the conmstruction consists in contracting each
segment of H separately to a single point. To do this, consider a decom-
position of the cube I™** into segments of H and single points. Clearly,
this decomposition is upper semi-continuous and its hyperspace is I"™.
By virtue of Aleksandrov’s theorem (cf. [10], IT, p. 42) there exists a con-
tinuous mapping g T
such that the counter-images g '(p), p e I"™", coincide with the elements
of our decomposition.

‘We shall now show that the composition % of p|X and gjy(X), written
gimply as & = gy, is a homeomorphism from X onto h(X).

In fact, h is one-to-one, because y|X doubles some points of X into
pairs of ¢(X) and glyp(X) glues together all such pairs and only such pairs.

To show that h is continuous consider a sequence {p,} of points
of X such that limp, = p,e X. I pi= (&, ;) for 1=0,1,2, ..., then

n—»0

h{p:) = g(S_l(tt)’_:.CU{) and so we have to prove that the sequence
{9(s72(tn), #4)} is convergent and that
(7) T]fim;g (s7X(tn) , #n) = g{s72(t), @) -
To this end note first that in view of (5) we have
Ls s7Y(tn) C s74(t,) -
oo

Henée the set Ljrl(ti) is compact and so, by the confinuity of g,

=0

we infer ([1], p. 23 and [10], I, p. 243) that!
Ls g(s(tn), #a) = g Ls (s7X(t), )
N—>00 n—>00
== g{ Ls s7(ta), Lis @a) C g (s72(t0) @) -
Nn—+00
But g(s~'(t,), x) is a single point and so (7) is proved.


GUEST


304 R. Duda

And to show that also h—* = g~ is continuous, consider a sequence
{ga} of points of h(X) such that limg, = g€ b(X). If ¢i= (us,2) for

i=0,1,2, ..., then h-Y{g:) = y~ig~(us, 25) = 9T}, 28) = (s(U7%), #i), where

(U%, #%) = gY(us, 2) and U} consists of one point or two. But g is

continuous. Therefore the assumption lim(us,2s) = (o, %) implies that
N—>00

Ls g™ ttn, 2n) C g~ (%, %), 1.€., that Ls (Tn, &) C (Us, ), whence, as before,
n—00 n—>o0
W‘l[n{Ji(U%y en)] = Ls (8(T), 2n) C (T, #6) = (s(T5), ) -

Hence the sequence of points {s(Uy), 2x} i3 convergent and its limit is
the point (s(Ts), 25), and so HmA™>(gn) = A 7(g,)-

The function h, being one-to-one and bicontinuous, is thus shown
to be a homeomorphism.

Finally, turn to the question of finding a continuum K satisfying
our theorem. For that purpose note first that the continuum N = ¢[(C x
% I") v H] has a natural upper semi-continuous decomposition of type 4

N= tLejIg[s_l(t) xI".

Defining the mapping #: ¥ —I by the formula
"I(P) =1 whenever Pe g[s‘l(t) % Iu] ,

we easily verify that each section #~(t) of N meets #(X) at one point at
most (if X is connected, then each internal section n~(f), 0 < ¢ < 1, meets
h(X) at precisely one point). However, N itself is, in general, far from
being irreducible and so it cannot serve as K.

Choose two points in N, one in %~1(0) and the other in L 77H{1). If »4(0)
meets k(X), we choose the point 77%(0) ~ h(X); otherwise the choice is
arbitrary. Similarly for ~(1). Now, N contains a subcontinuum K irse-
ducible between the two chosen points ([10], IT, p. 132). The continuum b
contains g(H), because each point of g(H) cuts N into two disjoint and
separated sets containing, onme each, the two chosen points. Hence, in
view of (6), & must contain h(X)

‘We shall now show that vy[K maps K onto I in such a way that

(8) each set (n|K)7'(t) is a subcontinuum of X .

Indeed, otherwise there would exist a dyadic-rational #, for which
(n| K) Yty Would not be connected. Let P he ifs component containing
the point g(H) belonging to (n|K) *({,) and R—any other of its
components. Take disjoint open neighbourhoods, U of P and V of R.
It should be obvious that U and V may be chosen in such a way
that for some i, if ¢ lies between #, and f,, then the boundary of U
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‘gnd the boundary of ¥V are both disjoint with (1;|f)'1(t1). ‘Without
‘Joss of generality we may assume that t, <t,. If {, is a dyadie-rational

such that ¢, <3, <1, then two cases are possible: either the point g(H) ~
A 77Y(1,) belongs to U or not. If it does, then the subset of K consisting

“of all points p e ¥ for which {, < 7(p) < 1., is closed-open m K and so K

is not connected. And if it does not, then the subset of K consisting of
all points ¢ for which 5(g) <t, and of all points r ¢ U for which #, < #(r)
< 1, is closed-open in K and so K is not connected either. Hence in both
cases we have obtained a contradiction.

Thus the proof of (8) is finished.

Since for each t, 5~I(t) contains one point from h(X) at most (for X
conneeted a.nd 0 <t< 1 one point precisely), then a fortiori so does

SR () K A~ (D). Hence if we could assert in addition that each

set (97}1( t) is non-dense in K & would be the continuum K we want:
it is 1rreduclb1e and contains h(X) in the required manner, and ulK would
give the required decomposﬂnon of type A. As a matter of fact, each set

.(n]K)_l( ) is non-dense in ¥ in the particular case of X being connected
-with f(X) which is dense in I, because then (X)) = K and the required

property easﬂy follows. In general however, we should replace each

‘get (7/K)7'(#) with a non-empty interior (relative to E) by an arbitrary

irreducible continuum of type A and in this way come at last to the re-
‘quired K.

The proof of Theorem 5 is thus completed.

COROLLARY 4. Let a and b two poinis of a metric separable connecled
space X. The following four properties are then equivalent:

(a) X is irreducible connected between a and b,

(b) there ewists a one-to-one and continuous mapping f: X I such

_that f(a) =0 and f(b) =

(¢) there ewist an irreducible continuum K of type A and a homeomorphism
h: X K such that h(X) meets each section of K at one point only,
(d) X is ordered and contains o first and a last element.
~ Proof. The implication (a) = (b) is known under the name of the
Lennes theorem (cf. [10], II, p. 103), the implication (b) = (c) follows
from Theorem 5, and the implication (c) = (a) is trivial. Hence prop-
erties (a), (b) a,nd (c) are equivalent. And since, as we have already
meéntioned, for connected ordered spaces separability coincides with

‘ordinal separability, in view of Theorem 4 (b) is equivalent to (d).

5. Theorem 5 implies also that every metric separable connected

‘space which is ordered can be embedded into a certain irreducible con-

tinuum K of type A in such a way that each section of K contains one
point from X at most. On the other hand, as B. Knaster proved [7] a long
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time ago, an implication contrary in a sense also holds true. Namely, every
irreducible continuum K of type A contains a certain connected set chosen
one point by one section of K.

Knaster’s theorem gives a method for proving the existence of some
peculiar metric separable ordered spaces (for instance, if K has dense
sections not reducing to single points, then X must be punctiform, ie.,
such that its only subcontinua are single points). Unfortunately, this
does not permit to obtain specific examples, because the choice of X
from K is not effective (cf. [7], p. 278). For that reason it seems appro-
priate to give an effective (without the axiom of choice) construction
as a proof of the following:

TagorEM 6. For each finite or infinite dimension n the cube I
contains a dense, connected and punctiform subset X of dimension n, which
is ordered.

Proof. For a given » we shall construct X by a proper choice of
one point p; from each cube ¢ x 1", where t < I. For that purpose divide
the first segment T into 2% subsets B dense in I and pairwise disjoint,
I= UEE (such decompositions of I do exist, see [9], p. 252), and let R

be the family of all subcontinua K¢ of I"** meeting the faces 0 x I" and
1xI" of I"%. Clearly, family R is also of cardinality 2% and so there
exists a one-to-one correspondence hetween the elements E; of the de-
composition of I and the continua K; belonging to R. Now for each t e H;
choose in the set (¢ xI") ~ K, a point p; (in an arbitrary way with the
help of an effective definition; for instance, a point of, roughly speaking,
minimum coordinates). Denoting by X, the set of all points p; thus chosen,
for a given &, we define X as the union of all X, X = | X¢.

H
All the steps of the construction can be made effective (cf. [7], where
there is a similar effective construction of a biconnected set of arbitrary

dimengion) and so we may proceed to the proof of the properties .

of X.

The famxly R consists of all subcontinua K; and so, clearly, X must
be dense in I™*,

To prove that X is conmected suppose, to the contrary, that X is
not and let X = A « B be its decomposition into two subsets non-empty
and closed in X. There exists then ([9], p. 234, and [8], footnote on p. 13)
a continuum M C I"*'— X which separates the cube I"** between A and B.
Consider the projection r(M) of M into I. The set r(M) cannot consist
of a single point {, because then M would be equal to tx I" in contra-
diction with p;= X ~ (¢ xI"). Hence r(M) must be a segment [7,, ],
Wpere 0 <7 <7, <1. Joining by a straight-line segment a point of M
with the first coordinate equal to 7, to the face 0 xI", and, similarly,

apoint of M with the first coordinate equal to r, to the face 1 x I”, we

e _®©
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come to a continuum K. belonging to R. The set E¢ is dense in I; let
te B ~[ry,7,]. Hence there exists a point p:e K: ~ X, but, in view
of our definition of K¢, p: e M ~ X—a contradiction.

The proof that X is punctiform is also simple. Indeed, let @ be a sub-
continuum of X. If @ is mot a single point, then the projection r(@) is
a segment [¢y, ¢,], where 0 < ¢; < ¢, <1. Clearly, @ must then contain
each point ps, € X with g <1, < ¢;, because py, disconnects X into two
separate subsets, X— (pg) = {ps: T <t} v {ps: ¢ > £,} and @ meets both.
Hence @ = X ~ ([gy, g1 X I"). But X ~ ([g1, ¢:] x I" is dense in [gy, ¢.] X I",
whenee Q = [¢i, ¢2] x I". This gives a contradiction, because X meets
any ¢ x I" at one point only. Hence the only subcontinua of X are single
points, i.e., X is punctiform.

Clearly, X contains no open subset of I". Hence (cf. [5], p. 44)
dim X < n. On the other hand, however, the proof of the connectedness
of X works also to the effect that no pair » and w of points of I"** with
7(v) 5= r(w) can be joined by a subcontinuum of I"*'— X. Hence, in view
of Mazurkiewicz theorem (cf. [10], IT, p. 343) we must also have dim X > n.
It follows then that dimX = n.

Finally, the projection r: X I gives a one-to-one and continuous
mapping of X onto I and so X has property (8). This means, in view
of Theorem 4, that X is ordered.

Remark. A connected metric separable space X with a point p
such that X—(p) contains no non-trivial connected subset is called
pulverable and its subset X— (p) a pulverized space (see [1]). Clearly, every
component of a pulverized space is a single point. Sometimes, however,
more is true. Namely, there exist (e.g., [8]) pulverized spaces of arbi-
trarily large dimension whose gquasicomponents are all single points.
Since the set of the quasicomponents of a metric separable space is ordered
(cf. [10], II, p. 93), such pulverized spaces are good examples of metrie
separable ordered spaces with no non-trivial connected subsebs and of
arbitrarily large dimension.

6. All spaces under discussion here are metric separable.

By the deficiency of a topological space X we mean the least integer n,
denoted by def X, for which there exists a compactification X of X with
the property n = dim (X X). The notion is due to J. de Groot [3].

TeEOEEM 7. If X is an ordered and non-compact topological space of
dimension n, then n—1 < defX < n.

If, moreover, all componenis of X are single points, then defX = n.

Proof. As is well known (cf. [5], p. 64), if a topological space has
dimension 7, then there exists a compactlﬁcatmn X of X such that
dim X = n. A fortiori, defX < dim(X¥—X) < dim X = n.
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On the other hand, TLelek has shown [11]thatif f: X > Y is a mapping
of a topological space X into a topological space ¥ such that each counter-
image £ (y) » Y€ ¥, is locally compact, then

dim X < dim ¥ +max {dim§f, def X} ,

where dimf denotes the greatest of dimensions dimf (y) for yeX,

Applying this inequality to our case of X being an ordered topological
8pace, f a contraction into the real line (existing by Theorem 4), and ¥
the real line, we come to the inequality

-1l << defX .

In fact, since X is not compact by hypothesis, we have defX =0,
and so

max {dimf, def X} = det X ,

because, clearly, dimf= 0.
The second conclusion of Theorem 7 follows from Theorem 1 and
from a result of Mazurkiewicz [12] stating that if X is an n-dimensional

topological space whose quasicomponents are all single points, then
defX = n.

References

[11 R. Duda, On biconnected sets with dispersion poinis, Rozprawy Matema-
tyczne 37, Warszawa 1964.

[2] 8. Eilenberg, Ordered topological spaces, Amer. J. Math. 53 (1941), pp.
39-45.
[3] J. de Groot, Topologische Studién, Assen 1942.
[4] F. Hausdorff, Grundziige der Mengenlehre, Leipzig 1914.
[5] W. Hurewicz and H. Wallman, Dimension Theory, Princeton 1948.
[6] J. L. Kelley, General Topology, Princeton 1955.
[7] B. Knaster, Sur les ensembles connewes irréducibles entre dewz points, Fund.
Math. 10 {1927), pp. 276-297.
[8] — Sur les coupures biconmexes des espaces ewuclidi de di n>1
arbitraire, Matemaraueckuit Choprmx (MatematiZeskis Shornik) 19 (61) (1964), pp. 7-18.
[9] B. Knaster et C. Kurat owski, Sur les ensembles connexres, Fund. Math. 2
(1921), pp. 206-255.
[10] C. Kuratowski, Topologie, two volumes, Warszawa-Wroclaw 1952.
[11] A. Lelek, Dimension of mappings of spaces with finite deficiency, Coll. Math. 12
(1964), pp. 221-227.
[12] 8. Mazurkiewicz, {ber total zusammenkangslose Mengen, Fund. Math. 22
(1934), pp. 267-269,
[18] M. Novotn
(1952), pp. 97-102.

¥, Sur la représentation des’ ensembles ordonnés, Fund. Math. 39

icm®

On ordered topological spaces 309

[14] D. Pompeiu, Sur les fonctions derivées, Math. Ann. 63 (1907), pp. 326-332.

[15] B. B. Ilpoussoinos, O6° yniomuenusx Ha esxiudoss npocmparcmea, JTOKmame:
AH CCCP 151 (1963), pp. 1286-1287; English translation: Soviet Mathematics Doklady 4
1963), pp. 1194-1195. §
( [’16] G. T. Whyburn, Analytic Topology, New York 1942. )

[17] — On compaciness of mappings, Proc. Nat. Acad. Sci. USA 52 (1964),
pp. 1426-1431.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 23. 6. 1967


GUEST




