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Plane sets with intersections of prescribed power

by

D. J. White (Reading)

1. Mazurkiewicz [3] proved that there is a subset of the plane that
meets each line in exactly two points. Bagemihl [1] proved a theorem
on intersections of abstract sets and used it to extend Mazurkiewicz’s
theorem. He showed that, if we assign to each line L in the plane a cardinal
number nz such that 2 < #nz < 8,, then there is a set 4 which meets
each line L in exactly mz points. Sierpiniski [4] extended this to the case
where 2 < nz, < 2%, and this result ‘was also obtained by Bagemihl and
Frdss [2], by extending the theorem on intersections of abstract sets
(see Theorem A in § 2 of the present paper). We obtain (Theorem 2.1}
a more general and simpler form of Theorem A and use it to deduce certain
new results on intersections of plane sets.

We shall use the axiom of choice freely but not the eontinuum
hypothesis.

A congruent copy of a set A in the real Euclidean space R? is the
image of A under any isometry of R For each integer n > 0, let 8(n)
denote the family of all sets 4 in R?® such that there exists a set B in R
which meets every congruent copy of A in exactly » poinfs. The results
quoted above imply that a line is in $(n) for all n > 2.

For a given set A in R?, the problem of determining the values of n
for which 4 is in S(n) may be difficult. For example, although it is not
hard to show that the edges of a triangle form a set that is not (%) in 8(2),
it does not seem to he easy to determine whether this sef is in §(3). We
reverse the question and consider the following problem: Given & subset ¥
of the positive integers, is there a set A in R® such that 4 is in 8(n) if
and only if # is in N? In other words, is

N {8(n): ne N}— |J{8(n): né¢NY=Q(N),

() If each congruent copy of a triangle T meets a set B in exactly two points
then B is uncountable. Hence B contains a pair of “close® points x, ¥, say. Leb U
be the union of all congruent copies of T that meet B in {z, y}. Then U—{x, y} does
not meet B but a copy of T is contained in this set, which gives a contradiction.
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or (2.2) holds. By the argument used to establish (2.3) we may now show
that for all 4 e

(2.6) [4 ~{ag E<m}<n(d).
Choose any A e 4. If (2.1) holds for some n with 4, = A then clearly
(2.7) A~ fag: 0 E<m} =n(d).
If not, then (2.2) holds for every # with 4,= A, and we see that
n>a,e A

defines an injection from {n: 4,=A4, 0<n<m} to A, and since
{g: 4,= 4, 0< n < m}| = n(4),(2.7) again follows. It follows from (2.6),
(2.7) that B = {ag: 0 < & <m} has the required property.

In the sequel the cardinal of the continuum is denoted by ¢ instead
of 2%, If 4, B aresets in R® and B is the image of A under an isometry
of R? then we say that A and B are congurent and write A~ B.

We now give a corollary of Theorem 2.1 that is directly applicable
to the problems that we consider in § 3,4. In reading this corollary it
may help to bear in mind the example where the Cy, ..., Cx are circles
of different radii and 7= ...=ry= 2.

COROLLARY 2.2, Let 73y ..y Tky 81y .vy Sk (k finite) be positive integers
with r¢ < 8. Let O, ..., Cx be subsets of B? no two of which are congruent,
and suppose that for 4, j such that 1 <4 < j <k the intersection of C; with
any congurent copy of C; (other than Oy ilself when j= i) has power at
most Ky, For t=1,.., %, let |Ci| = ¢, and suppose that if T is any set in
R? of power ri, then there are at most x, congruent copies of Cy that contain
T. Then there exists a set B in R* such that each congruent copy of Ci meets
B in exactly 8¢ poinis.

Proof. Let £ denote the family of all congruent copies of the C.
Then each A in # is the congruent copy of a unique Cj, so we may define
a function n on £ by putting n(4) = s; if A~C;.

‘We now verify that the hypothesis of Theorem 2.1 is satisfied with
this definition of #£ and n. Choose any 8 C R® with

181 < D tn(4): Aesy<e

{the sum is less than ¢ only if ¥ = 1 and 4, = R?); and, if possible, choose
A’ e £ with |8 ~ 4’| <n(4’). Put

A* = {A: =
Sinee r; < 84, (e 1Al =n(d)).

#A* = {A: for some i, A~C; and |§ ~ A]= 8;}
C{4: for some ¢, A~0; and |8 ~ 4] > 7y}
= U{#re i=1,..,k, TCS and |T| =1y},
where #n= {4: A~C; and 4D T}. By hypothesis each #z,; contains
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at most N, sets; and for each ¢=1, ...,k there are less than c¢ subsets

of § with power 7;. Since ¢ is not the sum of s, cardinals each less than ¢,

we deduce that |4*] < ¢. Now 4’ is not in A*, because [§ ~ 4] <n(4d’).

Hence, for all 4* e A%, |A* ~ A'| <8,. Since |[4'|=c¢, it follows that

|4’ — | #* = ¢. Hence, because |8} <e¢,
A'—(SulJ{4:|8nd]l=nd)}=4"—(Sv &) =0,

as required.

It was stated in the introduction that Theorem 2.1 is a stronger
version of a theorem due to Bagemihl and Erdds (Theorem 1 of [2]). This
requires a little proof so we proceed to state the Bagemihl-Erdés theorem,
with some modifications in the notation, and show that its hypothesis
mplies that of Theorem 2.1.

THEOREM A. Let a be an arbitrary, fiwed ordinal number, and let £
be a family of sets with |4| < N,.

For every A e Aand every &' C — {A} with |4'| < N, let |4 — U &'| = x,.

For every A e #, let 1(4) be a cardinal number with 1 < U(4) < 8,
such that the following holds: If SC | J 4 and |8] < 8., then

{A: i8S~ Al = HA) < 8-
For every A e #, let n(A) be a cardinal number satisfying L(4) < n(4)
< Nq. There exists a set B C | 4 such that |B ~ A| = n(A) for every A e .
Proof. We verify that the hypothesis of Theorem 2.1 is satisfied.
First note that
) o -2_
_}J {(d): d e} < vg= 8,
since n(A) < ¥, for all 4 e and |#] < N, Hence, if possible, choose
any SC|J# and A’e# such that [S] < s, and |8~ 4’| <n(4"). Put
A ={A: S~ A|=n(4)}.
Then
A C{A: IS4 = 1A}
and therefore |A* < n,. Since A’ ¢ A% it follows that
JA'— A = K.
Since |8} < 8,, we deduce that
A= (8w U &) = 8a,
and the proof is complete.
3. Let U,l,l, be non-negative integers. Consider a2 set AC R
constisting of the union of I, circles of radius g, &, of radius g, and I,
of radius gy, where p,, 0., 05 are distinet positive numbers and the L+

+1,-+-1, circles are pairwise disjoint. Applying Corollary 2.2 in the case
where % = 3, the C; are circles of radius g; and 7, = 1, = 7, = 2, We see
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that A is in $(n) whenever n = I8+ lysy+1ps; for some sy, 8y, 83> 2.
We shall show in this section that if the circles forming 4 are chosen
in & special way, then A does not belong to §(n) for any other values
of n If I, =1, =1I;=0 then A = © which belongs to §(n) if and only
if n=0, 5o we may suppose that l, > 0.
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Fig. 1. The set illustrated is in S(n) if and only if n = 48 + 65 + 58, for some
81, 8,85 > 2

The set A that we now define is illustrated in Fig. 1 for the case
l=4, l,=6, =25, p, < p, < gs. The set is defined by reference to
Cartesian axes #0y in R% The circles with union A are chosen stage by
stage and at each stage they may be (and it is assumed that they are)
chosen so that they are pairwise disjoint.

First choose §;—1 circles of radius p, with centres on the ax-axis;
then choose another circle of radius p; which does not intersect the #-axis.
Next, if I, > 1, choose I,—1 circles of radius p, with centres on the y-axis
and such that they form a figure symmetric about the #-axis; then choose
one more cirele of radius p, which does not intersect the y-axis and has
centre on the z-axis. Finally, if I, > 1, choose I, circles with radius g,
and centres evenly distributed on the x-axis and positioned so that they
form a figure which is symmetric about the y-axis. Let A be the union
of all the circles that have been chosen.

Suppose that B is a set in R? such that every congruent copy of 4
intersects B in just # points.

By the definition of A, the reflection of A in the x-axis is' obtained
from A by replacing just one of the circles in 4 with radius g, by its re-

e ©
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flection in the x-axis. It follows that this circle and its reflection in the
£-axis intersect B in the same number of points. Let d > 0 be the distanece
between this circle and its reflection in the @-axis. By considering con-
gruent copies of 4 and reflecting in the appropriate lines, we see that
each pair of circles with radius p, and distance d apart intersects B in
the same number of points. If ¢ and ¢’ are any two circles of radius gy,
we may clearly form a finite sequence of ecircles of radius g, such that
the distance hetween consecutive circles in the sequence is d, and the
first and last circles are C and (C'. Hence
I ~Bj= | ~Bi =3, say .

Hence every cirele of radius o, intersects B in just s points.

If I, > 1, the reflection of A in the y-axis may be obtained from A
by replacing all the circles in 4 of radius g, by their reflections in the
y-axis, and replacing just one of the circles in A of radius g, by its re-
flection in the y-axis. Since every circle of radius g, intersects B in just s,
points, we may now use the previous argument to show that every circle
of radius g, intersects B in the same number of points, s, say.

We finally show that, for I, > 1, every circle of radius g, intersects B

_ in the same number of points. This is obvious now for I, = 1, so suppose

that Iy > 2. Let @' > 0 be the shortest distance between the centres of
pairs of circles in A with radius g;. Let 4’ be the congruent copy of A
obtained by the translation of A that sends the origin (0, 0) to the point
(@',0). Then A’ may be obtained from 4 Dby this translation of all the
circles in A with radius o, or g., and by translating (in the same direction
but by a distance l;d) just one of the circles in A with radius p,. Since
every circle of radius p; (i = 1, 2) intersects B in just 8; points, it follows
now, as before, that for some s, every circle of radius p, intersects B in
just s; points. ’

We have shown now that n=:I,8+l8+ls,. To complete the
proof we only have to show that s, 8,,8 > 2.

The set B is non-empty, because #n > 1, so we may choose a point b
in B. Suppose that s, = 1. By considering the circles of radius p; that
contain b, we see that b is the only point of B that is in the dise with
centre b and radius 2p,. Any eircle of radius g, that is in this dise and
does not contain b is disjoint from B. This is a contradiction and therefore
$; > 2. Similarly s,,s; > 2 and the proof is complete.

Remark. The construction of the set B in the above example
depends on Theorem 2.1 and therefore on the well ordering theorem.
It is interesting to the note that some of the results may be obtained
by elementary constructions. For example, for k= 1,2, ..., every circle
with radius ¢ intersects the set

B = {(m,y): y=0, +20/k, j—_—4glk, v}
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in just 2k points, so we deduce that a circle is in () {8(2k): k=1,2, ..}.
In this connection it is worth recalling Sierpifiski’s famous unsolved
problem of whether there is a Borel set that meefs every line in exactly
two points. We have shown that there is a closed set that meets every
circle of prescribed radius in exactly two points.

By considering the set B defined above it may be shown that & Reu-
leanx triangle T, say, (and in fact any curve of constant breadth), belongs
to) {8(2k): k= 1,2,..}. It is worth noting that this result cannot be
deduced from Corollary 2.2, because there is a congruent copy of T that
meets T in ¢ points. Also, because T may be covered by a finite number
of copies of itself other than itself, it turns out that a direct argument
by transfinite induction of the type used in Theorem 2.1 fails to give
this result. T do not know whether T is in S(n) for any odd =» > 3.

4, Let 1, >0, I, > 1 Dbe integers and let p, 2 be positive numbers.
Let 4 C R? be the union of I, circles with radius ¢ and I, parabolas with
latus rectum A, where the circles and parabolas are pairwise disjoint.
If py, 9., Py are distinet points in R?, there are certainly less than x, para-
bolas with latus rectum A that contain {p,, p,, ps}. Hence, applying
Corollary 2.2 when k= 2, O, is a circle of radius ¢, €, is a parabola of
latus rectum 4, and r, = 2, r,= 3, we deduce that A e §(n) whenever
n =18+, for some & > 2, s, > 3. We shall show that if the circles
and parabolas are chosen in a special way, then A ¢ 8(n) for any other
value of n. .

Js
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Fig. 2. The set illustrated is in S(n) if and only if n = 4s,+5s, for some 8> 2,823

©
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The set that we now define is illustrated in Fig. 2 for the case [, = 4,
l,= 5. The set is defined by reference to Cartesian axes 20y in R

Let f be the isometry that rotates R* about the origin through an
angle 2xf(l,+1). Let P be the parabola

{(@, ¥): 9= 24(z— )}
where @, > 0 is chosen g0 that P and f(P) are disjoint. Put
Ay =f(P) v fAP) v .. o FH(P).

1f I, > 2, choose [,—1 pairwise disjoint circles of radius ¢ that do not
intersect 4,, and have centres on the z-axis. If [, > 1, choose a circle
of radius p, disjoint from the other circles and A4,, and with centre off
the - axis. Let 4, be the union of all the circles chosenandlet A = 4, v 4,.
Suppose that B is a set that intersects every congruent copy of A
in just » points. Since A, is its own reflection in the x-axis, we may argue as
in § 3 to show that B intersects every circle of radius g in the same number
of pomts $,, say. By considering the mterseetlons of B with 4, f(4
., f#(4), we see that the parabolas P, f(P), ..., f2(P) all intersect B in
the same number of points s,, say. It follows that n = 1;8,-}1,8.
To complete the proof we only have to show that s >2, s, > 3.
By the argument used in § 3, we may show that s; > 2. It has been
shown that every congruent copy of P intersects B in s, points. Let b,
b, € B; then there is certainly a congruent copy of P that contains
{1, ba}, 50 8, > 2. In fact, it is easy to see that the union of all congru-
ent copies of P tha.t contain {b,, b,} contains a half space and there-
fore contains a congrnent copy of P that does not meet {b;, b,}. It fol-
lows that s, > 3.

5. This section is devoted to a preof of the following

THEOREM 5.1. Let n be a funciion that assigns to each pair of real
numbers t, t' (t <t') and each isometry f of R® a cardinal number n(t, ¥, f)
with 1 < n(t v, fy < c. Also suppose that n is such tha.t if n(t,¥,f) =2,
then whenever v is a reflection we have n(t, ', v o f) = 2. Then there exists
a family of sets {A(t) t real} such that for each t,t' (t <t ) and each isometry f
weiuwelA(t ~fl4 I—'n,tt,f)

Before giving a proof of this theorem we make » few remarks about
the hypothesis econcerning =(t,t,f) and n(t,t', 7 f).

Suppose that 4, A’ are subsets of R, f is an isometry, and [4 ~
~f(4")] > 2. Then if » is a reflection in a line through any two points
of A ~f(A') we have |4 ~ r{f(4))| > 2. Thus we see that the hypothesis
may not be omitted. Notice that this hypothesis is satistied if n(t,#,f) = 2
for all ¢,%,f, and it is also satisfied if n(¢,#,f) =1 for all ¢, ¢, f.

Proof of Theorem 3.1. Throughout the proof a letter ¢ denotes
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a real number and a letter f denotes an isometry of R?. Form & transfinite
sequence {(fg, ,fz): 1 < &<c) the terms of which are triples (z,%,f)
with ¢ <, and such that each (i, f) oceurs exactly (i, ?,f) times

in the sequence.
For all £ and & with 0 < £ < ¢ we define by induetion sets 4 (t, & C R

such that, putting
A, &) = U A, &): & <8,
A¥E) = {4, &) all 8,8 < &},
A= U{A(, 8: all 1},

we have the following:
For all t <1, 0<np<i<cand al [

@ A@,n) CAq, L),

(i) 4@ —-4*0<2,

(l.li) IA(t7 c)"A*(t: C)I <1,

(iv) |4(, 0) ~ fAE, D) < nlt, 7,0,

(v) if |A(, m) A FAQ )| = n(t: 75 ) then

A, D) A FIAE, 0) = Aty m) ~fIAE, 1) -

It is then shown that the sets A(¢) = \UJ {4(t, &): £ < ¢} have the
property required by Theorem 5.1.

Put A(f,0)=@ for all 7. Suppose that 0 < = <¢, that A(t, &) is
defined for all ¢ and & < x, and that (i)~(v) hold for ail f, <%’ and 0 <7
L <

We now show that for all ¢t <, f

(iv%) [4*%(t, ) ~ FA7, )| < 0 ¥ ),

(v*) if ‘A(t,, n) ~ flA@, 17)]] = n(t, ', f) for some n <= then

AX(t, %) f‘f(A*(t': ")) =A(,n) "‘f(A (t, "1)) .

Choose any ¢ <, f. If n(t,?, f) is finite then (iv*) is an immediate
consequence of (iv). If u(t, ¥, f) is infinite and (iv*) does not hold, let «
be the smallest ordinal such that

(5.1) |4%(@, %) ~ FAXE, )| > n(t, ¥, )

then »' < ». Because (iii) holds for all ¢ and { < », we deduce that for
some %" < %’

(5.2) |4, %) A FAE, )| = n(t, ¥, %) .

Since (v) holds for # < <%, (5.2) implies that

A D) ~ AW, 0) = A, =) ~ flA(, %)

e _®

icm
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for all { with ="' < { < ». Hence
Aty w) ~FAXE, #)) = A, #7) ~ FLA(E, %)
which contradiets (5.1), (5.2). Hence (iv*) holds. If
A, ) ~FAE, D) =n(t, ¢,
for some 5 < x, then, by the argument just used,
A%, %) ~ A, ,a)) = Alt, ) ~flA, ).

Hence (v*) is also established.

‘We next define the sets A(¢, ») for all ¢ and show that (i)-(v) hold
forallt <t',f, 0 <% << » This constitutes a major part of our proof.
It is clearly sufficient to consider 0 < 5 < { = =. In view of (iv*) we have
either

(iv%0) A% %) A Ful A%(8y 20)] = {ty by £2)
or

(iv*b) [A*(Ee, )  Ful Aty 2))] < n{te, ey Fr)-

If (iv*a) holds, pub A (1, ) = A*(¢, x) for all t. Thenfor 0 < p K {= »
(i)-(iii) are trivial, and (iv), (v) reduce to (iv*), (v*) respectively. Hence
we may suppose that (iv*b) holds.

Define sets Cy, ..., O in R* as follows:

Ca = {p: |p—ay| = |ay—ag| for some a;, as, a5 € A¥(%)},

O = {p: |p—fa")] = lay—a,) for some o’ ¢ A¥(L;, ») and

1y Gy € A%(x)},

Cs= {p: lp—al = p—Lda') for some ae d*(L., =) and

a’ e A*iy, x) with a = fla")},

Cu = {p: P, &, as are collinear for some a,, as € A*(l, %), @ # AN

From (ii) and the fact that 4 (0) = @ we deduce that [4*(x)| < 2x|—2
< 2l%| <. Hence C,. is the union of at most 2%[x[* <e¢ circles; Cys i8

the union of less than ¢ circles; and Cu, (. are each the union of less
than ¢ lines. Hence

Cp=Cav Cow Cs v Cu = B
and we may choose a point ¢.e R*— O,.
Now define
A, #) = A*1,») H =L and t # b,
Aty #) = A%ty %) v {&)
A(thy #) = AX(ty, %) © {fa (g} -

i
i
:
|
a
(
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Choose any ¢t <1, f, < ». Then, with { = », (i) and (iii) are obvious
and (i) follows because
A () =A%) C {g, [ (@}
To prove (iv), (v) we first establish the following:

(8) If g, <f(AX(E', %)) then

A*(lyy %) ~ FANE, %) = O .
(b) If F(gu) € A*(¢, ) then

A*t, ) ~ f(A* e, %) = O .
(e) If ff'(gu) € A%(t, %) then

A, %) A A, %) = 0.
(@) If fx g efIAX(E, %)) then

A,y %) N fIAXTE, %) = @
{e) If q.ef(A*(th, =) then

T aw) ¢ Aty %) -
®) If ff2'(g) € A*(t, =) then
@ ¢ F(A* (L, #)) -

To prove (a), suppose the contrary. Then for some a;, as € A*(Y', %)
and a e A*(t,,x) we have ¢.= f(ai), a= f(as). Then |g,—a|=|f(a)—
—f(a3)] = |lai—a3| which is impossible because g, ¢ Cq, 50 (2) bolds.
Similarly, if (b) is false, then for some a;, a, € A*(1, %) and a ¢ A*(1,, %)
we have f(g.) = a;, @, = f(a). Hence |g.—a| = |a,— @,| which is impossible,
because ¢, ¢ C., 50 (b) holds. If (¢) is false, then for some a,, a, € A*(f, %)
a.n1d a’ e AX(t;, #) we have f(fi'(g)) = @, @, =f(a’). Hence |a,—a)
= ]f(fil(qx)—-f(a))] = |g.—f.{a’)] which is impossible, because g, ¢ C.z, S0 (¢)
holds. If (d) is false, then for some af, as € A¥(t', ») and a’ € A*(t, ») we
have f (g.) = f(a}) and @' = f(as). Hence |g,—Jf.(a’)| = |aj—aj] which is
impossible, becanse g, ¢ €.z, s0 (d) holds. To prove (e) and (f) it is sufficient
to show that it is impossible that g. e f(A*(t;, )} and f(£,(g.) € 4*(t, #).
If ¢,=fla’) and f(f;’(g.) = & for some a’ ¢ AX(t,, ), a e A¥(t., %), then
l@—a] = |g.—f{a')| and, by (a) with #' = £, @ 5= f(a’). This is impossible,
because ¢, ¢ C,3, s0 (e} -and (f) hold.
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We now return to the proof of (iv), (v) for n < {=#, i.e.

(iv') |4, 2) ~ FIA@, 2)l <n(, ', ),

(v') if 1A@E, ) ~FIAE, n)l =0, ¥, f) for some 5 < x then
Aty %) ~fIA@, =) = At n) ~ fAE, 7).

We consider various cases.

Case 1. {t,t'} ~ {i., t.} = @. Then
Aty %) AFAQE, %) = A%, #) ~ FIAXE, %),

so (iv’'), (v') reduce to (iv*), (v*), respectively.

Case 2. {t, '} ~ {f, 1} = . or #. Suppose first that t = i., ¥’ 5 &.
Then

Aty %) n FIA(H, ) = [A%E, %) © {g3]  fA*E, ) -
If g.¢f(4*(@, =), then (iv), (v)) follow from (iv*), (v*), respectively.
If g. e f(A*(, %)} then, by (a), .
A(t, %) nf(A(t', ”)) = {g},
so (iv') follows, because n(,t',f) = 1. Also (v') holds because for n <=
Aty m) A AW, 7)) C A, %) A AT, %) =0
The other possibilities that occur in Case 2 are as follows:

=1, 1#1b;
Ve=1th, t#b;
t =1, t£t.

These may be dealt with by similar arguments but using (b), (¢}, (d)
respectively in place of (a).

Case 3. {f, '} ~ {f, ti} = {tx, t}. Then t =1, and ¢’ = e, SO
Aty %) A, %) = [4*(t, %) ~ FlA*, )] v [{gd ~ FAx(t, 2)] v
o [A%(t, %) A (P © [ ~ (@)
=Luvl,vljul,=I, say.

It is convenient to subdivide fhis case.

Case 31. I,=I,=I,=@. Then I=1, and (iv), (v) follow
from (iv*), (v*), respectively.
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Case 3.2. I, # 9, ie. g.ef(A*(ti,#)). Then by (a) I, =0, and for any x < ¢, then by the argument that establishes (v*) we can prove
by (e) L= @ Hence I = {g}« I, = {g.}, and (iv), (v') follow as in that
)
'age 2. . A%t 6y ~ fIAXE, 0)) = A(t, %) ~ FA(E, ) .

Case 3.3. I, # O, Le. f(f,, (g)) € A*(t«, »). Then by (¢) I, = @, and s0

v (f) I,= 0. Hence I = f{f."(g.)), and (iv'), (v') follow as in Case 2. 4%, ¢) A F{AX(E, o)) = n(t, V', f) -

Case 3.4. I, #@,ie. g, =f(f,:‘ (g.)). It I, = @, then I = {g,} and (iv")

(v) tollow as in Case 2 Hence, by (iv), we may suppose that for all =z < ¢

Suppose that |I,| = 1. Then there exist a € A*(t,, ) and a’ e A*(1;, x) LA (£, ) ~ AW, #)| <n(t, 7, f) -
such that a = f(a’ = .
¢ at a=f(@) and I= {a, g.}. Then Then for all » such that (L., t, f.) = (¢, ', f) (iv*b) holds and there-
la—q = |f(a")—f(f (g)] = 1Fda) — gl - fore ¢, is defined. Now for all £ for which g is defined, by definition,
) gs € A(t, £) for some t and g; ¢ A%(§), because g; ¢ Cxn. Hence no two of
Hence, since g, ¢ (s, a = f(a’). Thus the ¢; are equal. Hence the function defined by ’
a=f{i@),  ge=1e) #

is an injection from {k: (t,tx, fu) = (t, ¥, ), 2 <o} into A%, e) ~

Also g,  a, because g, ¢ C,;. Thus the isometry f o f; * fixes the two points a, ~ (A%, ¢)). Since
, ©)).

qx, 80 it follows that f= f, or rof, where r is the reflection in the line

through a and ¢,. Hence a e A*(Z,, %)  f.[A*(t}, #)), so sinee (iv*b) holds, o2 by by fi) = (5 85 ), % < e} = n(3, ¥, 1),
;Llft,,,tj, f,‘)f> 2. Hence by the hypothesis of our theorem and the fact it follows that
at f=f, or rof, we deduce that n(i,#,f) = n(,., t,f) > 2. The i ' o)) !
result (iv’) is now immediate, because I( ’= {’af,)gz}. (Al;O ,(]2’)/ follows, \A*(t’ o nf(A*(t ’0))12 nlty #51).
because Using also (5.3) we deduce
Al m afAW,m)CL  and  |L]=1. |42, 0) ~ F(A%(E )| = m(t, ¥, 1) -

Now suppose that [I,] > 2. Then for ¢ = 1, 2 there exist a; € A*(l,, ), The proof of Theorem 5.1 is now complete.
ai e A*t,, x) sueh that a; = f(a}), a, # a. Juat as in the preceeding It was stated in the introduction that Theorem 5.1 implies that for
praragraph, we may show that a;= (f,c ai) for ¢=1,2. Thus the each cardinal number n with 1 < # < ¢, there is a family 4 consisting
isometry fof;’ fixes the three PoINts @y, @y, gy. Sinee g, ¢ Cu, these three of ¢ subsets of R? such that each intersects each congruent copy of another
points are not collinear and therefore f = f,. The results (iv"), (v') now in exactly # points. This is trivial for # = ¢, because we may, for example,
follow, because |I,] < (L, tr, £, T = I v {g}, and A(t., n) o ful A (&, 7)) take 4 to be a family of sets with bounded complements. Therefore
CI,. ’ suppose that 1 < n < ¢ and let £ = {4 (f): ¢ real} be the family determined

The definition of the sets 4 (¢, £) for all ¢ and all £ with 0 < é<o¢ by Theorem 5.1 with n(,?,f) = » for all 1 <?,f. To show that this
is complete, and (i)(v) hold for t <#, 0 <5< ¢ < ¢, and all f. We now family has power ¢ it is m:f.ﬁment to show that the A(t are all distinct.
show that the sets This is a consequence of a result that we prove in the next section (Theo-

rem. 6.1).

AQt) = 4%1,0) = \J{A(t, &):
= Uil : £<a 6. The principal results of this section are Theorems 6.11, 6.12.

have the required property. We begin with Theorem 6.1 which gives the (negative for n 3= 0, ¢) answer
‘ Choose any ¢ < t', f. By the argument used to establish (iv*) we may to the following question:

s?(:;w that . e ) For 0 <m<e, is there a subset of B® that intersects each congrueni
(5.3) [4*(t; o) A flAYE, o))l < mit, ¥, f) . copy of ilself in exacily n points?

H The section continues with various modifications of this question

|4, ) ~ A, 2)| = nit, ¥, f) that eventually lead to Theorems 6.11 and 6.12.
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We have already observed in § 1 that the answer to the above question
is affirmative for n =0, ¢

THEOREM 6.1. If n is a cardinal number such that 1 <n <e¢, then
there is mo subset of R? that intersects each congruent copy of itself in exacily n
points.

Proof. Suppose that A intersects each congruent of itself in exactly n
points. Then |4| = #n, because 4 is a congruent copy of itself. Since there
are ab most n? (< ¢) different distances between pairs of points of 4,
there is a translation f such that A ~ f(4)= @.

In view of the proof of Theorem 6.1 it is natural to consider the
set set 5, consisting of all isometries of R? other than the identity, and
pose the following question: Is there a set A C R* such that for all fe &,
{A ~ f(A)| = n% It is shown that the answer is affirmative for all infinite
n < ¢ and negative for all finite » > 1.

THEEOREM 6.2. If n is a cardinal number with 8, < n < ¢, then there
is @ set A in R® such that for all fe T, |4 ~ f(4)| = n.

, Proof. Let 8, T be sets of real numbers such that every nondegenerate
interval of real numbers intersects § and T in sets of power », and for
all 8,8" €8 and t,#'eT s —8', 8% +1, t £ —1. Put

By={(w,y): y=se=} for sef,
and

Bi={(m,y): y=1e"% for teT,
and let

8= {Fs: s¢8}, T={":teTl}.

It is easy to show that if B, B ¢ $ v G and f is an isometry of R?,
thn |\E o F(E')| <%, unless B = B’ and f is the identity. Using this faci
it is easily shown that A= )8 v |G has the required property.

THEOREM 6.3: Let 5 be the set of all isometries that rotate R® through
the angle =. If n is & positive integer, then there is no set A C R® such ihai
for all feF |4 ~fA)] = n.

Proof. Suppose on the contrary that 4 C R? is such
=y poof. Byt uch that |A ~ f(4)|

Suppose that # is even. Certainly A4 is not em:

‘ . pty, so we may choose
ae A. Liet f be the -1sometry that rotates R? about a t]’nrough f,hes;ungle .
Since n > 2, there is a point a’ ¢ 4 ~ f(4), o’ % 4. Then fla’) € A because
fs(féhA)) ~_?dA. ?]?s f:;1.11 points (# a) in A A f(4) may be paired so that a
is the mid point of each pair. Since a e A A is is i
Iy £ho it Dol A f(4) and » is even, this is

When # is odd a contradiction ma; i imi
o) : y be obtained similarly by con-
sidering the rotation through angle = about a point b ¢ A. v

icm

©
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In view of Theorem 6.3 it is now natural to consider the set F; of
all f € 7, that do not rotate the plane through the angle =, and pose the
following question:

If n is a positive integer, is there a set 4 C R® such that for all fe ¥
1A A f(A) = n?

We show that the answer is negative for n = 1,2 and affirmative
for all # > 3. By further reducing the family of isometries considered
we also obtain a positive result for # = 2. To show that these reductions
are necessary, we prove two theorems each of which also shows that the
answer to the last question is negative for m = 2. We first dispose of the
case # = 1 by observing that if L is a line that contains two points of a set 4,
then the intersection of A and its reflection in L contains these two
points.

THEOREM 6.4. Let 0 < 8 < 2%, and let F be the set of all isumetries
that rotate the plane through the angle 0 together with all the reflections. Then
there is mo set A in R* such that for oll feF |4 ~ f(4)]=2.

Proof. Suppose that A C R® is such that for all fe F |4 A flA) = 2.
Choose a4 and let feF be the rotation through angle § about the
point a. Let a’ e 4 ~ f(4), ¢’ = a. Then the points a, a’, fHa') are in 4
and are the vertices of an isosceles triangle. We obtain a contradiction
by considering the reflection in the line that bisects the angle at the vertex
a of this triangle.

THEOREM 6.5. Let F be the set of all isowmetries that rolate the plane
through the angle ={3 or 2=/3. Then there is no set A C R? such that for all
FfeF |4 nf(d)l=2.

Proof. Suppose that 4 C R? is such that for all f e ¥ |4 ~ f(4)| = 2.
Choose & ¢ A and let f € F be the rotation through =/3 about a. Then there
is a point &’ e A A f(4), o' # a. Then a, 4/, fYa') ave all in A and are
fhe vertices of an equilateral triangle. If g e ¥ is the rotation through
angle 2x/3 about the centre of this triangle, then {a, a’, f (a1 C 4 ~g(4)
and we have a contradiction.

In view of Theorems 6.4 and 6.5, to obtain some positive result
for n = 2 ib is reasonable (2) to introduce the set 5 of all isometries in &
that ave not reflections and do not rotate the plane through the angles

~=[3. With this definition of F* we have Theorem 6.12.

The proofs of Theorems 6.11 and 6.12 occupy the remainder of this
paper. We begin with three elementary lemmas; the first is well known

(*) The restriction of the set of isometries is to some extent arbitrary. In view
of Theorem 6.4, it is natural to ehoose between the reflections and rotations, and since
the rotations form the larger set (in terms of parameters) we remove the reflections.
Then in view of Theorem 8.5 We remove the rotations by ==/3. This choice of the re-
striction is further justified since it leads to a positive resulf.

Fundamenta Mathematicae, T. LXIIIT 9
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and no proof is given. These are followed by Lemmas 6.9 and 6.10 that
are the main parts of the proofs of Theorems 6.11 and 6.12, respectively.

TEMMA 6.6. An orientation preserving isometry of R is a translation
or @ rotation. An orientation reversing isometry is @ reflection in a line fol-
lowed by a translation parallel to that line.

For our purpose a conic is a seb of the form {(z,¥): (®,y) ¢ R
P(z,y) = 0}, where P is a polynomial of degree at most 2 and is nob
identically zero. Thus we allow all the degenerate forms of a conic
except R°.

IEvua 6.7. If 1> 0 and f is an isometry that is not a tranmslation by
distance 1, then B = {p: |p—f(p)| =1} 18 a conic.

Proof. If f is a translation, then F=@. If f is a rotation, then B
is & singleton if I = 0 and a circle otherwise. If f is & reflection in a line I
followed by a translation by distance d parallel to L, then E=0itd>1
B=1Lif d=1, and E is a pair of lines parallel to L if 4 <.

TEvMA 6.8. Let & be an isometry that is mot @ rotation through angle
+7/3 and let p' be any point in R? Then B = {p: |[p—k(p)l = |p—p'l}
s a conic.

Proof. If & is a translation, then F is a circle with centre p’ and
degenerates to {p'} if k is the identity.

Let & be a rotation through angle 6 about a point r, where 0 < 6 < 2=,
0 # =/3, 5%/3. Then |p—Fk(p)l= 2|p—#|sin}f, and therefore FE = {p:
2|p—risini 6 = |p—p’|}. Hence F is the circle of Apollonius if r # p’,
and E = {p'} if r= p’ because 2sin§ 6 # 1.

Let k be the reflection in a line L followed by a translation parallel
to L by a distance d. Let p’ be distance 3y,/4 from L. Then we may choose
Cartesian axes so that L= {(z,¥): ¥ = ¥/}, »'= (0, %,). Then k(z,y)
= {z+d, y,/2—y), and E iz the set of all points (x,y) such that

{o—(@+d)P+{y— @29 = 2+ H—9),

3y —a" = 3yoja—d° .

Hence F is a conic.

W? use the following notation: If f is an isometry of R? and p,, ..., Ps
are points in R?, then f(py, ..., ps) = (f(pl), ...,f(ps)). The set of fixed
points of f is denoted by F(f).

.N ote. It follows from Lemma 6.7 that F(f) is a conic unless [ is
the l‘denti.ty. In faet, it is easy to deduce from Lemma 6.6 that if f is not
the identity, then F(f) is empty, a singleton, or a line, and is a line if
and only if f is the reflection in that line.

© °
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LeMMa 6.9. Let n be an integer n >3, he F, and B C R Suppose
that |B| < ¢, |B ~ k(B)| <n, and for all f e« F= |B ~ f(B)| < n. Then there
exists B’ D B such that

IB—Bl<?2, B ~hB) >IB~HLB),
and for all feF-
IB' ~f(B) < n.
Proof. Let
G={g: geF, BrgB)=2.
Then 8! < ¢. Let
C,= {p: |p— by = |by—b,| for some by, by, bye B} .

Then €, is the union of a family of less than ¢ circles and BC ;.

Suppose first that & is the reflection in a line L, say. By the above
note, for each g e §—{h} L ~ F(g)is empty or a singleton. Since |8} < ¢, it
tollows that we can choose a point geL—(C, v U {F(g): g<8—{A})).

We show that B’ = B u {¢} has the required property.

Clearly B'D B and |B'—B| < 2. Also, since h{g) = ¢,

B’ AR(B')=[Bnh(B)]wv{g}.
Hence
iB"~W(B) = |BAh(B)|+1<n.

It only remains to be shown that for all f e F=—{h} |B' n f(B')| <.
Suppose the contrary; then there are subsets §, 8’ of B’ each consisting
of m--1 points and fe F,—{h} such that 8 = f(8). Then geSv §,
because |B ~ f(B)| < n. It follows that there are subsets T, T of 8,8’
respectively each consisting of 3 points such that ¢ e T v I" and T" = (.
Hence, for some by, ..., ;¢ B,

either

f(bu b27 ba) = (q, bu bs) ’
or

flg, by, by) = (b3, by, b5)
or

(g, by, ba) = (bsy €, B4)

or

Flg, by, bs) = (g, b5, by) -
The first, second, and third equations cannot hold because, since ¢ ¢ Oy,
we have

y—bol # 1g—byl,  lg—bil = [a—b) and  lg—bo| # =0y -
The last equation cannot hold because, if f(b;, bs) = (bs,.b,), then f e §— {h}
and therefore ¢ ¢ F(f) by definition of ¢. We have a contradiction so
the result is established when % is a reflection.
g#
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Suppose that b is not a reflection. Put
Cy = {p: [p— k()| = |by—bs| for some by, by, b3 ¢ B},
O; = {p: |p—b,] = |p—b,| for some by, b, e B, b, = by},
o= U{F(9): g<S},
Os= U{F(hog): geS— {71,

Os= U {r{F(g): g8},
Oy =F(heh)w h™(B) w h(h(B)).

Also, if k is not a translation by a distance |b,—b,| for any b, b, ¢ B, put
Cs = {p: [p—h(p)| = |b,—b,| for some by, b, € B};

and, if h is such atranslation, then define C, as follows: Let ™" be a trans-
Iation by thevector t, b~ (p) = p-+1t. For each (ordered) pair of points b, b’
in B such that [b—d'| = [t] define Ly, to be the line through b parallel
50 - (b—b') if 1+4-(b—b') = 0 and perpendicular to ¢ if ¢+ (b—5’) = 0.
Let Cs be the union of all such lines Ijy.

Then C, is the union of less than ¢ circles, and ¢, is the union of
less than ¢ lines. Also, since F(f) is a conic if f is not the identity, the
sets Oy, C5, C; are each the union of less than ¢ conies. Since % is not
a reflection and not a rotation through angle =, we can see from Lemma, 6.6
that Aok is not the identity, and therefore ¢, is also the union of less
than e conies. If h is not a translation by distance |b,— b,| for any b,, b, ¢ B,
then, by Lemma 6.7, O, is the union of less than ¢ conics. If % is such
a translation then C; is the union of less than ¢ linex. Hence J{C::
i=1,..,8} % R and we may choose ¢ e R*— (] {Cy: i= 1,...,8}.

We show that B'= B u {g, A™*(q)} has the required property.

Clearly B'D B and |[B'—B| < 2. Also

B~ WB)=[B v {g, (@)} ~[R(B) © {h(g), g}]
=[BAhB) v g,

since h(g) ¢ B because ¢ C,Dh"(B), q ¢ B because g ¢ (D B, q¢h(B)
because ¢ ¢ 0, D h(B), k™ (g) ¢ h(B) because g¢ ¢, D ah(B)), and h7Y(g)
# h(g) because q¢ C;D F'(hoh). Hence [B' ~ h(B")] = |B ~ h(B)|+1< .
Hence |B' ~ k™Y(B")| < n.

Now we only have to show that for allf e Fom{h, b} |B' A f(B) < n.
Suppose the contrary. Then by the argument used before we can show
that there are subsets 7, T of B each consisting of 4 points such that
T« T’ contains g or h_l(q) (or both) and 7" is the image of T under some
isometry in . — {k, ™'}, Since the inverse of any isometry in 5,— {h, b’}
is ifself in F.—{h, K"}, it follows that T is also the image of 7" under

©
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some isometry in F.— {h, k). Hence, for some by, ..., b; ¢ B and f e Fr -
~{h, k7}, at least one of the following equations holds (each side of
each equation represents a quadruple of distinet points in E*):

(4 F(gs byy bas bg) = (Bys by, b5,y )

(2) ” = (43 bu bs: bg) H

3 ” = (bq, ¢ bss bg)

() FTHG), bus by by) = (B, bs, By, Ba)

(5) » = (A7(@), by, bs, b} ,
(6) N = (bay 27}, b5, b)
(7) FUgs by, byy bs) = (B7HQ)5 bay bsy be)
(8) » = (by, 1), D5, be) -
9 FUE 27N 5 bay bef = (B bay b5, be)
(10) » = (¢, by, by, Bs)

(11) » = (bss ¢, bay bs)

(12) = (by, bs, ¢, bs)

(18) = (A7), bs, byy bs) «
(14) = (bs, h7q), by, B)
(15) - = (b5, byy @), Bs)
(16) . = (g, 17(@), bs: ba)
an . = (¢, b5, B (4), by)
(18) = (h7(9)5 ¢, bsy b} »
(19) = (bay ¢, R0 Bd) s
(20) = (A7), bay 4, b 5
(21) = (b5, R7(@)5 45 B

(32) 3 = (bsy b4) q, 7f1((l)) .

Because ¢ ¢ ¢; we see that (1), (3), (8), (9), (11), (12), (14), (15), (19),
(20), (21) do not hold. Because ¢ ¢ C; Wwe see that (4), (6), (10), (13), (12)
do not hold. Because g ¢ €, (2) and (16) do not hold; because g ¢ 05 (7)
and (18) do not hold; and because ¢ ¢ C; (9) does not hold. Then only (22)
vemains, and therefore (22) holds. '

If J is not a translation by a distance |b—b’| for some b, b ¢ B, then,
recalling the definition of Cy in this case and the fact tpa,t q¢031 1We
obtain a contradiction from (22). Hence h is such a translation. Let B (p)
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= p+1, say. From (22) we have lg—by| = |g—Dbs|, and since g ¢ Gy, it
follows that b, = b,. Hence f interchanges ¢,b;. We can easily prove
from Lemmsa 6.6 that the only isometries that inferchange a pair of
points are the reflections and rotations by . Since f € Fr, it follows that f
is a reflection in a line I, say. Hence, by (22), b, = b,. Thus g and A~ Y(q)
are reflections of b, and b, respectively in L, and it follows that ¢ is on
the line I’ through b, perpendicular to L. However, L’ is parallel to
1+ (b—b,) if t--(b,—by) # 0 and perpendicular to ¢ if ¢+ (b;—b,) = 0.
Recalling the definition of C, in this case we see that this is contrary to
the definition of ¢ ¢ Cs. This contradiction completes the proof.

LemumA 6.10. Let h e 5* and B C R®. Suppose that [B| <e¢, |B ~ k(B)]
< 2, and for all fe F* |B ~ f(B)| < 2. Then there emists B'D B such that
|B'—B| < 2, |B' ~h(B")| > |B ~ h(B)|, and for oll fe F* |B' ~ f(B')| < 2

Proof. Put § = {f: feF* |B~f(B)|=2}. Define C, ..., 0; as in
the proof of Lemma 6.9. Pub

O = {p: |p—h(b)| = |p—h(d,)| for some by, b, e B, by 5 b},
Cs= {p: |[p—h7'(p)| = |p—b| for some b ¢ B},
Oy= {p: Ip—h7*p)| = lp—%(b)| for some beB.

Then O is the union of less than ¢ lines, and by Lemma 6.8 Cg, Cy are
each the union of less than ¢ conics. Hence | J {0i: i=1,...,9} s R?,
and we may choose ¢ge R*— | J{C: i=1,...,9}.

We show that B’ = B u {g, b '(¢)} has the required property. Clearly
B'DB and |[B'—B| < 2. As in the proof of Lemma 6.9, |B’ ~ h(B')|
= |BALB)+1<2, and |B' ~ h(B)| < 2.

Now we only have to show that forall f e ¥*— {h, B™'} |B’ ~ f(B')| < 2.
Suppose the contrary. Then, as in the proof of Lemma 6.9, for some
feF*—{h, b} and by, ..., by ¢ B, at least one of the following equations
holds (where each side of each equation represents a triple of distinet
points in R?):

e (g5 by, bo) = (Bs, by, bs)

@ w o =(2,bs, b,

®) » =y 8,0y,

) F(h4@) b1, bo) = (By, by, bs)

(5) » = (7(g), ba bd),
(6) no =0 B0, b,
o) F(gy by b) = (B7(0), s, bd)
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(8) F(g, by, b) = (b5, B7() 5 bd)
9) Fla, 7@ s b)) = (bay b5, Ba)
(10) » = (g, by, by) ,
(11) » = (bs, ¢, ba) ,
(12) » = (bs; b5, @) ,
(13) » = (17(q), b2, by) ,
(14) ” = (ba, R ), Be) s
(15) » = (bs, b5, B7(9))
(16) » = (g, "7 (@)s b) »

(17) ” - (Q9 bz: hvl(Q)) ’

(18) = (172), 9, b)
(19) " = (bsy 0, 279}
(20) " = (h7Y(g), b2, ) »
(@1 » = (bs, h7(9), q) -

Because ¢ ¢ 0, (1), (8), (8), (9), (11), (14) do not hold. Because g ¢ Cs,
(4), (6), (10), (13) do not hold. Because g ¢ Cy, (2) does not hold. Because
q ¢ C5 (7) does not hold. Because ¢ ¢ s, (5) does not hold. Because ¢ ¢ Cs,
(17), (19) do not hold. Because g ¢ Cs, (20), (21) do not hold. If (12) holds
then |g—b,| = |g— by} and since ¢ ¢ C,, this implies that b = by: thus fin-
terchanges b, and ¢ which is impossible because f ¢ F*. Hence (12) does
not hold. Similarly, if (15) holds then 1mYg)—by| = B (@) — b and,
since ¢ ¢ C;, this implies that by = by; thus f interchanges b, and (g
which is impossible since f € F*. Hence (15) does not hold. Finally, (16), (18)
do not hold because (16) implies that f fixes ¢ and 1 Y(g), and (18) implies
that f interchanges g and 27(g), and neither is possible since feF*. We
now have a contradiction so the proof is complete.

TrrorEM 6.11. Let n be an integer, n 3> 3. There ewists a seb ACER?
such that for all feFr |A ~f(4)]=mn.

Proof. Form a transfinite sequence (fi: 1< ¢&<¢) the terms of
which are members of . and such that every feJ. occurs exactly »
times in the sequence.

We now define by induction a transfinite sequence (der1<E<e)
of subsets of R* such that for all fe %, and 7, twith 1<y<<i<e

(i) 4, C4,
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(i) HE: £, fe= M < A J(40)

(i) Menfldl <n,

(iv) A1 <2 and  JA— U{de E<I<2.

Choose any point a e R? and put 4, = {a,fi (a)}. Then (i)-(iv) hold
for all fe - and = { = 1. Let » be any ordinal number with 1 < » < c.
Suppose that 4 is defined for all & < and that (i)<(iv) hold for all
fefFrand 1< n<i<x

Put 4% = | J{4ds & <x). Then by definition

(i" A, C A}
for all n < »; and by (i), (i), (iii), for all fe 5

(it*) ‘ {8z &<, fe==fI < |AZ ~ (4D,
(iii*) i nfldn <n.

We now define d, and show that (i)-(iv) hold for all f € F, and 1 <
W= ‘

I A7 nfddd)i=n put A,= A} Let feF, and 1<y <L=xn
Then (i) follows from (i*). If f = f, then

E:é<u, fi=fl=1{88s<x, fi=1)
and (i) follows from (ii*). If f = f,, then (ii) follows becanse [AZ r f(A)]

= and, by _t}le deﬁnit‘ion of (fo), & E< u, fo=f} <n. Also (iii)
follows from (iii*), and (iv) is obvious since A, = A*.

E\Tow suppose that |A4Y ~f(4%)| <n. By (i) and the definition
of A7 we have |4}| < ¢. Hence, by Lemma 6.9 with h = fand B = 4}
we can choose 4,0 4 such that -

(a) |A,‘~—A:I < 27
(b) [Ay  fl 4| > 1A ~fLA0)],
(0) for all feFr |A,~fA)<n.

Let ’ €5 = & nd 1 < NKe = Then (1) follows from (i and the fact
( )
that A-xDAx- If f #* ,x, bhen, as bef()le,

Eé<u,fi=fl={& &<, fi=f
and (i) follows from (ii*). If f= fx, then
RE: <oy fi=Mll = [{&: E<x, fr=FH4+1 < |42 A f(AD)]+1

by (ii*), and therefore (ii) follows from (b
. A.l
a (iv) £ . (@), (b) so (ifi) follows from (e),

©
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The definition of (4 1< & < e) is complete and (i)-(iv) hold for
all feF, and 1 < n < << e From (i), (if), (iil) we deduce that, putting
A= {4 E<el,

He: e, fi=fiI <4 A f(4)]
Sinee {&: & < ¢, f; = f} = n the proof is complete.

Our final theorem may be proved by the same argument, but using
Lemmsa 6.10 instead of Lemma 6.9.

THEOREM 6.12. There is « set ACR® such that for all feF*
id ~f(A) =2

It is interesting to note that F* is the set of all isometries (in the
group of all isometries of R?) that do not have order 1. 2 or 6.

"
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