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Fixed points and proximate fixed points
oy
T. B. Muenzenberger and R. E. Smithson (Wyoming, Fla)

1. Introduction. In 1961 V. Klee [5] introduced the concept of
an e-continuous single-valued function on a topological space into a metric
space. At the same time he defined the proximate fixed point property
(p-£.p.p.) for such functions, and proved that each compact metric absolute
retract has the p.f.p.p. In his concluding paragraph Klee remarked that
extensions to uniform spaces and multi-valued functions were almost
immediate. In particular he noted that Kakutani’s [3] and Fan’s [1]
fixed point theorems could be generalized.

In this paper we give definitions of ¢-continuous multi-valued
functions in terms of uniform spaces, and we derive a general fixed point
theorem which has as a corollary the generalization of Fan’s theorem
mentioned by Klee. In addition the main theorem of this paper and one
other theorem show the close relationship between the proximate fixed
point property for certain classes of multi-valued functions and the fixed
point property for certain classes of upper semi-continuous multi-valued
funections.

2. Preliminaries. In this section we give the basic definitions,
and derive some of the fundamental results. A multi-valued function
or multifunction F on a space X into a space Y is a point to set corre-
spondence x-F(x) such that F(z) is a nonempty, closed subset of ¥
for each z ¢ X. Henceforth, we shall use the terms function, multi-valued
function, and multifunction interchangeably. The reader should refer
to chapter 6 of Kelley [4] for notation and fundamental properties of
uniform spaces.

DrerFiNITIONS. Let X and Y be topological spaces and let F: X >¥
be a multifunction on X into ¥. Then we have the following definitions.

(1) The function F is said to be upper semicontinuous (n.s.c.) if and
only if for each closed set A C ¥, the set

F(A)={weX| Fz) n 4 + 0O}

is a closed subset of X.
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(2) The funetion F is said to be lower semi-continuous (L.s.c.) if and
only if for each open set WC ¥, the set F~(W) is an open subset of X.

(3) The function F is continuous it and only if it is both w.s.c. and
Ls.c. )

(4) A point v eX is & fiwed point of & function F: XX in case
# ¢ F(z). Then a space X is said to have the fized point property (F.p.p.)
it and only if each continuous function F: X +X has a fixed point.

The fixed point property for other classes of functions is defined
in an analogous way. For example, we say that X has the F.p.p. for n.s.c.,
continwum valued functions in case each w.s.c., continuum valued function
on X into X has a fixed point. In the preceeding the term continuum
valued means that F(z) is a compact, connected subset” of X for each
veX.

Now let X be a topological space, and let (¥, V) be a uniform space.
We shall assume that ¥ has the topology generated by the uniformity .
In the following definitions assume that F' is a multifunction on X into ¥
and V ¢ U.

DEFINTTIONS. (1) The function F is called upper V - continuous (w.V-¢.)
if and only if for each « « X, there exists a neighborhood U of o such that

F(U)CV[F(z)]= {y e Y| for some yeF(x), (4,9) <V}

(2) The function F is lower V -continuous (1.V-c.) if and only if for
each 2 ¢X and for each y e F(x), there is a neighborhood U of « such
that @' ¢ U implies that F (') ~ V¥l # 0.

(3) The function F i3 V-continuous (V-¢.) if and only if it is both
u.V-e. and LV-c.

(4) The function F is strongly lower V -econtinuous (sl. V-c.) if and
only if for each @ ¢ X there exists a neighborhood U of » such that 2" ¢ U
implies that F(2') n Vy]s O for all y e ¥ ().

Tt is clear that if ¥ is sl. V-c., then F is LV-c. Moreover, if F(x) is
compact for each 2 ¢X, then we can get a partial converse.

Before stating the converse we make the following convention.
Let P be a property of sets (e.g. compact, closed, etc). Then we say that F
is point P in case F(z) has the property P for each w e X.

ProposITION 1. Let F: XY be a point compact multifunction.
Suppose that V, V', and V are members of U such that VCVVCV'. IfF
i8 L.V-c., then F is s.L.V'-c.

Proof. First, since each member of U’ contains a symmetric member
of U, we may assume that ¥ is symmetric. Let « ¢ X. Since F(x) is compact,
there exists a finite set {9, ..., ¥z} CF () such_that

F@)CU Pyl i=1, .., k.
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If F is 1.V-c., then there is a neighborhood U; of », 1 < i<k, such that
@' e U; implies that F(2') ~nT[yd # 0. Let U= {Ty i=1, ...k},
and let @' ¢ U. Then

F@)nV{y]+ 0O forall i=1,..,k.

Further, if y ¢ F'(x), then there exists an ¢ such that y e ﬁ[yd. Since there
exists a y' e F(z’) such that (y1,9') eV and since V is symmetric, we
have (y,y') eV oV CV'. That is, y’ eV'[y], and so F(a') ~ V' y] = O
Thus, F is 8.LV'-c.

DEFINITION. A uniform space (X, W) has the promimate fized point
property (p.F.p.p.) if and only if for each U ¢ there exists a UeUs
such that whenever F: XX is a U-c. function there is a point e X
such that F(z) ~ Ulz] # O.

The proximate fixed point property for other classes of functions
is defined analogously.

THEOREM 2. Let X be a compact, Hausdorff space. If X has the
p.B.p.p., then X has the F.p.p.

Proof. Let F: XX be continuous. Since X is compact, T, the
collection U of all neighborhoods of the diagonal is the unique uniformity
for X. Since F is U-c.for each U e W, there is an oy € X such that F(zy)
A Ular] # [0 (under the assumption that X has the p.F.p.p.). Thus,
for each U e W, there are points 2y and yy in X such that yy € F(zv)
A Ulzy]. Since W is directed by inclusion, we define a net ¥N: Ub—»>X x
XX by: N(U) = (#v, yv) for each U e W. Further, since X is compact,
the net N has a cluster point (2, ¥,) in X xX. If (2, %) ¢ 4 = {(z, #)]
x e X}, then there exist disjoint, open subsets § and T of X xX such
that (w,%,) ¢S and ACT (since X is compact, Hausdorff). But_ this
is contrary to the facts that U is the family of all neighborhoods of 4
and that (zy, ¥,) is a cluster point of N. Hence, (%, %) € 4; that is, 2, = ¥,.
Finally, since F is u.s.e. and point closed, @, = ¥, € F'(#,), and hence,
@, is a fixed point of F.

Remark. Theorem 2 can be stated for w.s.c. and u.U-¢ functions.
Though in this case it is necessary to make some assumptions about
the sets F(z) in order to assure the existence of spaces with the p.F.p.p.
and F.p.p. The main result of the paper is a converse of this form of
Theorem. 2.

3. The main theorem. The main result of this paper has two
variations, each of which is a converse of Theorem 2. Before stating the
first form of the result, we need the following definitions.

DeriNirioN. Let (X, ) and (¥, V) be uniform spaces and let
V € V. Then a multifunction F: XY is uniformly upper V-continuous
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(unif. w.V-c.) if and only if there is a U e U such that F(U[z]) C V[F ()]
for all z ¢ X.

Throughout the remainder of this section, we assume that (X , W)
is & uniform space and that U, is a base for U which eonsists entirely
of symmetric subsets of X xX. In the following we let P denote a prop-
erty of sets and let P(X) be the subsets of X which have property P.

DEFINITION. A function K: 2% ->2% (where 2% denotes the collection
of all subsets of the set X) is called a P-operator on X if and only if the
following conditions hold:

(i) if 0 ACX, then []s= E(4)eP(X);
(i) if A C B, then K(4) C K(B);

(ili) if A ¢ P(X), then K(4)= A.

We consider the following conditions which P might satisfy:

(1) if A e P(X), then A* e P(X), where A* is the closure of A.

(2) If 4 ¢ P(X) and if U e Uy, then U[4]eP(X).

(3) There exists a P-operator on X.

TEEOREM 3. Let X be a compact, Hausdorff space, and let P be a prop-
erty for which conditions (1), (2), and (3) are satisfied. If X has the F.p.p.
for n.s.c., point P functions, then X has the D.F.p.p. for point P, uniformly
upper V- continuous functions.

"Proof. Let UeW. Choose V €U, such that Vi=VoVC U, and
let F be a uniformly upper V-continuous function on X into X. Then
there exists a 7’ e such that = € V'[#] implies that F(x') C V[F (x)].

Let ¥ ¢ Uy be such that ¥ oV C V", Since X is eompact, there is a finite _

set {eg] i=1,..,k} such that X = |J (V[@]’| i=1,..., k} where® de-
notes the interior. For each x ¢ X define a nonempty, open set W, by:

Wo=) {Fl2]] 2eV[2).

Now define a function G: X>X by G(z)= K (B (W5)* where K
is a P-operator whose ex‘stence is guaranteed by (3). Clearly @ is a point P
multifunction. Furthermore, if ¢(z) C § = §° C X, then G(W,) C K (B (W)
C8, and so @G is upper semi-continuous. Hence, there exists an x, ¢ X
such that =z, e G(z,).

From the definition of @ there is an @ ¢ K(F(W,,)) such that
@, € V(a,]. Further, if z ¢ Wa,, then z ¢ V(z:] and @, € V2] for some Py
and thus, @ eVa,]. Therefore F(z)C V[F(z,)] since V2CV’ and F is
unif. wV-e. That is, F(Wa,)CV[F(a,)], and hence, K(F(Wa,))C
CE(V{F(x,)]) = VIF(z)] by (2) and the facts that K is a P - operator
and F is point P. Combining thig result with @, e V[z,] gives F(x,) ~
AVix] %= . Theretore, F(my) ~ Ulx,} = O, and the theorem follows,
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The proof of Theorem 4 uses Proposition 1 and a construction similar
to the one in the proof of Theorem 3.

THEOREM 4. Let X be o compact, Hausdorff space, and let P be a prop-
erty which satisfies conditions (1), (2), and (3). If X has the F.p.p. for
point P, usc functions, then X has the p.F.p.p. for point P functions.

4. Applications. For the first application let X be a nonempty,
compact, convex subspace of a locally convex, Hausdorff, topological
vector space. Let B, be a base for the neighborhood system of 0 which
consists entirely of convex, symmetric neighborhoods of 0, and let sets
of the form {(z, y)| y—« ¢ B} for B ¢ %, be the members of Uyg. Then U,
i a symmetric base for the left uniformity for X when considered as
a topological group. For P we take the property of being convex, and
then the function K such that K (4) is the convex hull of A, where A C X,
is a P-operator. We then have the necessary conditions satisfied, and so,
Theorem 3 together with Ky Fan’s [1] and Glicksberg’s [2] theorem
gives:

THEOREM 5. Each nonempty compact, conves subspace of a locally
convex, Hausdorff, topological vestor space has the P.F.p.p. for poini convex,
wniformly upper V-continuous functions.

Also, by using Theorem 4, we get a result of Muenzenberger [6].

TBEOREM 6. Bach nonempty, compact, conver subspace of a locally
convex, Hausdorff, topological vestor space has the p.F.p.p. for point convexr
functions.

For the second application let X be a hereditarily unicoherent,
arcwise connected, locally connected continuum. (Here an arc is a con-
tinuum with exactly two non-cut points.) In this case a subset 4 of X
has property P if and only if 4 is connected, and we define the P- operator
K Dy setting K(4) equal to the union of the arcs with distinet endpoints
in A if Card(4) > 2 and K(4) equal to 4 if Card(4) < 2. Let Uy be the
collection of all neighborhoods of the diagonal which are of the form
U {Ny X Nz| x e X} where N, is a connected neighborhood of . Since X
is locally connected, U, is a base for the uniformity for X. Thus we have
the following result by theorems of Ward [9], [10] and Wallace [8].

THEOREM 7. Hach tree has the p.F.p.p. for point connected, uniformly
upper V-continuous functions.

‘We could also use Theorem 4, but in this case a stronger result has
been proved by Smithson [7]. In [7] it was shown that each dendrite has
the p.F.p.p. for §-continuous functions. This result could be extended
%0 non-metric spaces. The concepts of §-continuity and U-continuity
(for metric spaces) are not identical, but they are closely related [6], [7].
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Remark on strongly additive set functions

by
J. Kisynski (Warszawa)

A set function p# with values in an abelian group, defined on an
additive class of sets 4 is called additive if

#{A v B) = u(A)+u(B)
for every pair A, B of disjoint sets in . A set function 1 defined on a lat-
tice of sets £ containing the empty set @ is called strongly additive if its
values lie in an abelian group, A(@) = 0 and
AMA)— (A A~ B)= A4 v B)— A(B)
for every A «f and Bel. We call any additive and substractive class
of sets a ring.

If a set function 4 with values in an abelian group G defined on a lat-
tice of sets £ containing the empty set may be extended to an additive
set funection 4 with values in & defined on a ring containing £, then (@)
= u(0) =0 and, for any 4 «L and Bef, we have

AA)— (4 ~ B) = u(A\B) = A(4 v B)— i(B),

so that 2 is a strongly additive set function. The purpose of this paper
is to show that the converse is also frue. Namely, we shall prove the
following i

THEOREM. Every strongly additive set function defined on a lattice
of sets containing the empty set may be extended in a unique manner to an
additive set function defined on the smallest ring of sets containing this
lattice.

In the proof of this theorem the notion of a disjoint union of sets
will be used. The disjoint union of a system of sets 4;, 4y, ..., Ay is defined
if and only if these sets are mutnally disjoint and in that case it is defined
as the usual set-theoretic union and is denoted by 4, U 4, ... O 4y,
orby ) A

k=12, w.,n
LEvMA. Let £ be o lattice of sets containing the empty set. Let R be
the class of all sets of the form | J (A\Bx), where Axel and Bref
k

=1,2, eess W

for k=1,2,..,nandn=1,2,.. Then R is the smallest ring containing £.
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