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Euclidean space modulo a cell
by
John L. Bryant (Tallahassee, Florida)

1. Introduction. In [1] Andrews and Curtis proved that if A
is an are in Buclidean n-space E", then the Cartesian product of the
quotient space EY/A with B is topologically ™. The significant aspects
of this result appear when = > 3, for in this case E"/A is not necessarily
homeomorphic to H". The results of this paper were motivated by a con-
jecture in [1] and are as follows.

TeEEOREM 1.1. Suppose that D is a k-cell topologically embedded
in B". Then EB"[Dx B is homeomorphic to E"** provided

1. D is flat in BE*, or

II. n—Fk > 2.

For example, Gillman has shown [4] that condition I is sabistied
for k= 2 or 3 when = 3. Thus, we have

COROLLARY 1.2. If D is a k-cell topologically embedded in B, then
FIDx B~ B

CoroLLARY 1.3. If K is a crumpled cube in E° (that is, the closure
of the bounded complementary domain of @ 2-sphere in BY), then B /K x B*
~ B

Proof. Lininger has shown [6] that CL(E°—K) ~ CL(E°—D) for
some 3-cell D in E°. Hence, 1.3 is an immediate consequence of 1.2.

The proof of Theorem 1.1 is broken up into two parts. In Section 2,
we shall give a sufficient condition that E"/Dx B be homeomorphic
to E"™, and in Sections 3 and 4 we shall prove that this condition is
implied whenever the k-cell D satisties I or IT of Theorem 1.1. We prove
the main result by showing that we can satisfy the hypothesis of the
following modification of Bing’s criterion [2].

THEOREM 1.4 (Bing). Let € be a compact set in E". Suppose that for
each &> 0, there ewists am isotopy he (te[0,1]) of B™™" such that

(1) ho = identity,

(2) e = identity outside N,(Cx E') for each t<[0,1],

(3) each h; changes F'-coordinates less than e,
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(4) By is uniformly continuous, and
(5) diamh,(Cx w) < & for each w e B
Then B*CxXE ~ B

I am indebted to Professors J. J. Andrews and C. L. Seebeck for
many helpful suggestions and criticisms.

2. A reduction of the problem. Let I* = {(#,, ..., @nsy) ¢ B*7
0<m <1 for 1<i<k, and 2;= 0 for i >k}. For technical reasons,
it is desirable to consider the k-cell D in B” as the image of I" under an
embedding f: I*~E"x 0 C B,

Given integers 1<m <k<m, consider I"=I"""xI" I°= {0},
and let H(n, %k, m) denote the following statement:

I f: I"*>E"X0CE'+F = B is an embedding, then for
each &> 0, there exists an isotopy % (t €[0,1]) of B™™" such that:

(1) By = identity,

(2) ks = identity outside N,(f(I*)x B'), for each t<[0,1],

(3) hy is uniformly continuous,

(4) 7, changes E'-coordinates less than s, for each ¢ e[0,1],

(5) diamh,(f(zx I™) X w) < &, for each ¢ I* ™ and each w e B,

(

6) for each w ¢ ', there exists y e I™ such that
Iy(f (@ I™) x w) C No{f(, y) X w)

for each z e I™™,

Lmwva 2.1, Foreachnandk,1 <k < n, H(n, k, 1) implies H(n, &, k).

Proof. Assume inductively that for 1<m<k< n, H(n,k,1)
implies 'H (n, &k, m—1). Given H(n,k,1) and &> 0, let f; (£ [0,1]) be
the isotopy of E"™ given by H(n, k, m—1) with &3 replacing e. Choose
8 > 0 such that it » C B and diam X < ¢, then diamf,(X) < ¢/3. Consider
I*=TI""™XIxI™" with respective coordinates x,y, and 2. Applying
H(n,k,1), we can find an isotopy ¢ (£¢[0,1]) of B"™* satistying (1)
through (4) of H (n, k, 1) with 6 replacing &; (5) dia;mgl(f(m X Ixz)x w) < 4,
for each 2 e I" ™, 2 ¢ I, and w ¢ B'; and (6) for each w e ', there exists
y €I such that

gl(f(mx Ixz)x 'w) C Nd(f(m7 Y, 2) X w) for eé,ch Te Ik—-m and ©el™ L

Let he= f”g’. (te[0,1]). Then clearly % satisfies (1) through (4)
of H(n,%,m) with respect to . Given weEl, choose 4 ¢ I such that

Af@xIx2)xw) CNo(f(w,y,8)xw) for each we ™ ze ™
Then
Ha{fl@x Ix 2)xw) C Nl filf (2, 4, 2) x w))
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so that
Fuga (Flax Ix " Yyxw) C -ive/3(f1(f(-'7'1 Xyx I x w)) .

But diamf,(f(@xy x I™ ") xw) < ¢/3 for each x «I*™™, y « I. Hence
diam By (flax IXI™ ) xw) <e.
Now choose z e I™ ' corresponding to the given w ¢ B' such that

Alf@xy x I™ ) sw) C Nap(fle, v, 2) X w).
Then

Figulf@x IX Iy w) C NoglA(f (@ xy x I x w)) C No(f(, 3, 2) x )

for each @ e I* ™ Thus (5) and (6) of H(n,k, m) are also satisfied.
LEMMA 2.2. H(n, k, k) implies that if D is a k-cell in E", then
EN/DX El ~ _Em,+1‘
Proof. Conditions (1) through (5) of H(n, k, k) are clearly sufficient
to guarantee that the hypotheses of Theorem 1.4 are also satisfied.

3. Preliminary constructions. Throughout the remainder of
this paper we shall assume that D = f(I") is a k-cell in B*x 0 CE""
satisfying either

1. D is flat in E™" or

II. n—% = 2.

Moreover, whenever condition II is applied we shall make the further
assumption that n > 4 since the case n = 3 is covered by Andrews and
Curtis [1]. What we wish to do now is prove that these assumptions imply
H(n,%,1). The proof of this assertion is very similar to the proof of
Theorem 1 in [1].

Given positive integers m and p, subdivide I ® into rectangular %- cells
as follows: :

Let 4 = {(a,, ..., ax)] a; is a positive integer, I <@ <plor 1 <i< &,
and 1 < ap<2m}. Consider I* as IxIx..xI, & factors, and for
= (A, ..., a;) € 4, let

-1 @ Q11 Qp— ar—1 g :
S e e K ot B )
Given @ ¢ A, we shall let a; denote its ith coordinate.
For any subset X of B"™' = B"x I, define
S(X)= | {axB| v« E" and (xx B') ~n X = 0}.

LeaMA 3.1, For each > 0 there exists a covering {Pa| a¢ A} of I*
in B of (n41)-cubes Po and a homeomorphism g of E" such that:
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(8.1.1) Bach Pq is a product of closed intervals,

(3.1.2) P= | {Pa] ae A} is an (n41)-cell with I* CintP,
(8.1.3) Py ~ Py is a facé of each,

(3.1.4) Po nIx= I,

(3.1.5) D C g(int P),

(8.1.6) ¢(Pa) C Ny(Ds), and

(8.1.7) 8(g(Pa)} ~ S(g(Py)) = B whenever 1o ~ Ip = O.

Proof Notice that §(Ds) n 8(Ds) = @ whenever I, ~ Ip= O since
D = f(I*) C B" x 0. Hence, there exists 0 < & < }¢ such that if {X4] a € 4}
1sa,colleemon of subsets of B™* with X, C N,s(Dy), then 8(Xa) ~ 8(Xp) = O
whenever I~ Iy = @.

I. If D is flat in B, then f: I¥—>E""" extends to a homeomorphism
g: BT F". Since ¢(Iz) = f{Is) = Da, Wwe can easily find the desired
covering {P,] a €A} of I*.

IL If n—%k>=2 (and a > 4), we shall require the following two
facts.

HomMA’S APPROXIMATION THEOREM [5]. Let f be an embedding of
a closed combinatorial m-manifold M into a combinatorial n-manifold N,
n—m = 3. Then for each & >0, there ewists a PL embedding g: M—N
such that d(f(z), g(x)) < & for all ©e M.

ExcurriNg THEOREM (Bryant and Seebeck [3]). Suppose that K is
a compact k-dimensional ANR in E", n—k =3, n > 5, such that B"—K
is uniformly locally simply connected (1-ULC) and 6 > 0. Then there exists
n >0 such that if f: K—-E" is an n-homeomorphism and U is an open
subset of B" containing f(K), then there is a 8-homeomorphism h of H"
such that h(U)D K.

Since n—% > 2 and D C B"x 0, it is clear that B"*'—D is 1-ULC.
Choose 7 > 0 corresponding to the § we have chosen according to the
Engulfing Theorem. Note that f: I* > Ex0 extends to an embedding
f: BAI*** > E™" 50 that Homma’s Approximation Theorem applies
to give a piecewise linear embedding ¢: I*—E"*" such that d(p (@), f()) < 7
for each » e I*. Since (n--1)~—% = 3, we may extend ¢ to a homeomor-
phism ¢ of B onto itself [17.

Assume that 7 <6 and construct a covering {P.| @ A} of I®in
E" by (n-+1)-cubes satisfying (3.1.1) through (3.1.4) and with the
additional property that g'(Ps)C Ns(Da). Then, by the Engulfing
Theorem, there exists a J-homeomorphism ¢ of E"™™" such that
¢"'(¢’(in P)) D D.

Let g=g"g. Then for each aeA, g(Pa)C Nyp(Da) C Ny(Da), and
8(9(Pa)) ~ 8(g(Pr)) = @ whenever Io~ I, =@. QE.D.
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Let N, be a compact neighborhood of D in E" and let &, be a positive
number. Choose {Pai| aeA}, with P'=|J{Pi aed), and g,  as in
Lemma 3.1 80 that g;(P") C Ny X [—e&, &]. Let N, be a compact neighbor-
hood of D in E" and & >0, &< &, such that N,X[—e, &] C g,(PH.
Choose {P% aeA}, with P°= | J{Pil acd), and g, as in Lemma 3.1
50 that go(P%) C Ny X [—&, &)

Continue in this manner to obtain coverings {Pz}, {Pa}, ..., {Pa '}
of I¥, with P'= |J {Pi| a € A}; homeomorphisms g,, g, ..., gm-1 of B™*;
and neighborhoods

M, = Nyx[—e, &1y ooy Mm=NnX[—em, em] of D in B",
with & > ... > em, such that
M, D gu(PY) D MyD go P D oo D gmna(P" 1) D My

It follows from the proof of Lemma 3.1 that g; and {PY aed} can
be chosen so that

(3.2) SlgdPa)) ~ S(g(Ph) = @ and

(3.3) S(gu(P) ~ Dox B =0

whenever I, ~ Iy = @. By the construction of M, .. Mm, there exists
a homeomorphism v of B™' = E"x E' that changes onlv E'- coordinates
such that

p(My) = N, X[0,2m~—1],
p(M,) = Ny x[1,2m—2],
(Mp) = NpX[m—1,m].
Tet Q) = pgi( Py and Q° = pgi(P?), and consider the following subsets
of @', i=1,2,..,m—1:
(a) Q= Qi ax=1)h r=1,..,2m;
() for o’ € A’ = {{ai, a3, ..., ak-1)| 1< @i < P},
Ry = U{Q ai=al, for 1<i<h}.
Then, as an immediate consequence of our construction, we have:
4) 8 Qa YA 8@ =0 it IonL=0;
r3 o) RY) A S(Rb,) 0 it max{laj—bi: I=1,..,k—1}>1;
( ~QTC Qi for r=2,3,..,2m; and

6) 8
3.7) li we let Iw = U] a;= a}, for 1 <4<k} for o eA’, then
S(R é/ A f(Iy) X B — © whenever max{laf—bil: I=1, .., k=1}>1.
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4. The shrinking isotopies.

LevMaA 4.1. Given that 1<i<m—1, let X be a compact set in the
interior of Q'. Then for each r=2,3,...,2m, there exists an isotopy i
(te[0,1)) of B™ such that

(1) A, = identity, )

@) A Q7w (B™ —@Q) = identity for each i<[0, 1],

(3) 4(X)C @1, and

(4) M(R&) = RL for each te[0,1], a’ c A’

Proof. Let Pi= (pgs) N(Qh) for 1< s < 2m, and let ¥ = (pgs)"(X).
We can easily obtain an isotopy A (¢e[0,1]) that changes only kth
coordinates of points of E™™* with the properties:

(a) 2= identity,

(b) %] Piy (B""—P%) = identity, and

(¢) 4(¥)C Pis.

Then (yg:)Ai(vgs) "= A (t€[0,1]) has the required properties.
Remark. Let I*' denote the face of I® determined by = 0.

Notice that for each i=1,2,..,m~1, and each eI (3.7) gives

us thfl.t f#XI)%w lies in the sum of 2% of the sets § (RL), for each
we kR,

TumorEM 4.2. There exisis am isotopy hy (t € [0,1]) of B such that
hy = identity,

| BNy % [0, 2m—1] = identity,
| Qim = identity,
1
T Qams (B — Ny X [m—2, m+1]) = identity,
bl Qons o~ (B — Ny X [m—3, m+2]) = identity,

| Qi (B — N, x [1, 2m—2]) = identity,
I(Dx [m—1,m]) C Qem—s ,
hl(D X [m—2, m+l]) C Q:l’m—ﬁ bl

(D x 2, 2m—3]) C ¢},

and for each z e I*™ o 5 jst ok+am—
" f uch 4 eI and each w e B, there exist 2¥+¥m=1 of the sets S(Ry)
whose unton s connected and contains

(f(ﬁXI)Xw) w by (f(w X I) x w) .

icm°®
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Proof. We shall construct % as & composition of m—1 isotopies
Bl hEy ., BT of BMFY just as in [1], Theorem 3.

Let h"™" (t [0, 1]) be the isotopy of B*** given by Lemma 4.1 with
i=m—1, X =Dx[m—1,m], and r= 2m—1. Notice that, by (3.6),
(@) ~ @™ C @iy s0 that k" '] Qim = identity. By (3.7), the Remark,
and the fact that Ay '(Ry ‘)= Ry ' for each o' ¢ A’, we have that
(flox ) xw)) © k' (f(@ x I) xw) lies in the sum of 2**7** of the sets
S(R.) that is connected.

We let B ® (te[0,1]) be the isotopy given by Lemma 4.1 with
i=m—2, X=Hm"YDx[m—2,m+1]), snd r=2m—3. Since Q% s
COR3, RTHRPT(D x [m—1, m)) C Qon’y; and since 8(Qim-2) ~ Q"
C Qu2s, by (3.8), we have

hZ”‘th"“ll Q‘l.'mvz s} (En+1—1\T7n—1 X [m—2, m+1]) = identity .

Furthermore, by condition (4) of Lemma 4.1, we have that, for each
eI and we B,

(flox I)x w) o (B0 (f (2 X 1) X w))

lies in the sum of 2¥¥D** of the sets S(Ry) that is connected.

Continuing in this manmer, we obtain hy= hiki..h" ™" (teI) with
the desired properties.

Now let U,=g(Ol(Pi—P;o)) for r=1,2,..,2m, Pi=0,
U= gu(P"), and Vo = gy(Ry) for a’ < A’. Notice that. U, = | {g.(Pa)l
ap =T}

THEOREM 4.3. There exists an isotopy ki (teI) of B such that:

(1) ho = identity, :

(2) My |E"—8(U) = identity,

(8) Ry ds wniformly continuous,
(4)

4) for each w e B, there ewisis i such that

M(F(I") X w) C8(TUs v o U Tigs) n B* X [w—2m+1, wt2m—1],

and
(3) for each e I" and w ¢ B, - there ewist okHM=3 of the sets S(Ve)
whose union is conmected and contains (f(®X I) X ) © hy(f(z X Iyxw).

Proof. The proof is similar to that of Lemma 2 in [2]:

COROLLARY 4.4. H(m,k,1) is true whenever either of the conditions 1
or II is satisfied.
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Proof. Suppose that & >0 is given. For a’'= (ai, ..., @j—1) ¢ 4’,

1<ai<p, let
Ja,z[“{—l,“—i]x

ap1—1 ok
et ],

VA p »
Then {Jolacs is & subdivision of I*™* and for a= (a;, @y, ..., az) € 4,
ar—1 ag
Iy = JuwX [‘:mm]

where a;=a; for 1 <4< k. Choose integers m and p so that for each
i=1,...,2m—7, the union of any 2*"*"~° of the sets

i—1 417
s [ 5
that is connected has diameter less than &/6. Now choose the covering
{Pilaca of I” and g, so that g,(PL) C Ne(Da).

Change the scale on the F'-eoordinates of points in E"** so that
the isotopy of Theorem 4.3 changes (n--1)st-coordinates less than ef2.
Then (1) through (4) of H(n,k,1) are clearly satisfied. Given w ¢ B,
t—1 347
om ' 2m

choose 4 as in (4) of Theorem 4.3 and y e[ ] Then for each

welk—l,
(flex I)x w) C N.(f(x,y) x w) and diam(f(zx I) X w) < ¢.

Hence, (5) and (6) of H(n,k,1) are also satistied. This completes the
proof of Theorem 1.1.

It was conjectured in [1]that if D is a k-cell in B, then E"/D x E*
~NEYE I m=3 or if n—k>2 for n>3, Theorem 1.1 gives an
affirmative solution to this problem with E' being required instead of E*
in order to obtain a Euclidean space. In light of the results of this paper
it seems reasonable to ask the following question concerning the two
cases that remain unsolved.

QUESTION. If D 4 an (n—i)-cell in B", i=0,1, is BYDxE*"
~ En-x—s—'i?
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