

Euclidean space modulo a cell

b

John L. Bryant (Tallahassee, Florida)

1. Introduction. In [1] Andrews and Curtis proved that if A is an arc in Euclidean n-space E^n , then the Cartesian product of the quotient space E^n/A with E^1 is topologically E^{n+1} . The significant aspects of this result appear when $n \geq 3$, for in this case E^n/A is not necessarily homeomorphic to E^n . The results of this paper were motivated by a conjecture in [1] and are as follows.

Theorem 1.1. Suppose that D is a k-cell topologically embedded in E^n . Then $E^n/D \times E^1$ is homeomorphic to E^{n+1} provided

I. D is flat in E^{n+1} , or

II. $n-k \ge 2$.

For example, Gillman has shown [4] that condition I is satisfied for k=2 or 3 when n=3. Thus, we have

COROLLARY 1.2. If D is a k-cell topologically embedded in E^3 , then $E^3|D \times E^1 \approx E^4$.

COROLLARY 1.3. If K is a crumpled cube in E^3 (that is, the closure of the bounded complementary domain of a 2-sphere in E^3), then $E^3/K \times E^1 \approx E^4$.

Proof. Lininger has shown [6] that $\mathrm{Cl}(E^2-K) \approx \mathrm{Cl}(E^3-D)$ for some 3-cell D in E^3 . Hence, 1.3 is an immediate consequence of 1.2.

The proof of Theorem 1.1 is broken up into two parts. In Section 2, we shall give a sufficient condition that $E^n/D \times E^1$ be homeomorphic to E^{n+1} , and in Sections 3 and 4 we shall prove that this condition is implied whenever the k-cell D satisfies I or II of Theorem 1.1. We prove the main result by showing that we can satisfy the hypothesis of the following modification of Bing's criterion [2].

Theorem 1.4 (Bing). Let C be a compact set in E^n . Suppose that for each $\varepsilon > 0$, there exists an isotopy h_t ($t \in [0,1]$) of E^{n+1} such that

- (1) $h_0 = identity$,
- (2) $h_t = identity$ outside $N_s(C \times E^1)$ for each $t \in [0, 1]$,
- (3) each h_t changes E^1 -coordinates less than ε ,

- (4) h₁ is uniformly continuous, and
- (5) diam $h_1(C \times w) < \varepsilon$ for each $w \in E^1$.

Then $E^n/C \times E^1 \approx E^{n+1}$.

I am indebted to Professors J. J. Andrews and C. L. Seebeck for many helpful suggestions and criticisms.

2. A reduction of the problem. Let $I^k = \{(x_1, \dots, x_{n+1}) \in E^{n+1} | 0 \le x_i \le 1 \text{ for } 1 \le i \le k, \text{ and } x_i = 0 \text{ for } i > k\}$. For technical reasons, it is desirable to consider the k-cell D in E^n as the image of I^k under an embedding $f: I^k \to E^n \times 0 \subset E^{n+1}$.

Given integers $1 \le m \le k \le n$, consider $I^k = I^{k-m} \times I^m$, $I^0 = \{0\}$, and let H(n, k, m) denote the following statement:

If $f: I^k \to E^n \times 0 \subset E^n + E^1 = E^{n+1}$ is an embedding, then for each $\varepsilon > 0$, there exists an isotopy $h_t (t \in [0, 1])$ of E^{n+1} such that:

- (1) $h_0 = identity$,
- (2) $h_t = \text{identity outside } N_{\varepsilon}(f(I^k) \times E^1), \text{ for each } t \in [0, 1],$
- (3) h_1 is uniformly continuous,
- (4) h_t changes E^1 -coordinates less than ε , for each $t \in [0, 1]$,
- (5) diam $h_1(f(x \times I^m) \times w) < \varepsilon$, for each $x \in I^{k-m}$ and each $w \in E^1$,
- (6) for each $w \in E^1$, there exists $y \in I^m$ such that

$$h_1(f(x \times I^m) \times w) \subset N_s(f(x, y) \times w)$$

for each $x \in I^{k-m}$.

LEMMA 2.1. For each n and $k, 1 \leq k \leq n, H(n, k, 1)$ implies H(n, k, k).

Proof. Assume inductively that for $1 < m \le k \le n$, H(n,k,1) implies H(n,k,m-1). Given H(n,k,1) and $\varepsilon > 0$, let f_t ($t \in [0,1]$) be the isotopy of E^{n+1} given by H(n,k,m-1) with $\varepsilon / 3$ replacing ε . Choose $\delta > 0$ such that if $x \in E^{n+1}$ and $\dim X < \delta$, then $\dim f_1(X) < \varepsilon / 3$. Consider $I^k = I^{k-m} \times I \times I^{m-1}$ with respective coordinates x,y, and z. Applying H(n,k,1), we can find an isotopy g_t ($t \in [0,1]$) of E^{n+1} satisfying (1) through (4) of H(n,k,1) with δ replacing ε ; (5) diam $g_1(f(x \times I \times z) \times w) < \delta$, for each $x \in I^{k-m}$, $z \in I^{m-1}$, and $w \in E^1$; and (6) for each $w \in E^1$, there exists $y \in I$ such that

$$g_1(f(x \times I \times z) \times w) \subset N_\delta(f(x, y, z) \times w)$$
 for each $x \in I^{k-m}$ and $z \in I^{m-1}$.

Let $h_t = f_t g_t$ ($t \in [0, 1]$). Then clearly h_t satisfies (1) through (4) of H(n, k, m) with respect to ε . Given $w \in E^1$, choose $y \in I$ such that

$$g_1\!\!\left(\!f(x\times I\times z)\times w\right)\subset N_\delta\!\!\left(\!f(x,\,y\,,\,z)\times w\right)\quad\text{ for each }x\in I^{k-m},\ z\in I^{m-1}.$$

Then

$$f_1g_1ig(f(x imes I imes z) imes wig)\subset N_{s/s}ig(f_1ig(f(x,\,y\,,z) imes wig)ig)$$

so that

$$f_1g_1\left(f(x\times I\times I^{m-1})\times w\right)\subset N_{\varepsilon/3}\left(f_1\left(f(x\times y\times I^{m-1})\times w\right)\right)\,.$$

But $\operatorname{diam} f_1 \big(f(x \times y \times I^{m-1}) \times w \big) < \varepsilon/3$ for each $x \in I^{k-m}, y \in I$. Hence

$$\operatorname{diam} h_1(f(x \times I \times I^{m-1}) \times w) < \varepsilon$$
.

Now choose $z \in I^{m-1}$ corresponding to the given $w \in E^1$ such that

$$f_1(f(x \times y \times I^{m-1}) \times w) \subset N_{\varepsilon/3}(f(x, y, z) \times w)$$
.

Then

$$f_1g_1\big(f(x\times I\times I^{m-1})\times w\big)\subseteq N_{\epsilon/3}\big(f_1\big(f(x\times y\times I^{m-1})\times w\big)\big)\subseteq N_{\epsilon/3}\big(f(x,\,y\,,\,z)\times w\big)$$

for each $x \in I^{k-m}$. Thus (5) and (6) of H(n, k, m) are also satisfied.

LEMMA 2.2. H(n, k, k) implies that if D is a k-cell in E^n , then $E^n/D \times E^1 \approx E^{n+1}$.

Proof. Conditions (1) through (5) of H(n, k, k) are clearly sufficient to guarantee that the hypotheses of Theorem 1.4 are also satisfied.

3. Preliminary constructions. Throughout the remainder of this paper we shall assume that $D=f(I^k)$ is a k-cell in $E^n\times 0\subset E^{n+1}$ satisfying either

I. D is flat in
$$E^{n+1}$$
 or

II.
$$n-k \geqslant 2$$
.

Moreover, whenever condition II is applied we shall make the further assumption that $n \ge 4$ since the case n = 3 is covered by Andrews and Curtis [1]. What we wish to do now is prove that these assumptions imply H(n, k, 1). The proof of this assertion is very similar to the proof of Theorem 1 in [1].

Given positive integers m and p, subdivide I^k into rectangular k-cells as follows:

Let $A=\{(a_1,\,...,\,a_k)|\ a_i\ \text{is a positive integer},\ 1\leqslant a_i\leqslant p\ \text{for}\ 1\leqslant i< k,$ and $1\leqslant a_k\leqslant 2m\}$. Consider I^k as $I\times I\times...\times I$, k factors, and for $a=(a_1,\,...,\,a_k)$ ϵ A, let

$$I_a = \left[rac{a_1-1}{p},rac{a_1}{p}
ight] imes ... imes \left[rac{a_{k-1}-1}{p},rac{a_{k-1}}{p}
ight] imes \left[rac{a_k-1}{2m},rac{a_k}{2m}
ight] \quad ext{and} \quad D_a = f(I_a) \; .$$

Given $a \in A$, we shall let a_i denote its ith coordinate.

For any subset X of $E^{n+1} = E^n \times E^1$, define

$$S(X) = \bigcup \{x \times E^1 | x \in E^n \text{ and } (x \times E^1) \cap X \neq \emptyset\}.$$

LEMMA 3.1. For each $\varepsilon > 0$ there exists a covering $\{P_a | a \in A\}$ of I^k in E^{n+1} of (n+1)-cubes P_a and a homeomorphism g of E^{n+1} such that:

(3.1.1) Each Pa is a product of closed intervals,

(3.1.2) $P = \bigcup \{P_a | a \in A\}$ is an (n+1)-cell with $I^k \subset \text{int } P$,

(3.1.3) $P_a \cap P_b$ is a face of each,

(3.1.4) $P_a \cap I_k = I_a$,

(3.1.5) $D \subset g(\text{int }P),$

(3.1.6) $g(P_a) \subset N_{\varepsilon}(D_a)$, and

 $(3.1.7) S(g(P_a)) \cap S(g(P_b)) = \emptyset \text{ whenever } I_a \cap I_b = \emptyset.$

Proof. Notice that $S(D_a) \cap S(D_b) = \emptyset$ whenever $I_a \cap I_b = \emptyset$ since $D = f(I^b) \subset E^n \times 0$. Hence, there exists $0 < \delta < \frac{1}{2}\varepsilon$ such that if $\{X_a | a \in A\}$ is a collection of subsets of E^{n+1} with $X_a \subset N_{2\delta}(D_a)$, then $S(X_a) \cap S(X_b) = \emptyset$ whenever $I_a \cap I_b = \emptyset$.

I. If D is flat in E^{n+1} , then $f: I^k \to E^{n+1}$ extends to a homeomorphism $g: E^{n+1} \to E^{n+1}$. Since $g(I_a) = f(I_a) = D_a$, we can easily find the desired covering $\{P_a | a \in A\}$ of I^k .

II. If $n-k\geqslant 2$ (and $n\geqslant 4$), we shall require the following two facts.

Homma's Approximation Theorem [5]. Let f be an embedding of a closed combinatorial m-manifold M into a combinatorial n-manifold N, $n-m \geqslant 3$. Then for each $\varepsilon > 0$, there exists a PL embedding $g \colon M \to N$ such that $d(f(x), g(x)) < \varepsilon$ for all $x \in M$.

ENGULFING THEOREM (Bryant and Seebeck [3]). Suppose that K is a compact k-dimensional ANR in E^n , $n-k \ge 3$, $n \ge 5$, such that E^n-K is uniformly locally simply connected (1-ULC) and $\delta > 0$. Then there exists $\eta > 0$ such that if $f \colon K \to E^n$ is an η -homeomorphism and U is an open subset of E^n containing f(K), then there is a δ -homeomorphism h of E^n such that $h(U) \supset K$.

Since $n-k \geq 2$ and $D \subset E^n \times 0$, it is clear that $E^{n+1} - D$ is 1-ULC. Choose $\eta > 0$ corresponding to the δ we have chosen according to the Engulfing Theorem. Note that $f \colon I^k \to E \times 0$ extends to an embedding $\bar{f} \colon \operatorname{Bd} I^{k+1} \to E^{n+1}$, so that Homma's Approximation Theorem applies to give a piecewise linear embedding $\varphi \colon I^k \to E^{n+1}$ such that $d(\varphi(x), f(x)) < \eta$ for each $x \in I^k$. Since $(n+1)-k \geq 3$, we may extend φ to a homeomorphism g' of E^{n+1} onto itself [1].

Assume that $\eta < \delta$ and construct a covering $\{P_a | a \in A\}$ of I^k in E^{n+1} by (n+1)-cubes satisfying (3.1.1) through (3.1.4) and with the additional property that $g'(P_a) \subset N_{\delta}(D_a)$. Then, by the Engulfing Theorem, there exists a δ -homeomorphism g'' of E^{n+1} such that $g''(g'(\text{int}P)) \supset D$.

Let g = g''g'. Then for each $a \in A$, $g(P_a) \subset N_{2d}(D_a) \subset N_{\epsilon}(D_a)$, and $S(g(P_a)) \cap S(g(P_b)) = \emptyset$ whenever $I_a \cap I_b = \emptyset$. Q.E.D.

Let N_1 be a compact neighborhood of D in E^n and let ε_1 be a positive number. Choose $\{P_a^1 \mid a \in A\}$, with $P^1 = \bigcup \{P_a^1 \mid a \in A\}$, and g_1 as in Lemma 3.1 so that $g_1(P^1) \subset N_1 \times [-\varepsilon_1, \varepsilon_1]$. Let N_2 be a compact neighborhood of D in E^n and $\varepsilon_2 > 0$, $\varepsilon_2 < \varepsilon_1$, such that $N_2 \times [-\varepsilon_2, \varepsilon_2] \subset g_1(P^1)$. Choose $\{P_a^2 \mid a \in A\}$, with $P^2 = \bigcup \{P_a^2 \mid a \in A\}$, and g_2 as in Lemma 3.1 so that $g_2(P^2) \subset N_2 \times [-\varepsilon_2, \varepsilon_2]$.

Continue in this manner to obtain coverings $\{P_a^1\}$, $\{P_a^2\}$, ..., $\{P_a^{m-1}\}$ of I^k , with $P^i = \bigcup \{P_a^i | a \in A\}$; homeomorphisms $g_1, g_2, ..., g_{m-1}$ of E^{n+1} ; and neighborhoods

 $M_1 = N_1 \times [-\varepsilon_1, \varepsilon_1], \ldots, M_m = N_m \times [-\varepsilon_m, \varepsilon_m] \text{ of } D \text{ in } E^{n+1},$ with $\varepsilon_1 > \ldots > \varepsilon_m$, such that

$$M_1 \supset g_1(P^1) \supset M_2 \supset g_2(P^2) \supset \dots \supset g_{m-1}(P^{m-1}) \supset M_m$$
.

It follows from the proof of Lemma 3.1 that g_i and $\{P_a^i|\ a\in A\}$ can be chosen so that

$$(3.2) S(g_i(P_a^i)) \cap S(g_i(P_b^i)) = \emptyset \text{ and }$$

$$(3.3) S(g_i(P_a^i)) \cap D_b \times E^1 = \emptyset$$

whenever $I_a \cap I_b = \emptyset$. By the construction of $M_1, ..., M_m$, there exists a homeomorphism ψ of $E^{n+1} = E^n \times E^1$ that changes only E^1 -coordinates such that

Let $Q_a^i = \psi g_i(P_a^i)$ and $Q^i = \psi g_i(P^i)$, and consider the following subsets of Q^i , i = 1, 2, ..., m-1:

(a)
$$Q_r^i = \bigcup \{Q_a^i | a_k \geqslant r\}, r = 1, ..., 2m;$$

(b) for
$$a' \in A' = \{(a'_1, a'_2, ..., a'_{k-1}) | 1 \leqslant a'_i \leqslant p \}$$
,

$$R_{a'}^i = \bigcup \{Q_a^i | a_i = a'_i, \text{ for } 1 \leqslant i < k\}.$$

Then, as an immediate consequence of our construction, we have:

(3.4)
$$S(Q_a^i) \cap S(Q_b^i) = \emptyset$$
 if $I_a \cap I_b = \emptyset$;

(3.5)
$$S(R_{a'}^i) \cap S(R_{b'}^j) = \emptyset$$
 if $\max\{|a'_l - b'_l|: l = 1, ..., k-1\} > 1$;

(3.6)
$$S(Q_r^j) \cap Q^i \subset Q_{r-1}^i$$
 for $r = 2, 3, ..., 2m$; and

(3.7) if we let $I_{a'} = \bigcup \{I_a | a_i = a'_i, \text{ for } 1 \leq i < k\} \text{ for } a' \in A', \text{ then } S(R_{a'}^{i}) \cap f(I_{b'}) \times E^1 = \emptyset \text{ whenever } \max\{|a'_l - b'_l|: l = 1, ..., k - 1\} > 1.$

4. The shrinking isotopies.

Lemma 4.1. Given that $1 \le i \le m-1$, let X be a compact set in the interior of Q^t . Then for each r=2,3,...,2m, there exists an isotopy λ_t $(t \in [0,1])$ of E^{n+1} such that

- (1) $\lambda_0 = identity$,
- (2) $\lambda_t \mid Q_r^i \cup (E^{n+1} Q^i) = identity \text{ for each } t \in [0, 1],$
- (3) $\lambda_1(X) \subset Q_{r-1}^i$, and
- (4) $\lambda_t(R_{a'}^i) = R_{a'}^i$ for each $t \in [0, 1]$, $a' \in A'$.

Proof. Let $P_s^i = (\psi g_i)^{-1}(Q_s^i)$ for $1 \le s \le 2m$, and let $Y = (\psi g_i)^{-1}(X)$. We can easily obtain an isotopy λ_t^i ($t \in [0, 1]$) that changes only kth coordinates of points of E^{m+1} with the properties:

- (a) $\lambda'_0 = identity$,
- (b) $\lambda_t' \mid P_r^i \cup (E^{n+1} P^i) = identity$, and
- (e) $\lambda'_{1}(Y) \subset P^{i}_{r-1}$.

Then $(\psi g_i) \lambda_i'(\psi g_i)^{-1} = \lambda_i \ (t \in [0, 1])$ has the required properties.

Remark. Let I^{k-1} denote the face of I^k determined by $x_k=0$. Notice that for each i=1,2,...,m-1, and each $x\in I^{k-1}$, (3.7) gives us that $f(x\times I)\times w$ lies in the sum of 2^{k+1} of the sets $S(R^i_{\alpha'})$, for each $w\in E^1$.

THEOREM 4.2. There exists an isotopy h_t $(t \in [0, 1])$ of E^{n+1} such that $h_0 = identity$,

$$h_t \mid E^{n+1} - N_1 \times [0, 2m-1] = identity$$
.

$$h_t | Q_{2m}^1 = identity,$$

$$h_t | Q_{2m-2}^1 \cap (E^{n+1} - N_{m-1} \times [m-2, m+1]) = identity,$$

$$h_{t}|\ Q^{1}_{2m-4} \cap (E^{n+1}-N_{m-2} \times [m-3\,,\,m+2]) = identity,$$

 $h_t \mid Q_4^1 \cap (E^{n+1} - N_2 \times \lceil 1, 2m - 2 \rceil) = identity,$

$$h_1(D \times \lceil m-1, m \rceil) \subset Q^1_{2m-3}$$
.

$$h_1(D \times [m-2, m+1]) \subset Q^1_{2m-5}$$
,

.

$$h_1(D \times [2, 2m-3]) \subset Q_3^1$$
,

and for each $x \in I^{k-1}$ and each $w \in E^1$, there exist 2^{k+2m-1} of the sets $S(R^1_{\alpha'})$ whose union is connected and contains

$$(f(x \times I) \times w) \cup h_1(f(x \times I) \times w)$$
.

Proof. We shall construct h_t as a composition of m-1 isotopies $h_t^1, h_t^2, \dots, h_t^{m-1}$ of E^{m+1} just as in [1], Theorem 3.

Let h_t^{m-1} $(t \in [0, 1])$ be the isotopy of E^{n+1} given by Lemma 4.1 with i = m-1, $X = D \times [m-1, m]$, and r = 2m-1. Notice that, by (3.6), $S(Q_{2m}^1) \cap Q^{m-1} \subset Q_{2m-1}^{m-1}$ so that $h_t^{m-1} | Q_{2m}^1 = \text{identity}$. By (3.7), the Remark, and the fact that $h_t^{m-1}(R_{\alpha'}^{m-1}) = R_{\alpha'}^{m-1}$ for each $a' \in A'$, we have that $(f(x \times I) \times w)) \cup h_t^{m-1}(f(x \times I) \times w)$ lies in the sum of $2^{(k+1)+2}$ of the sets $S(R_{\alpha'}^1)$ that is connected.

We let h_t^{m-2} ($t \in [0,1]$) be the isotopy given by Lemma 4.1 with i=m-2, $X=h_1^{m-1}(D \times [m-2,m+1])$, and r=2m-3. Since Q_{2m-2}^{m-1} $\subset Q_{2m-3}^{m-2}$, $h_1^{m-2}h_1^{m-1}(D \times [m-1,m]) \subset Q_{2m-2}^{m-1}$; and since $S(Q_{2m-2}^1) \cap Q_{2m-3}^{m-2}$ $\subset Q_{2m-3}^{m-3}$, by (3.6), we have

$$h_t^{m-2}h_t^{m-1}|\ Q_{2m-2}^1 \sim (E^{n+1}-N_{m-1} \times [m-2\,,\,m+1]) = \text{identity}\ .$$

Furthermore, by condition (4) of Lemma 4.1, we have that, for each $x \in I^{k-1}$ and $w \in E^{1}$,

$$(f(x \times I) \times w) \cup (h_1^{m-2}h_1^{m-1}(f(x \times I) \times w))$$

lies in the sum of $2^{(k+1)+4}$ of the sets $S(R_{a'}^1)$ that is connected.

Continuing in this manner, we obtain $h_t = h_t^1 h_t^2 ... h_t^{m-1}$ $(t \in I)$ with the desired properties.

Now let $U_r = g_1(\operatorname{Cl}(P_r^1 - P_{r-1}^1))$ for r = 1, 2, ..., 2m, $P_0^1 = \emptyset$, $U = g_1(P^1)$, and $V_{a'} = g_1(R_{a'}^1)$ for $a' \in A'$. Notice that $U_r = \bigcup \{g_1(P_a^1) | a_k = r\}$.

THEOREM 4.3. There exists an isotopy h_t $(t \in I)$ of E^{n+1} such that:

- (1) $h_0 = identity$,
- (2) $h_t \mid E^n S(U) = identity$,
- (3) h_1 is uniformly continuous,
- (4) for each $w \in E^1$, there exists i such that

$$h_1(f(I^k) \times w) \subset S(U_i \cup ... \cup U_{i+7}) \cap E^n \times [w-2m+1, w+2m-1],$$

and

(5) for each $x \in I^{k-1}$ and $w \in E^1$, there exist 2^{k+4m-3} of the sets $S(V_{a'})$ whose union is connected and contains $(f(x \times I) \times w) \cup h_1(f(x \times I) \times w)$.

Proof. The proof is similar to that of Lemma 2 in [2].

COROLLARY 4.4. H(n, k, 1) is true whenever either of the conditions I or II is satisfied.

Proof. Suppose that $\varepsilon>0$ is given. For $a'=(a'_1,\ldots,a'_{k-1})\ \epsilon\ A',$ $1\leqslant a'_i\leqslant p,$ let

$$J_{a'} = \left[\frac{a_1'-1}{p}, \frac{a_1'}{p}\right] \times \ldots \times \left[\frac{a_{k-1}'-1}{p}, \frac{a_{k-1}'}{p}\right].$$

Then $\{J_{a'}\}_{a'\in A'}$ is a subdivision of I^{k-1} and for $a=(a_1,\,a_2,\,\ldots,\,a_k)\in A$,

$$I_{a'} = J_{a'} \times \left[\frac{a_k - 1}{2m}, \frac{a_k}{2m} \right],$$

where $a'_i = a_i$ for $1 \le i < k$. Choose integers m and p so that for each i = 1, ..., 2m - 7, the union of any 2^{k+4m-3} of the sets

$$f\left(J_{a'} imes \left[\frac{i-1}{2m}, \frac{i+7}{2m}\right]\right)$$

that is connected has diameter less than $\varepsilon/6$. Now choose the covering $\{P_a^1\}_{a\in\mathcal{A}}$ of I^k and g_1 so that $g_1(P_a^1)\subset N_{\varepsilon/6}(D_a)$.

Change the scale on the E^1 -coordinates of points in E^{n+1} so that the isotopy of Theorem 4.3 changes (n+1)st-coordinates less than $\varepsilon/2$. Then (1) through (4) of H(n,k,1) are clearly satisfied. Given $w \in E^1$, choose i as in (4) of Theorem 4.3 and $y \in \left[\frac{i-1}{2m}, \frac{i+7}{2m}\right]$. Then for each $x \in I^{k-1}$,

$$(f(x \times I) \times w) \subset N_{\varepsilon}(f(x, y) \times w)$$
 and $\operatorname{diam}(f(x \times I) \times w) < \varepsilon$.

Hence, (5) and (6) of H(n, k, 1) are also satisfied. This completes the proof of Theorem 1.1.

It was conjectured in [1] that if D is a k-cell in E^n , then $E^n/D \times E^k \approx E^{n+k}$. If n=3 or if $n-k\geqslant 2$ for n>3, Theorem 1.1 gives an affirmative solution to this problem with E^1 being required instead of E^k in order to obtain a Euclidean space. In light of the results of this paper it seems reasonable to ask the following question concerning the two cases that remain unsolved.

QUESTION. If D is an (n-i)-cell in E^n , i=0,1, is $E^n/D\times E^{8-i}\approx E^{n+8-i}$

References

- [1] J. J. Andrews and M. L. Curtis, n-Space modulo an arc, Ann. of Math. 75 (1962), pp. 1-7.
- [2] R. H. Bing, The cartesian product of a certain non-manifold and a line is E^4 , ibid. 70 (1959), pp. 399-412.

- [3] J. L. Bryant and C. L. Seebeck, III, Locally nice embeddings of polyhedra, (to appear).
- [4] D. S. Gillman, Unknotting 2-manifolds in 3-hyperplanes in E⁴, Duke Math. J. 33 (1966), pp. 229-245.
- [5] T. Homma, Piecewise linear approximations of embeddings of manifolds, mimeographed notes, The Florida State University, 1965.
- [6] L. L. Lininger, Some results on crumpled cubes, Trans. Amer. Math. Soc. 118 (1965), pp. 534-549.
- [7] E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math. 18 (1963), pp. 501-526.

THE FLORIDA STATE UNIVERSITY

Reçu par la Rédaction le 27. 4. 1967